THE SPECTRUM OF ARTIN MOTIVES

PAUL BALMER AND MARTIN GALLAUER

ABSTRACT. We analyze the tt-geometry of derived Artin motives, via modular
representation theory of profinite groups. To illustrate our methods, we discuss
Artin motives over a finite field, in which case we also prove stratification.

1. INTRODUCTION

Throughout the paper, F is a ‘base field’ (for motives) and G is a profinite group,
e.g. the absolute Galois group of F. We denote by k a field of ‘coefficients’.

Artin motives and permutation modules. In the big picture of motivic tt-
geometry one would like to understand the motivic derived category DM(F) of
Voevodsky [Voe00], and the motivic stable homotopy category SH(F) of Morel-
Voevodsky [MV99], from the perspective of tensor-triangular geometry [BallO].
This project is arguably one of the most challenging parts of tt-geometry and very
little is known at the moment [Pet13, HO18, Gal21, BG22b, Vis23, DV23]. Here we
consider another flavor of motives, namely the k-linear derived category of geometric
Artin motives
DAM®™(F; k)

i.e. the tensor-triangulated subcategory of DM®™(F; k) generated by the motives
of finite separable extensions of F. As with most tt-categories, DAM®™ (F; k) tends
to be ‘wild’ (Remark 7.2) and the spectrum Spc(DAME™(F;k)) yields the best
classification one can reasonably hope for, namely that of its thick tensor-ideals.
The same is true for DM®" (F; k) and we have a surjection on spectra

Spc(DM®™(F; k)) — Spc(DAM®™ (F; k))

by [Ball8]. Hence the geometric complexity that we describe here for Artin motives
also reflects the complexity of DM®™ (F; k).

We approach Artin motives via representations of the absolute Galois group
Gal(F*P/F) of F. In fact, our results will hold for general profinite groups G.
Our main object of study is the bounded homotopy category of finitely generated
permutation kG-modules (idempotent-completed) over the profinite group G-

(1.1) K(G; k) = Ky (perm(G; &))"

Voevodsky established in [Voe00] an equivalence between this category K(G; k)
for G = Gal(F*P/F) and our initial category DAM®™(F; k). See Recollections 2.3
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and 7.1. So although our motivation comes from algebraic geometry, we write most
of the paper in the more general setting of representation theory.

There are further incarnations of the tt-category (1.1), in terms of cohomological
Mackey functors, or equivariant modules over the Eilenberg-MacLane spectrum of
the constant Mackey functor. See for instance [BG23b].

The spectrum. We already computed in [BG23c] the spectrum of the permutation
category X(G; k) when G is a finite group. So our first task is to ‘pass these results
to the limit> This relies on the general continuity result of [Gall8], yielding for
every profinite group G' a homeomorphism (Proposition 3.1)

(1.2) Spe(X(Gs k)) = A}iénc Spe(X(G/N; k))

where N <G stands for the open normal subgroups of G' and where the transition
maps between the spectra Spc(X(G/N;k)) on the right-hand side of (1.2) are in-
duced by inflation between the finite groups G/N. With this, we can describe all
points of the spectrum of X(G; k) for all profinite groups G as follows:

1.3. Theorem. If char(k) = 0 then Spc(K(G;k)) is a single point, i.e. the only
tt-prime is zero. If char(k) = p > 0 then every tt-prime in K(G;k) is of the
form P (H;p) for a closed pro-p-subgroup H < G and a homogeneous prime p in the
cohomology of the Weyl group of H, for a unique pair (H,p) up to G-conjugation.

These primes P (H;p) are explicit. Let us denote by GJ/H = (Ng(H))/H the
Weyl group of the subgroup H of G. As in the finite group case, there exists a
tt-functor called the modular H-fized points functor WH: X(G;k) — K(G | H;k)
that k-linearizes the H-fixed points on finite G-sets (Construction 2.11). We can
compose it with the obvious functor to the derived category

K(Gs k) = X(G [ H; k) - Dy (k(GJ H))

and get a tt-functor from our KX(G;k) to the derived category of the Weyl group
of H. Via this tt-functor, we can pull-back every tt-prime of Dy, (k(G/H)); the
latter correspond to homogeneous primes p of the cohomology of G/ H. These
pull-backs are our primes P (H;p). The statement of Theorem 1.3 is that every
prime of X(G; k) is of this form, for a unique choice of H and p up to G-conjugation.

We outline in Remark 3.22, without elaborating, some alternative descriptions
of the topology of Spc(X(G;k)) via pro-elementary abelian groups or via twisted
cohomology. These themes have been explored in depth in [BG23c| in the finite
case and would appear repetitive here. We find it more instructive to discuss an
example in some detail.

Artin motives over a finite field. Let us illustrate our methods by computing
the spectrum of geometric Artin motives over a finite base field F. In other words,
we consider K(G; k) for G = Z, the profinite integers. See Section 7.

Assume k is a field of characteristic p > 0. The p-Sylow of any finite quotient
G/N is cyclic of order p™, for some n > 0. We proved in [BG23c] that the spectrum
of X(G/N; k) is then the space

mo @ ® my mp_1 ® o m,
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consisting of 2n + 1 points, with specialization relations going upward. (We also
denote by W* = colim,, W" the union of these along the canonical inclusions.)
Taking the limit of the W™ as in (1.2) yields:

1.4. Theorem. Let F be a finite field. If char(k) = 0 then Spc(DAM®™(F; k)) = *.
If char(k) > 0 then Spc(DAMS™(F; k)) is the Alexandroff extension of W™ :

my @ ® m; m,_—1 ® o m, ® m

(1.5)

p1 @ e pn @

A subset V is Thomason if and only if (i) V is stable under specializations and
(i) Mmoo € V implies V' cofinite. These subsets correspond bijectively with thick
tensor-ideals of DAM®™(F; k). In particular, there are continuum many.

The integral spectrum Spc(DAM®™(F; Z)) follows by analyzing the fibers of the
continuous map to Spec(Z). Above the generic point (0), the fiber is a single point.
Above each closed point of Spec(Z) the fiber is a copy of (1.5). See Corollary 7.4.

Stratification. We can consider the big derived category of permutation mod-
ules DPerm(G; k), that admits our X(G; k) as its compact objects. In the case
of a finite group G, we proved in [BG23c, §9] that DPerm(G; k) satisfies BHS-
stratification, following Barthel-Heard-Sanders [BHS23]. This means that its spec-
trum is reasonable, namely is a weakly noetherian space (it is even noetherian for G
finite), and that the ensuing support theory on the big objects of DPerm(G; k) clas-
sifies all localizing tensor-ideals. (See Recollection 5.3.) It is natural to ask whether
this result also ‘passes to the limit’ to profinite groups. This theoretical problem of
the behavior of stratification under colimit has not been solved in glorious gener-
ality. We expect it to be non-trivial since big tt-categories for which stratification
fails can still be the colimit of tt-categories that satisfy BHS-stratification (e.g. for
non-noetherian commutative rings viewed as the colimit of their noetherian sub-
rings). In fact, for a general profinite group G, the spectrum Spc(X(G;k)) may
even cease to be weakly noetherian. See Example 6.10.

Nevertheless, for G = Z and char(k) = p, we obtain the spectrum of Theorem 1.4
and although it is not noetherian (Remark 4.8), it happens to still be weakly noe-
therian (Remark 6.2). And we do prove in Theorem 6.7 that DPerm(G; k) is in-
deed BHS-stratified in that special case. This is a little miracle of procyclic groups.
Putting things together, we obtain:

1.6. Theorem. Let [ be a finite field and k an arbitrary field. Then the big derived
category of Artin motives DAM(F; k) is stratified in the sense of [BHS23]: The spec-
trum of its compacts DAM®™ (F; k) is weakly noetherian, and its localizing tensor-
ideals are in one-to-one correspondence with the subsets of Spc(DAM®™ (F; k)).

Moreover, it satisfies the telescope property: The smashing localizing ideals are
in one-to-one correspondence with the finite ones.

The outline of the paper is straightforward. We recall basics in Section 2 and dis-
cuss modular fixed-points over profinite groups. We prove the homeomorphism (1.2)
and deduce Theorem 1.3 in Section 3. That section also contains general topolog-
ical properties of the maps induced by restriction and modular fixed-points. In
Section 4, we illustrate our work by computing the spectrum in the example of
procyclic groups. We then turn attention to BHS-stratification and gather a couple
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of preparatory tt-results in Section 5, that could be of independent interest. In Sec-
tion 6, we prove BHS-stratification in the procyclic case. We conclude the article
with the translation to Artin motives over finite fields in the brief Section 7.

Acknowledgements. We thank an anonymous referee for a thorough reading of the
text.

For the purpose of open access, the authors have applied a Creative Commons
Attribution (CC-BY) licence to any Author Accepted Manuscript version arising
from this submission.

2. BAsics

2.1. Hypothesis. Unless otherwise stated, G is a profinite group and k is a field of
positive characteristic p.

2.2. Convention. All subgroups H < G will be closed. We write H <G for open
subgroups (that is, closed and of finite index). We denote by Sub(G) the poset of
(closed) subgroups.

2.3. Recollection. To every open subgroup H <G there is an associated finite-
dimensional (left) kG-module k(G/H). The underlying k-vector space has G/H
as basis, with obvious left G-action. It belongs to the category Mod(G; k) of dis-
crete (G;k)-modules, cf. [BG23b, Section 2| for details. We let perm(G; k) be the
additive closure of all these objects k(G/H), H <G, in Mod(G; k). It is the cate-
gory of (finitely generated) permutation modules over G with coefficients in k. We
recall from (1.1) that the main character in this paper is the rigid tt-category

K(G) = K(G; k) := Ky (perm(G; k))* = Ky (perm(G; k)?)
obtained from perm(G;k) by taking bounded complexes and maps up to homo-

topy and by idempotent-completing (in any order). We often abbreviate X(G)
for K(G; k), to lighten notation.

2.4. Proposition. Let (G,)a be an inverse system of profinite groups (e.g. an
inverse system of finite groups) with surjective transition maps, and denote by G =
lim,, G, its limit. The inflation functor K(G,) — K(G) is fully faithful and the
category K(G) is the union of the tt-categories K(G,).

Proof. Inflation functors between finite groups are fully-faithful, as usual. This
implies the same result for profinite groups. And any object in X(G) comes through

inflation from G/N, for some N < G. The projection G — G /N factors through
some (. This proves the proposition. ([l

One can Ind-complete K(G):

2.5. Notation. Following [BG23b, Section 3], we denote by

T(G) := DPerm(G; k)
the localizing subcategory generated by X(G) inside K(Mod(G; k)). It is a rigidly-
compactly generated ‘big’ tt-category with compact part K(G).
2.6. Definition. We say that a closed subgroup H < G is of index prime to p if
every open subgroup K < G containing H has (usual, finite) index prime to p. We
say that G has order prime to p if H = 1 has index prime to p, meaning that G is
an inverse limit of finite groups of order prime to p.
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2.7. Recollection. A minimal subgroup H < G of index prime to p is called a p-
Sylow subgroup. A profinite group G is a pro-p-group if it is an inverse limit of
finite p-groups, or equivalently, if every finite quotient of G is a p-group. A p-Sylow
subgroup is necessarily a pro-p-group. It is maximal among subgroups with this
property. In fact, much of the Sylow theory familiar from finite groups generalizes
to profinite groups. We refer to [RZ10, Chapter 2] for more details.

2.8. Remark. Let H < G be a subgroup of index prime to p. If G is finite, the
restriction functor Res% : K(G) — K(H) is faithful (by the usual argument) and,
as a consequence, the map py = Spc(Res$): Spe(K(H)) — Spe(K(G)) induced on
spectra is surjective, see [BG23¢, Proposition 3.8]. One deduces the same state-
ments for G profinite as everything is inflated from a finite quotient.

Similarly, if char(k) = 0, we obtain the first claim of Theorem 1.3.

We will now show that the restriction functor Res$; : T(G) — T(H) is also faithful
on the big categories. Let us write CoIndg for its right adjoint.

2.9. Proposition. Let H < G be of index prime to p. Then 1y belongs to
Locg (Colnd$ (1)) and the unit : Id — CoInd$ Res$ admits a retraction. In
particular, the functor Res$, : T(G) — T(H) is (split) faithful.

Proof. Let £:t — 1 be a homotopy fiber in T(G) of the unit 7y : 1 — CoInd%(1).
We have Resg(g) = 0 and since Resg is faithful on compacts, this map ¢ must
be a phantom map: For every compact ¢, and every map ¢ — t the composite

¢ — t 5 1is zero. On the other hand, 1 = k[0] is easily seen to be endofinite, i.e. for
every compact ¢ € T(G)¢, the group Hom(c, 1) is a module of finite length over the
ring End(1) = k, simply because Hom(c, 1) is finite dimensional. It is a general fact
that phantom maps into endofinite objects are zero; see [Kra99, Theorem 1.2 (3)].
Thus £ = 0 and the unit 7, is a split monomorphism. By the projection formula,
the same holds for 7: Id — CoInd$ Res% = Colnd$ (1) ® Id. O

2.10. Remark. One can also construct a retraction of 1 — Colnd(1) by hand, via a
suitable homotopy colimit of the retractions at each finite stage.

Let us now turn to modular fixed-points.

2.11. Construction. We may generalize the construction of modular fixed-points
from [BG23c]. Let N < G be a normal closed pro-p-subgroup. The analogues
of Lemma 5.3 and Proposition 5.4 in [BG23c] are true and we may perform Con-
struction 5.6 in loc. cit. Indeed, let H, K <G be open subgroups such that N < H
and N € K. By [RZ10, Proposition 2.1.4(c)|, there exists an open normal subgroup
U <G such that NU < H. Choose an open normal subgroup M <G contained in
NUNK. Then NM < H and NM £ K and NM/M = N/N N M is a finite
p-group. One can therefore apply Lemma 5.3 in [BG23c] to G/M, H/M, K/M,
NM/M and subsequently use inflation to G. In summary, the constructions of
loc. cit. yield the modular fixed-points functor ¥V:¢: T(G) — T(G/N) for normal
closed pro-p-subgroups N < G.

If H < G is a closed pro-p-subgroup that is not necessarily normal then its
normalizer is also closed and hence profinite. We may therefore repeat [BG23c,
Definition 5.10]. In other words, we now have coproduct-preserving tt-functors

. 7(@) — T(GJH),
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still called modular H-fized-points. They are characterized by the facts that on
permutation modules we have U (k(X)) = k(X H) for every finite discrete G-set X
and these functors are applied degreewise on complexes.

2.12. Remark. Let H < G be a closed pro-p-subgroup and let N < G. It is straight-
forward to check that the following square commutes (already at the level of additive
categories of permutation modules):

7@ —— Y T(@)H)

Tlnﬂ Tlnﬂ

T(G/N) — Gy TG/ (HN))

(HN)/N

Therefore, in combination with Proposition 2.4, we could also define the modular
fixed-points functor W for profinite groups as the unique extension of modular
fixed-points for finite groups introduced in [BG23c].

3. GENERAL PROFINITE GROUPS
Recall our standing Hypothesis 2.1.

3.A. The spectrum. We begin our discussion of the tt-geometry of K(G) =
Ky, (perm(G; k))® by applying the general continuity result of [Gall8, Section 8].

3.1. Proposition. Let (G,). be an inverse system of profinite groups with surjec-
tive transition maps, and denote by G = lim, G, its limit. On spectra, this yields
a homeomorphism with the inverse limit

(3.2) Spe(XK(G)) = lim Spe(K(Gy))
where the transition maps are surjective.

Proof. By Proposition 2.4, we have X(G) = colim,, X(G4) with fully faithful transi-
tion functors. By [Gall8, Proposition 8.2], the functor Spe(—) turns such directed
colimits of tt-categories into limits of spaces. Surjectivity uses that inflation is
faithful and [Ball8, Corollary 1.8]. d

3.3. Recollection. Keep the notation, G = lim, G, an inverse limit of profinite
groups. For the set Sub(G) of closed subgroups we have the following bijection:

(3.4) Sub(G) = lim Sub(G.,).

Let us write Sub(G)/G for the quotient of Sub(G) under G-conjugation. For the
reader’s convenience we recall the proof of the following result.

3.5. Lemma ([Dre71, pp. B8-9]). The canonical map is a bijection:
Sub(G)/G 5 lim (Sub(G.)/Ga).

Proof. 1t is enough to show this for a fundamental system of open normal neigh-
borhoods of 1, in other words, for G = limy G/N. Let us show injectivity first.
Let C, D € Sub(G) such that CN/N ~g/n DN/N for each N. Consider for every
N the subset X = {g ’ C9N = DN } of G/N. These define a sub-inverse system
of {G/N}n. Since each Xy is finite and non-empty, the limit is non-empty. Any
g € limy Xy C limy(G/N) = G has the property that C9 = D. It remains to
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show surjectivity. So let (Hy)y € limy (Sub(G/N)/G). Consider for every N the
subset Yy := { (Hn)?|g € G} of Sub(G/N). These define a sub-inverse system
of {Sub(G/N)}y. Since each Yy is finite and non-empty, the limit is non-empty.
Any C € limy Yy C limy Sub(G/N) = Sub(G), by (3.4), has the property that
CN ~g/n Hy for each N. O

3.6. Remark. For every profinite group G, we write
Ve = Spc(Dy(kG))

for the cohomological support space, with the common abuse of notation of writ-
ing Dy, (kG) for the bounded derived category of finite k-dimensional discrete (G; k)-
modules. It is an easy consequence of the finite case that the cohomological support
space underlies a Dirac scheme, namely the canonical comparison map at the top
of the commutative square

comp

Vg ——————— Spec"(H(G; k)
limy V/n — = limy Spec™ (H(G/N; k))

is a homeomorphism. See [Gall9, Proposition 6.5].

3.7. Notation. Let H < G be a closed subgroup. Its Weyl group G/ H is again a
profinite group. Assume further that H is a pro-p-group. The composite

< v T
U K(G) — K(GJH) = Dy (k(GJH))
of modular H-fixed-points and the canonical functor (that is the identity on objects)
induces on spectra a continuous map
(3.8) P = Spe(¥H): Vi — Spe(K(G)).
3.9. Notation. Let H < G be a closed pro-p-subgroup and p € V. We write

Pa(H,p) = 4" (p)
for the corresponding point of Spc(K(G)). We just write P(H;p) when G is clear.

3.10. Corollary. The maps (3.8) are injective and induce a decomposition as sets

Spe(K(G)) = [[ Veyn
(H)

over conjugacy classes (H) of closed pro-p-subgroups H of G.

Proof. Let x € Spc(X(G)). By Proposition 3.1 and the finite case [BG23c, Propo-
sition 7.32], we may write 2 = (Pg/n(Hn/N,pn))N as a compatible family of
points in Spc(K(G/N)), indexed by N 4G, where N < Hy < G and Hy /N is a p-
group, and py € Vig/nyj(ry/n)- For all N < N’ inflation sends Pg/n(Hy /N, pn)
to ?G/N/(N’HN/N’J?G/N/]JN), see [BG23c, Remark 7.6 (c)]. Hence N'Hy ~g
Hy, and we conclude from Lemma 3.5 that there exists a closed subgroup H < G
with NH ~¢ Hy for all N < G. Moreover, H is a pro-p-group, and is unique up to
conjugation. It follows from Remark 3.6 that the py come from a unique point p
in Vg yp. (One uses that the normalizer of HN/N in G/N is given by Ng(H)N/N
and the commutative square in Remark 2.12.) g
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3.11. Remark. In other words, we have proved that all points in Spc(X(G)) are
of the form P (H,p). Moreover, Po(H,p) = Pg(H',p’) if and only if there exists
g € G such that H' = HY and p’ = p9, cf. [BG23¢, Theorem 7.16].

3.B. The map induced by restriction. Let us now discuss the topological prop-
erties of the map py = p§ := Spc(Res$).

3.12. Proposition. Let H < G be a closed subgroup. Then pp: Spc(X(H)) —
Spc(K(Q)) is a closed map with image

N suwp((G/K)).

H<cK LG
Before proving the proposition, we recall a point-set topology fact.

3.13. Lemma. Let (X;),(Y;) be inverse systems in the category Spec of spectral
spaces and spectral maps. Let X and Y be their respective limits(l), and let
fi: Xi = Y, be a natural transformation with limit f: X — Y. Assume each
fi is closed and has finite fibers. Denote by m;: Y — Y; the canonical projection.
Then the map f is closed with image N;m; ' (Im(f;)).

Proof. Let Z = nym; *(Im(f;)) € Y. Since m;(f(z)) = fi(mi(z)) it is clear that
Im(f) € Z. For the converse, let y € Z. Consider, for each 4, the subset C; :=
{2z € Xi| fi(x) = m(y) } of X;. By assumption, the fiber C; = f {mi(y)}) is
finite and it is non-empty because y € Z. It is also a sub-inverse system of X,
hence its limit is non-empty. Any z € lim; C; C X maps to y under f.

To show that f is a closed map it suffices to prove that it has the going-up
property [DST19, Theorem 5.3.3]. That is, let z € X and f(z) ~ y € Y a
specialization. We need to exhibit ' € X such that z ~ 2’ and f(z') = y. As
the projection 7;: Y — Y; is continuous, we also have f;(m;(x)) = 7 f(x) ~ m;(y).
Consider, for each i, the subset D; := { @} € X; | mi(z) ~ i, fi(z}) = mi(y) } of X;.
By assumption, D; is non-empty and finite since D; C f; '({mi(y)}). The (D;);
form a sub-inverse system of X, and their limit D = lim D; is non-empty. Any
a2’ € D C X has the property that f(z') = y and « ~~ z/; the former is obvious and
the latter follows from [DST19, Theorem 2.2.1 or 2.3.9]. O

Proof of Proposition 3.12. Let I = {N <G} be the directed poset of open normal
subgroups, so that Spc(K(G)) = limy & ¢ Spc(K(G/N)) by Proposition 3.1. Since
H=limy 4, H/(NNH), we have Spc(K(H)) = lim ac Spc(K(H/NNH)) as well
and it suffices to verify that the maps pg%\;mN : Spe(K(H/NNH)) — Spc(K(G/N))
satisfy the hypotheses of the maps f; in Lemma 3.13, for every open normal sub-
group N dG. As H/(NNH) is a subgroup of G/N, we are in finite-group territory
and can invoke [BG23c, Proposition 4.7 and Corollary 4.9]. O

3.14. Remark. One can in fact ‘pass the coequalizers of [BG23c, Proposition 4.7] to
the limit’, in the hopefully obvious sense. As this will not be used here, we leave
this development to the interested reader.

3.15. Example. Suppose that G is a profinite group such that the inclusion of the
pro-p-Sylow P »— G has a retraction. In other words, G = H x P (for H of order
prime to p). This happens in particular for pro-nilpotent groups, hence for abelian

1Recall that limits in Spec are computed in Top.
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profinite groups. See [RZ10, Proposition 2.3.8]. In that case, the map on spectra
induced by restriction to P admits a continuous retraction. Since it is also surjective
by Remark 2.8, it is a homeomorphism

pp = Spc(Res$) : Spe(K(P)) 5 Spe(K(Q)).
3.C. The map induced by modular fixed-points. Let us now discuss the topo-
logical properties of the map ¢ = ¢ ;= Spc (V).
For a finite group G and any subgroup K < G we defined a Koszul object
kosg(K) = ®Ind$ (0 — k Lk 0) using tensor-induction in [BG23c, Construc-
tion 3.14]. Note that this construction also makes perfect sense for G pro-finite

as long as K <G is an open subgroup, that is, of finite index. We then general-
ize [BG23c, Lemma 7.12]:

3.16. Lemma. Let H < G be a pro-p-subgroup and p € Vgypu. Let K <G be an

open subgroup and kosg(K) = ®Ind% (0 — k Lko 0). Thenkosg(K) € Pa(H,p)
if and only if H <q K.

Proof. Let N QK be an open normal subgroup of G. By [BG23c, Lemma 3.17],
we have kosg(K') = Infl(kosg/n(K/N)). Consequently, kosg(K) € Pg(H,p) if and
only if kosg/n(K/N) € Pg/n(HN/N,q) where q € Vi gy is the image of p under
inflation. We now apply [BG23c, Lemma 7.12] which tells us that this is equivalent
to HN/N <g K/N, or H <¢ K, as claimed. O

3.17. Corollary. If Po(H,p) C Pe(H',p') then H < H. O

3.18. Lemma. Let H < G be a normal pro-p-subgroup. Then the map Y is a
closed immersion Spc(X(G/H)) — Spc(X(G)) with image

(3.19) ﬂ supp(kosg(K)).

HLcK <G
Proof. This map admits a retraction induced by inflation (cf. [BG23c, Corollary 5.16]).
Therefore it will be a closed immersion once we know the image is closed. So
it suffices to show the second statement. For each N <G, the corresponding
map PIN/N: Spe(K(HN/N)) — Spe(K(G/N)) is a closed immersion, by [BG23c,
Proposition 7.18], with image

(3.20) (1 supp(kosg/n (K/N)).
HN/NZcK/N

By Remark 2.12, the map ¥ in the statement is the limit of these »#N/V along
inflation and we may therefore apply Lemma 3.13. It tells us that the image of ¢
is the intersection of all subsets (3.20) inflated to K(G), that is,

ﬂ ﬂ supp(kosg(K)).
NG HN/NLcK/N

For every H £ K <G there exists an open normal subgroup N <G such that
N < K and HN/N £¢ K/N, by Lemma 3.5. It follows that the subset described
by this double intersection is precisely (3.19). d

3.21. Corollary. Let H < G be a pro-p-subgroup, not necessarily normal. Then
the map ¥ : Spe(K(GJH)) — Spc(K(G)) is a closed map.
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Proof. Since ¢ = p%c(H) o piNa(H) the result follows from Proposition 3.12
for restriction to the normalizer and Lemma 3.18 for the case of H I Ng(H). O

3.22. Remark. In the finite group case, we combined the two techniques discussed
above, namely restriction and modular fixed-points, to prove that Spc(XK(G)) is
the colimit of the Spc(X(FE)) for the elementary abelian subquotients of G. More
precisely, we introduced a category &,(G) of sections K < H < G with H/K
elementary abelian and morphisms keeping track of conjugation, restriction and
quotients. See details [BG23c, Section 11].

To avoid repeating ourselves unnecessarily, we have decided not to spell out
the details in the profinite case. In this generality, the category &,(G) of pro-
elementary abelian p-sections has objects the pairs (H,K) where K < H < G
are pro-p-subgroups, with H < Ng(K), and such that H/K is a pro-elementary
abelian p-group. Morphisms (H, K) — (H', K') are defined to be elements g € G
such that K/ < K9 < HY9 < H’ and composition of morphisms is defined by
multiplication in G. One can then prove that the canonical maps Spc(X(H/K)) —
Spc(X(G)) assemble into a continuous bijection

Ece()gi%) Spe(X(E)) — Spe(XK(G)).

However, this map is in general not a homeomorphism, i.e. it might not be closed.

This is a shortcoming of the profinite variant. Another one is that, in the
case of F a finite elementary abelian group, we produced in [BG23c¢, Section 12]
a multi-graded ring H**(E; k) and a comparison map realizing Spc(K(E)) as an
open subspace of the homogeneous spectrum of H**(E; k). And furthermore the
ring H**(E; k) is a finitely generated k-algebra. In the non-finite case, we have an
analogue for pro-elementary abelian groups but unfortunately the multi-graded ring
becomes a monster, and even the grading involves a non-finitely generated abelian
monoid.

In conclusion, the best description of Spe(X(G)) in the profinite case might well
be the formulation as a limit space, as presented in Proposition 3.1.

4. SPECTRUM IN THE PROCYCLIC CASE
4.1. Notation. We denote by Zp the p-adic integers viewed as a profinite group.

4.2. Remark. A procyclic group G is abelian and thus the inclusion of its p-primary
part (its pro-p-Sylow) G, — G yields a homeomorphism

pa, = Spc(ResgP) : Spe(K(Gp)) = Spe(X(G))

by Example 3.15. Therefore our results on Spc(K(Z,)) in this section easily give
similar results for arbitrary procyclic groups. Cf. Corollary 6.9.

4.3. Recollection. Let n > 1 and consider the cyclic group Cp» of order p”. We
proved in [BG23c, Proposition 8.3] that the spectrum of K(Cpn) is the space

mo ® ® m; my_1 ® o m,
(4.4) W" =
p1 @ E ®
consisting of 2n 4+ 1 points, with specialization relations indicated above: Every m;
is a closed point and the closure of each p; is {m;_1,p;,m;}. A subset is closed if
and only if it is specialization-closed.



THE SPECTRUM OF ARTIN MOTIVES 11

4.5. Definition. We denote by W = colim,, W™ the colimit along the canonical in-
clusions ¢ : W — Wntl p; — p; and m; — m; of the spaces W of Recollection 4.3.

We are now ready to describe Spc(K(Z,)).

4.6. Theorem. The spectrum of iK(Zp) is the Alexandroff extension of W =
Un>oW", namely it is the space W™ = {pn|0 <n< oo}U{mn|0 <n < oo} =
W U {mso} with specialization relations as follows

mo @ ® m;y my_1 ® ® m, ® m
(4.7)

pL @ P ®

whose closed subsets are those Z C W™ that are specialization-closed (if p,, € Z for
0 <n < oo then m,_1,m,, € Z) and are finite or contain my,. The supports of
objects in K(Z,) are exactly the following two classes of closed subsets:

(I) The finite specialization-closed subsets that do not contain M.
(IT) The cofinite (finite complement) specialization-closed subsets that contain M.
Proof. We have Spc(X(Z,)) = lim,, Spc(K(Cpn)), by Proposition 3.1, where the

transition maps are induced by inflation. The latter are described in [BG23c,
Lemma 8.5]. Here is a picture of this system of spaces

Spe(K(Cps)) =W3 = e my O®m e mm emg
™ >w ® m ® po ® p3
Spe(K(Cp2)) =W? = em;, em e m,
i >¢ ® p. e
Spe(K(Cpr)) =W = e m ® m
™ ¥ *
Spe(K(Cpo)) =W = * mo

The transition maps m: W*t! — W™ retract the ‘obvious’ inclusions : W"
Wt and project everything else in W"*!, that is, p,,+; and m,, 1, to the last
point m, in W". So each fiber 7=1(z) above x € W" is a single point, un-
less * = m,, in which case m~!(z) consists of three points. A point in the limit
is given by a coherent sequence of points (2,)n>0 € Hn>0 W™, For instance,
there is the point me, = (m,),>0 which always picks the right-most point. Any
other point (zy)n>0 must satisfy z, # m, for some n and by the above com-
ment, has all higher z,, forced to be ¥ "(x,). We name those points by their
value for n large enough, yielding the p; and m; of the statement. For instance, p3

A

means (..., Pp3, P3, P, P3, mz, my, mg). Hence Spe(K(Z,)) = W™ U {mu} as a set.
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For the topology, every object of K(Z,) is inflated from some ¢ € K(Cpn) and
its support in fK(Zp) is the preimage of supp(c) € W” under 7: W™ —W". If ¢
is acyclic (i.e., its homology vanishes), its support does not touch the right-most
point m,, in W”, hence its preimage in W* will be the (finite) closed supp(c) C W"
included via W" «— W™ < W, away from ms. These yield the closed subsets
of type (I). On the other hand, if ¢ is supported at m,, then the preimage of its
support in W contains ms, but also all p; and m; for i > n. These yield the closed
subsets of type (II). The rest is general tt-geometry [Bal05, Remark 2.7]: The closed
subsets are arbitrary intersections of supports of objects. The description in the
statement is then an exercise. ]

We record some easy facts about the topology in W.

4.8. Remark. The spectrum Spc(ﬂ((zp)) is not noetherian, as the open complement
of {mu} is not quasi-compact.

4.9. Proposition. In W> we have:

(a) Every m; for 0 < i< oo is closed.

(b) The closure of p; for 0 < j < oo is the set {m;_1,p;, m;}.

(c) A subset V.C W™ is quasi-compact if and only if mse €V or V is finite.

(d) A subset V.C W™ is Thomason (%) if and only if (i) V is stable under special-
izations and (ii) my, € V implies V' cofinite. O

4.10. Remark. Having a list of all Thomason subsets of W 2 Spc(K(Z,)), we
also get a list of all tt-ideals in X(Z,), by [Bal05, Theorem 4.10, Remark 4.3]. In

particular, there are continuum many distinct ones. We determine generators for
all tt-ideals in Remark 4.14.

4.11. Remark. Let us briefly discuss ‘tt-residue fields’, a la [BKS19]. At each of the
m; (0 < ¢ < 00) the residue field is Dy, (k), while at each of the p; (0 < j < 00) the
residue field is stab(kC)). For i < oo, the residue field functor rsd.,, is given by the
left-hand diagram below (cf. [BG23c, Proposition 5.15]):

:K(Zp —> Db(kc ) :K(Zp) L Db(zp)
I‘Sdml . YSdmoo A
(p )J lResl Resfp lReSfP

We write here (p’) for the subgroup of Zp of index p?. This still makes sense for i =
oo if one interprets (p°) as the trivial subgroup. In other words, rsd,,__ is restriction
to the trivial subgroup as on the right-hand side above. These residue field functors
on each subcategory X(G/N) were denoted by F") in [BG23c, Definition 7.26].

2Recall that a subset is Thomason if it can be written as a union of closed subsets each of
whose complement is quasi-compact.
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Finally, for 0 < j < oo, the residue field functor rsdy, is given by

7 j (r") sta
K(Z,)) — Diy(kCps) —22 stab(kC, )

. Res,
z (i=1)
Res(ppjwl rsdp l J/Res@j_l)

K((p'~1)) W Dy (kCp) — stab(kC))

where sta denotes the quotient by perfect complexes, i.e. the passage from the
derived to the stable module category.

4.12. Notation. It is convenient to introduce notation for the ‘half-unbounded in-
tervals’ in the space W*. For any 0 < n < oc:

e We denote by W . the subspace {mg,p1,...,Pn, m,}. This can also be identified
with W™ as long zls n < 00.
e We denote by WS, the subspace {My, Prt1, .- Moo}

4.13. Lemma. With notation as above, we have:

(a) supp(k(Zy/(p"))) = WS,

b supp(kosZ ((p™))) :\\;/%On_l'

c) mi = (k(Z,/(p z+1>)7k082p(<10i>)> for all 0 < i < 0.
d) meo = (kosy ((p")) | i < o0).

e) p; = (k(Z p/<PJ>)7kOSZP(< p))) for all 1 < j < oc.

Proof. The first two parts are easy consequences of the residue field functors ex-
hibited in Remark 4.11. Or one may simply refer to [BG23c, Propositions 4.7 and
Corollary 7.17]. The remaining parts then follow by inspecting the supports. O

(
(
(
(

4.14. Remark. AReturning to Remark 4.10, we deduce from Lemma 4.13 that each
tt-ideal in X(Z,) is generated by a (possibly infinite) family of objects that are
cither permutation modules k(Z,/(p™)) or Koszul complexes kosy ((p™)) or tensor
products of such. To be more explicit, each closed subset of W is of the form

(a) ﬂ(Woom U\Wgon) for 0 < my < m; < oo, or

(b) Z' NW

<mo?

(c) Z' mwgon, for n > 0, and for Z’ as in (a).

for m > 0, and for Z’ as in (a), or

4.15. Remark. Bach of the tt-ideals in K(Z,) = K(Z,; k) is generated by the images
of objects in K(Z,;Z). Indeed, the permutation modules k(Z,/(p't")) obviously
have integral lifts. The Koszul objects koszp((pi» also admit an integral lift if p
is odd, see [BG23a, Lemma 3.8]. However, this is not true if p = 2. Still, we
know from [BG23a, Theorem 3.1] that there is an acyclic complex D € K(Cqi;Z)
concentrated in non-negative degrees, with Dy = Z and D; a free ZCy:-module. It
then follows from [BG23c, Corollary 3.20] that D generates the ideal of acyclics. The
same remains true for its image in K(Cy:; k). Inflating these complexes to UC(ZP; Z)
yields the claim. (%)

3 This argument should have been spelled out in the proof of [BG22b, Theorem 11.3].
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5. ABOUT STRATIFICATION

We isolate a couple of abstract tt-geometric results related to stratification. Both
results are close to folklore but we did not find a convenient reference. We recall
that ‘big’ tt-categories mean rigidly-compactly generated ones and a ‘geometric’
tt-functor means one that preserves coproducts (and compact objects since they
are assumed to agree with rigid objects).

5.1. Lemma. Let F: T — § be a geometric tt-functor. Let V. C Spc(T¢) be a
Thomason subset with preimage W := Spc(F)~Y(V) in Spc(8¢) and let
_ T S
F: .
Loc(T%)) - Loc(8§,)
be the functor induced by F. If F is fully faithful then so is F.

Proof. Recall that TY, and 8f;, are the tt-ideals of 7¢ and 8¢ supported on V" and W,
respectively (and W is Thomason because Spc(F) is spectral). By [BF11, Theo-
rem 6.3], we have the following equality of tt-ideals in 8¢:

(5.2) w={F()|ceTi}).
Since F is coproduct-preserving, it maps Loc(7%,) into Loc(8%,), hence the func-
tor F. Let now U: 8 — T be the right adjoint to F. We claim that U sends
Loc(8§,) into Loc(T%,). As F preserves compacts, U is coproduct-preserving and
it suffices to show U(8%5,) C Loc(T%,). By (5.2) the tt-ideal 8¢, is generated as a
thick subcategory of 8¢ by objects of the form F'(c) ® d, where ¢ € T{, and d € 8°.
By the projection formula, U sends such objects to
U(F(c)®d) = c®U(d) € Locg(T5,) = Loc(Ty)

which proves the claim. Consequently, the adjoint U also descends to a functor

— 8 T

U: —

Loc(8§,)  Loc(T%)

which is automatically right adjoint to F. The unit of this adjunction F 4 U is
given by the unit of the original adjunction F' 4 U viewed in the localization. As
the latter is invertible, by assumption, so is the former. ([l

5.3. Recollection. When T is a big tt-category whose spectrum Spc(T€) is weakly
noetherian, we have idempotents g(P) € T for every P € Spc(T¢) and a support
theory for big objects given by Supp(t) = { P | g(P)®t #0 } C Spc(T°). See [BF11,
Definition 7.16]. We say that T is BHS-stratified if Spc(T¢) is weakly noetherian
and if the localizing ®-ideals £ of T are in bijection with the subsets X C Spc(T¢) of
the spectrum, via £ +— Supp(L) = Ueg Supp(t) and X — {t € ‘J’| Supp(t) C X }
See [BHS23, Definition 4.4].

The question of descending stratification along a ‘sufficiently conservative’ tt-
functor has been discussed in [BHS23, BCHT23] for instance. These methods yield
the following result, which is similar to [BCHS23, Theorem 17.20].

5.4. Proposition. Let F: T — 8 be a geometric functor with right adjointU: 8§ — T
satisfying the following conditions:

(1) The map ¢ := Spc(F): Spc(8°) — Spc(T€) is closed and injective.

(2) The tt-category 8 is BHS-stratified.
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(3) The unit 1 belongs to Locg (U (1)) in 7.
Then T is BHS-stratified.

Proof. 1t follows easily from (3) and the projection formula that F' is conservative,
hence ¢ is actually surjective [BG23c, Proposition 7.1], i.e. a homeomorphism.
Thus Spc(7T€) is weakly noetherian as well. Let P € Spc(T¢) and let Q € Spc(8€)
be the unique preimage, i.e. ¢(Q) = P. Then, by [BF11, Theorem 6.3], F'(g(P)) =
g7 1({P})) = g(Q). For every t € T it follows that t ® g(P) vanishes in T if
and only if F'(t® g(P)) ~ F(t) ® g(Q) vanishes in 8. In other words, Supp(F'(t)) =
¢~ 1(Supp(t)) for all t € T. The result now follows from [BCH* 23, Proposition 12.7].

(I

Here is an application to our categories T(G) = DPerm(G; k) and T(G)° = K(G).

5.5. Corollary. Under Hypothesis 2.1, let H < G be a closed subgroup of index
prime to p (Definition 2.6). Assume that the tt-category T(H) is BHS-stratified
(Recollection 5.3). If prr = Spc(Res$) : Spe(K(H)) — Spe(K(Q)) is injective then
pH s a homeomorphism and the tt-category T(G) is BHS-stratified as well.

Proof. The map pg is closed by Proposition 3.12. Thus we apply Proposition 5.4
to F' = Resg. Hypothesis (3) is satisfied in this case by Proposition 2.9. (]

6. STRATIFICATION IN THE PROCYCLIC CASE

Having established a fairly complete picture of the tt-geometry of fK(Zp) in
Section 4, we now turn to big tt-categories. Our goal is to show BHS-stratification
for the big tt-category ‘J'(Zp); see Recollection 5.3. As mentioned already, the
space W 2 Spc(K(Z,)) is not noetherian which complicates matters a bit. Tt is,

however, generically noetherian in the sense of [BHS23, Definition 9.5].

6.1. Lemma. The space W™ is generically noetherian, that is, the generalization
closure of every point is noetherian.

Proof. By Proposition 4.9 the generalization closures of all the points are finite:
They are {mg,p1}, {pn} and {pp—1,m,,p,} for 1 <n < oo and {my}. O

6.2. Remark. Every generically noetherian space X is weakly noetherian, that is,
every point ¢ € X can be written as the intersection {z} = V N W€ of a Thomason
subset V' with the complement of a Thomason subset W, see [BHS23, Lemma 9.9].
In our case, for each € W™, we can realize {z} = V N W€ as follows:

T ‘ Vv ‘ we ‘ w
Moo W {m} Wee
(6.3) - ) o !
p; Wee {p;} W S {p;}

6.4. Lemma. The big tt-category ‘.T(Zp) satisfies the local-to-global principle in the
sense of [BHS23, Definition 3.8].

Proof. Compare the proof of [BIK11, Theorem 3.6] and its translation in [BHS23,
Theorem 3.21]. Consider the localizing ideal of T(Z,)

£ = Locg (g(?P) | P € Spe(K(Z,)))
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where g(P) is as in Recollection 5.3. We need to prove that £ is the whole of T(Z,).
Recall that if {P} is Thomason then g(P) = e;py and if {P}¢ is Thomason then
9(P) = frpye. The first case occurs for all m;, 0 < i < co while the second case
occurs for mo, as well as all the p;. See (6.3). We deduce that all of the following
idempotents belong to £:

€; 1= €[m;}, 0<1 < o0, fj = f{pj}c,o<j<()o7 foo = fives.
We will now prove the following two claims:
(1) For all 0 < i < oo, the idempotent eg; := ey, also belongs to L.
(2) We have fo, = hocolim; f¢; (where f¢; := fisi).

Together these would imply the lemma. Indeed, by the first claim hocolim; eg;
belongs to £. By the second claim and the exact triangle

hocolimeg; — 1 — hocolim f¢;
7 7

we then conclude that 1 € £ as required.

The second claim follows from generalities on idempotents and the fact that
W> = U;W?. For the first claim we proceed by induction on i. The case i = 0 is
clear since ecg = €9 € £. And assuming eg; € £ we have also e¢; V e;41 € £ by
the Mayer-Vietoris triangle [BF11, Theorem 3.13]. Consider then the triangle

egi Ve —egitl ~egt1 ® fWi’U{mHl}'

It is easy to see that the last term is equal to eg;y1 ® fi+1 € £ thus the claim. O

For the next result recall Krause’s homotopy category of injectives K Inj(G; k)
from [Kra05, Section 2]. It is a compactly generated tensor triangulated category
whose compact part identifies with Dy, (kG).

6.5. Proposition. Let G be a profinite group with p-cohomological dimension < 1.
Then KInj(G; k) has a unique non-trivial localizing ideal and Spc(Dy,(kG)) = *.

Proof. Our assumption buys us that H (G; N) = 0 for all N € Mod(G; k) and i > 1.
Let M € Mod(G;k) be a finite-dimensional discrete module. Note that for each
1 > 1 we have

Ext’(M, N) = Ext'(k, M* ® N) 2 H(G; M* @ N) = 0.

We would like to deduce the same for an infinite-dimensional M and for this,
naturally, we write M = colim, M, as a union of finite-dimensional ones. It then
suffices to show that the canonical map

(6.6) Ext’(M, N) = Ext’(colim M, N) — lim Ext’(M,, N) =0

is an isomorphism. Choose an injective resolution N — I* and let C, = Hom(M,,, I®)
be the cochain complex computing the relevant Ext-groups. An inclusion M, — Mg
induces a degreewise surjection C,, «— C as I*® is degreewise injective. It then fol-
lows [Wei94, Theorem 3.5.8] that (6.6) is surjective with kernel

lim' Ext'™'(M,, N) = lim' H"*(G; M @ N).
If @ > 2 these terms clearly vanish. And for ¢ = 2 we can use that the functor
H'(G; —) is right exact, again by our assumption on G, hence the transition maps
in the inverse system are surjective and the higher inverse limit vanishes [Wei94,
Proposition 3.5.7].
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In other words, the abelian category Mod(G; k) is hereditary, which has two
consequences that are relevant for us. First, we have KInj(G; k) ~ D(kG), the un-
bounded derived category of Mod(G; k) by [Kra05, Example 3.10]. And secondly, in
D(kG) every object t splits as t = @;cz H;(t)[i] so that Hom(¢, s) is in bijection with
families «; : H;(t) — H;(s) and ; € Extll\/lod(G;k)(H,'(t),HH_l(s)). In particular, if ¢
and s are both non-zero then

Homp ray (t, s[m]) # 0

for a suitable choice of m € Z. By [BIK11, Lemma 3.9] we conclude that D(kG) ~
K Inj(G; k) is the minimal non-zero localizing tensor ideal as announced. (]

A

6.7. Theorem. The big tt-category T(Z,) is BHS-stratified (Recollection 5.3). More-
over, it satisfies the telescope conjecture.

Proof. We verified that Spc(X(Z,)) is weakly noetherian in Remark 6.2. We also
verified that J(Z,) satisfies the local-to-global principle in Lemma 6.4. It remains to
prove the minimality property ([BHS23, Theorem 4.1]). By [BHS23, Corollary 5.3],
we need to show for every P € Spc(K(Z,)) that the local category T(Z,)/ Loc(P)
satisfies minimality at its closed point. For P € W™, there exists some 0 < n < oo
such that P € \&:/%on. Consider the inflation functor F: T(Cpnt1) — T(Z,) and
let Q := F_l(ﬂ’) € Wy41 be the corresponding prime. Let V. C W, ;1 be the
Thomason subset supp(Q) and W C W its preimage under Spc(F). Now it pays
off that we inflated from Cpn+1 (instead of Cpn, for example): This ensures that
Spc(F) restricts to a bijection between the generalizations of P and those of Q so
that we have W = supp(?P). (Indeed, the support of a prime is the complement
of its generalization-closure.) By Lemma 5.1, the functor F' then induces a fully
faithful tt-functor

T(Cprr) T(2,)

(68) Loc(Q) Loc(P)

which turns out to be an equivalence. Indeed, it suffices to show that every
k(Z,/(p™)) is in the essential image. For m > n+ 1 these are zero, by Lemma 4.13.
And the remaining ones are indeed inflated from Cpn+1. Minimality of T(Z,))/ Loc(%P)
at its closed point now follows from this equivalence (6.8) and the reverse direction
of [BHS23, Corollary 5.3] since we know stratification for finite groups, by [BG23c,
Theorem 9.11].

For P = m,, we need to show that T(Z,)/Loc(ms) = KInj(Z,; k) satisfies
minimality. (For the identification of the two categories see [BG22a, Remark 4.21].)
But Zp is a free pro-p-group and therefore has p-cohomological dimension one [RZ10,
Corollary 7.5.2]. Minimality then follows from Proposition 6.5.

The telescope conjecture then follows from Lemma 6.1 together with [BHS23,
Theorem 9.11]. O

6.9. Corollary. Let G be a profinite group of the form G = H x Zp where H
is a group of order prime to p. (For instance, G could be an abelian or more
generally a pro-nilpotent profinite group, with p-Sylow Zp, eg G= Z the profinite
integers.) Then Spc(K(G)) = W™ and T(G) is BHS-stratified and satisfies the
telescope conjecture.
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Proof. By Remark 4.2, the map py Spc(K(Z,)) — Spe(K(@)) is a homeomor-
phism. Stratification then follows from Theorem 6.7 and Corollary 5.5. And the

telescope conjecture follows again from Lemma 6.1 together with [BHS23, Theo-
rem 9.11]. O

6.10. Example. We finish with an example showing that the results in this section
will not generalize to arbitrary profinite groups.

Let G = (C,)N be a countably infinite pro-elementary abelian group. In that
case, the associated cohomological support space is

Vo = Spec® (H* (G5 k) = Spec” (K[¢, | i € N] @4 Aw(ni | € N)) = P},

an infinite-dimensional projective space with a unique closed point attached on top.
We claim that this space is not weakly noetherian. More precisely, that the unique
closed point is not visible (equivalently, not weakly visible). Recall this amounts to
showing that it is not the support of any object in Dy, (kG). But every such object
is inflated from a finite quotient (Cj,)!, where I C N is a finite subset. Let J = N\T
be the complement and t € Dy, (k(C,)?) a non-zero object. Writing 7 = Spc(Infl)
and p = Spc(Res), with appropriate decorations, we then have

p3 - (supp(InfiZ? () = 037 supp(0)
=m, ' py  (supp(t))
— 731 (Spe(Dy (k)
— Spe(Dy (K(CY)))

using the fact that the composite (Cp)? — G — (Cp)! factors through the trivial

group * = (Cp)w. This shows that the support of Inﬂ ( ) contains much more
than just the unique closed point in P°.

As ' Spe(Dy(kG)) = Spe(K(G)) is a spectral map, we deduce that the lat-
ter is not weakly noetherian either (nor, a fortiori, generically noetherian). In
anticipation of the next section we also mention that restricting to absolute Ga-
lois groups does not change these comments. For example, the absolute Ga-
lois group Z;’j admits G as a quotient. (Here, we are using [Gey69, p. 352].)
Letting H < Z]”;‘ be the kernel of this quotient map we observe, similarly, that
P Spe(K(GQ)) — Spc(iK(Z]”;‘)) is spectral so that Spc(iK(Z]”;‘)) cannot be weakly
noetherian either.

7. ARTIN MOTIVES OVER A FINITE BASE FIELD

We can translate from procyclic groups to Artin motives over finite fields, via
Voevodsky’s result [Voe00, § 3.4].

7.1. Recollection. Let [ be a field and denote by G = Gal(F*P /) its absolute Galois
group with the Krull topology. The classical Grothendieck-Galois correspondence
induces a canonical equivalence of tt-categories DPerm(G; k) ~ DAM(F; k) with the
triangulated category of Artin motives. In particular, the geometric Artin motives
DAMS®™(F; k), which form the compact part, identify with K(G). We refer for a
detailed account of these equivalences (and more) to the survey article [BG23b].
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7.2. Remark. It follows from Voevodsky’s result and the usual ‘wilderness’ of modu-
lar representation theory that DAM®™ (F; k) is typically wild when char(k) = p > 0
and the absolute Galois group admits quotients of large enough p-rank.

7.3. Corollary. Let F be a finite field, or any field witAh abelian (or pro-nilpotent)
absolute Galois group whose p-Sylow is isomorphic to Z,.

(a) The space Spc(DAME™(F; k)) canonically identifies with W of Theorem 4.6.
(b) The big tt-category DAM(F; k) is stratified and satisfies the telescope conjecture.

Proof. By Recollection 7.1, we have DAM(F; k) ~ ‘J'(Z) and use Corollary 6.9. O
In the remainder of the section we compute the spectrum of DAM®™ (F; Z) with
integral coeflicients.

7.4. Corollary. Letcomp: Spc(DAM®™(F;Z)) — Spec(Z) be the comparison map. (*)
(a) Its fiber over (0) is a singleton: comp™1({0}) =: {m(0)};

(b) Its fiber over (p) with p > 0 is a copy of the space W™, denoted W™ (p).

The supports of objects are precisely those subsets that intersect each Woo(p) mn a
closed subset of W and in addition:

(I) either, do not contain m(0) and meet only finitely many W™ (p);

(IT) or, contain my(0) and are cofinite.

In particular, these subsets form a basis of closed subsets in Spc(DAM®™(F; Z)).

7.5. Remark. Of course, the condition of a subset of W being closed in the state-
ment can be made explicit using Theorem 4.6 and Proposition 4.9.

Proof of Corollary 7.4. Let G be the absolute Galois group of F. We translate
the questions to modular representation theory for G as usual. The fiber over (0)
identifies with the spectrum of X(G;Z) ® Q ~ X(G;Q). This is a singleton

Moo (0) = ker(K(G; Z2) — K(G; Q)
by Remark 2.8.
Now, let p > 0 and denote by L,: X(G;Z) — X(G;Z/p) the base change functor,
with right adjoint R,. The fiber of the comparison map over (p) is the support
of cone(Z & Z) = R,(Z/p) hence

Ly: Spe(K(G;Z/p)) — Spe(K(G; Z))

surjects onto this fiber, by [Ball8, Theorem 1.7]. We claim that this map is in fact
a homeomorphism onto its image. For injectivity, it suffices to show that every
prime ideal in K(G;Z/p) is generated by the image of L, see [BG22b, Proposi-
tion 2.10(a)]. As L, commutes with inflation along G — Z,, we reduce to G = Z,,
for this question. We may then apply Remark 4.15. To prove that L; is a closed
map, it suffices to show it has the going-up property [DST19, Theorem 5.3.3]. So
let z € Spe(X(G;Z/p)) and Ly(x) ~ y. Since the image of Ly is closed, y = Ly (z')
for some 2’. It then follows again from [BG22b, Proposition 2.10(a)] together with
Remark 4.15 that x ~ 2.

For the second statement let t € KX(G;Z) and set Z = supp(t). As Ly is con-

tinuous we deduce that Z N W™ (p) is closed in W for every p > 0, as claimed.

4Recall that it sends a prime P to the (necessarily) prime ideal of integers n such that the
cone of Z =5 Z does not belong to P.
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Assume first that ¢ € m..(0). By [Gall9, Proposition 5.10], supp(t) N W>(p) = 0
for almost all p. This shows that Z is of type (I). Conversely, given a subset T' of
type (I) we may without loss of generality assume it is contained in a single W (p).
We observed already above (see Remarks 4.14 and 4.15) that there is an object
t € K(G; Z) such that supp(t) "W (p) = T. But then supp(t® cone(Z % 7)) =T.

Now assume ¢ ¢ my(0) and fix a prime p > 0 with associated base change
functor L, as above. As Res: K(G;Q) — K(1;Q) is conservative, we deduce that
Res¥ (1)@Q = Res¥ (t@Q) # 0. But then, Res? (t) € K(1;Z) is an object that cannot
vanish after applying L, either. In other words, Res{(L,(t)) = L,(Res (1)) # 0
in K(1;Z/p) and this means that L,(t) ¢ Mmoo, or My € supp(Ly(t)). It follows
from Theorem 4.6 that Z N W(p) is cofinite. To show that Z is of type (II) it
remains to show that it contains all but finitely many W (p). But ¢ is inflated from
G/N for some N <G. All but finitely many p are coprime to the index [G : N]
and for such p, L,(¢) is inflated from an object ¢ € K(G/N;Z/p). As L,(t) # 0 we
have ¢’ # 0 so that ' generates the entire tt-category X(G/N;Z/p) by Remark 2.8.
We deduce that L,(t) generates X(G;Z/p) showing that W= (p) C Z.

Conversely, let T be a subset of type (IT). Without loss of generality T > W (p)
for all but one prime p. Let ¢’ € K(G;Z) be an object such that supp(t') "W (p) =
T NW>(p) for that particular p. As explained above, such a t' exists and we may
assume it is inflated from G/N’ for some N’ < G of index a p-power. Let N < N’ be
of index p and consider ¢ := t' ®Z(G/N). Note that L,(t) and L,(¢') have the same
support (L;)_l(T). For every prime q # p, Lq(t) = L,(t') ® Z/q(G/N) is inflated
from X(G/N;Z/q) and not acyclic hence generates the tt-category (Remark 2.8).
Clearly, t ¢ mq.(0) as well and this shows that supp(t) = T.

The last statement is general tt-geometry: the supports of objects form a basis

for the topology. O
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