
THE SPECTRUM OF ARTIN MOTIVES

PAUL BALMER AND MARTIN GALLAUER

Abstract. We analyze the tt-geometry of derived Artin motives, via modular
representation theory of profinite groups. To illustrate our methods, we discuss
Artin motives over a finite field, in which case we also prove stratification.

1. Introduction

Throughout the paper, F is a ‘base field’ (for motives) and G is a profinite group,
e.g. the absolute Galois group of F. We denote by k a field of ‘coefficients’.

Artin motives and permutation modules. In the big picture of motivic tt-
geometry one would like to understand the motivic derived category DM(F) of
Voevodsky [Voe00], and the motivic stable homotopy category SH(F) of Morel-
Voevodsky [MV99], from the perspective of tensor-triangular geometry [Bal10].
This project is arguably one of the most challenging parts of tt-geometry and very
little is known at the moment [Pet13, HO18, Gal21, BG22b, Vis23, DV23]. Here we
consider another flavor of motives, namely the k-linear derived category of geometric
Artin motives

DAMgm(F; k)
i.e. the tensor-triangulated subcategory of DMgm(F; k) generated by the motives
of finite separable extensions of F. As with most tt-categories, DAMgm(F; k) tends
to be ‘wild’ (Remark 7.2) and the spectrum Spc(DAMgm(F; k)) yields the best
classification one can reasonably hope for, namely that of its thick tensor-ideals.
The same is true for DMgm(F; k) and we have a surjection on spectra

Spc(DMgm(F; k))↠Spc(DAMgm(F; k))
by [Bal18]. Hence the geometric complexity that we describe here for Artin motives
also reflects the complexity of DMgm(F; k).

We approach Artin motives via representations of the absolute Galois group
Gal(Fsep/F) of F. In fact, our results will hold for general profinite groups G.
Our main object of study is the bounded homotopy category of finitely generated
permutation kG-modules (idempotent-completed) over the profinite group G:
(1.1) K(G; k) = Kb(perm(G; k))♮.
Voevodsky established in [Voe00] an equivalence between this category K(G; k)
for G = Gal(Fsep/F) and our initial category DAMgm(F; k). See Recollections 2.3
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and 7.1. So although our motivation comes from algebraic geometry, we write most
of the paper in the more general setting of representation theory.

There are further incarnations of the tt-category (1.1), in terms of cohomological
Mackey functors, or equivariant modules over the Eilenberg-MacLane spectrum of
the constant Mackey functor. See for instance [BG21].

The spectrum. We already computed in [BG23b] the spectrum of the permuta-
tion category K(G; k) when G is a finite group. So our first task is to ‘pass these
results to the limit’. This relies on the general continuity result of [Gal18], yielding
for every profinite group G a homeomorphism (Proposition 3.1)
(1.2) Spc(K(G; k)) ∼= lim

N P̊G
Spc(K(G/N ; k))

where N P̊G stands for the open normal subgroups of G and where the transition
maps between the spectra Spc(K(G/N ; k)) on the right-hand side of (1.2) are in-
duced by inflation between the finite groups G/N . With this, we can describe all
points of the spectrum of K(G; k) for all profinite groups G as follows:

1.3. Theorem. If char(k) = 0 then Spc(K(G; k)) is a single point, i.e. the only
tt-prime is zero. If char(k) = p > 0 then every tt-prime in K(G; k) is of the
form PG(H; p) for a closed pro-p-subgroup H ⩽ G and a homogeneous prime p in the
cohomology of the Weyl group of H, for a unique pair (H, p) up to G-conjugation.

These primes PG(H; p) are explicit. Let us denote by G//H = (NG(H))/H the
Weyl group of the subgroup H of G. As in the finite group case, there exists a
tt-functor called the modular H-fixed points functor ΨH : K(G; k) → K(G//H; k)
that k-linearizes the H-fixed points on finite G-sets (Construction 2.11). We can
compose it with the obvious functor to the derived category

K(G; k) → K(G//H; k)↠Db(k(G//H))
and get a tt-functor from our K(G; k) to the derived category of the Weyl group
of H. Via this tt-functor, we can pull-back every tt-prime of Db(k(G//H)); the
latter correspond to homogeneous primes p of the cohomology of G//H. These
pull-backs are our primes PG(H; p). The statement of Theorem 1.3 is that every
prime of K(G; k) is of this form, for a unique choice of H and p up to G-conjugation.

We outline in Remark 3.22, without elaborating, some alternative descriptions
of the topology of Spc(K(G; k)) via pro-elementary abelian groups or via twisted
cohomology. These themes have been explored in depth in [BG23b] in the finite
case and would appear repetitive here. We find it more instructive to discuss an
example in some detail.

Artin motives over a finite field. Let us illustrate our methods by computing
the spectrum of geometric Artin motives over a finite base field F. In other words,
we consider K(G; k) for G = Ẑ, the profinite integers. See Section 7.

Assume k is a field of characteristic p > 0. The p-Sylow of any finite quotient
G/N is cyclic of order pn, for some n ≥ 0. We proved in [BG23b] that the spectrum
of K(G/N ; k) is then the space

Wn =
m0 • • m1 mn−1 • • mn

p1 • · · · • pn



THE SPECTRUM OF ARTIN MOTIVES 3

consisting of 2n + 1 points, with specialization relations going upward. (We also
denote by W∞ = colimnW

n the union of these along the canonical inclusions.)
Taking the limit of the Wn as in (1.2) yields:

1.4. Theorem. Let F be a finite field. If char(k) = 0 then Spc(DAMgm(F; k)) = ∗.
If char(k) > 0 then Spc(DAMgm(F; k)) is the Alexandroff extension of W∞:

(1.5)
m0 • • m1 · · · mn−1 • • mn · · · • m∞

p1 • · · · pn • · · ·

A subset V is Thomason if and only if (i) V is stable under specializations and
(ii) m∞ ∈ V implies V cofinite. These subsets correspond bijectively with thick
tensor-ideals of DAMgm(F; k). In particular, there are continuum many.

The integral spectrum Spc(DAMgm(F;Z)) follows by analyzing the fibers of the
continuous map to Spec(Z). Above the generic point (0), the fiber is a single point.
Above each closed point of Spec(Z) the fiber is a copy of (1.5). See Corollary 7.4.

Stratification. We can consider the big derived category of permutation mod-
ules DPerm(G; k), that admits our K(G; k) as its compact objects. In the case
of a finite group G, we proved in [BG23b, § 9] that DPerm(G; k) satisfies BHS-
stratification, following Barthel-Heard-Sanders [BHS23]. This means that its spec-
trum is reasonable, namely is a weakly noetherian space (it is even noetherian for G
finite), and that the ensuing support theory on the big objects of DPerm(G; k) clas-
sifies all localizing tensor-ideals. (See Recollection 5.3.) It is natural to ask whether
this result also ‘passes to the limit’ to profinite groups. This theoretical problem of
the behavior of stratification under colimit has not been solved in glorious gener-
ality. We expect it to be non-trivial since big tt-categories for which stratification
fails can still be the colimit of tt-categories that satisfy BHS-stratification (e.g. for
non-noetherian commutative rings viewed as the colimit of their noetherian sub-
rings). In fact, for a general profinite group G, the spectrum Spc(K(G; k)) may
even cease to be weakly noetherian. See Example 6.9.

Nevertheless, for G = Ẑ and char(k) = p, we obtain the spectrum of Theorem 1.4
and although it is not noetherian (Remark 4.8), it happens to still be weakly noe-
therian (Remark 6.2). And we do prove in Theorem 6.6 that DPerm(G; k) is in-
deed BHS-stratified in that special case. This is a little miracle of procyclic groups.
Putting things together, we obtain:

1.6. Theorem. Let F be a finite field and k an arbitrary field. Then the big derived
category of Artin motives DAM(F; k) is stratified in the sense of [BHS23]: The spec-
trum of its compacts DAMgm(F; k) is weakly noetherian, and its localizing tensor-
ideals are in one-to-one correspondence with the subsets of Spc(DAMgm(F; k)).

Moreover, it satisfies the telescope property: The smashing localizing ideals are
in one-to-one correspondence with the finite ones.

The outline of the paper is straightforward. We recall basics in Section 2 and dis-
cuss modular fixed-point over profinite groups. We prove the homeomorphism (1.2)
and deduce Theorem 1.3 in Section 3. That section also contains general topolog-
ical properties of the maps induced by restriction and modular fixed-points. In
Section 4, we illustrate our work by computing the spectrum in the example of
procyclic groups. We then turn attention to BHS-stratification and gather a couple
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of preparatory tt-results in Section 5, that could be of independent interest. In Sec-
tion 6, we prove BHS-stratification in the procyclic case. We conclude the article
with the translation to Artin motives over finite fields in the brief Section 7.

2. Basics

2.1. Hypothesis. Unless otherwise stated, G is a profinite group and k is a field of
positive characteristic p.
2.2. Convention. All subgroups H ⩽ G will be closed. We write H ⩽̊G for open
subgroups (that is, closed and of finite index). We denote by Sub(G) the poset of
(closed) subgroups.
2.3. Recollection. To every open subgroup H ⩽̊G there is an associated finite-
dimensional (left) kG-module k(G/H). The underlying k-vector space has G/H
as basis, with obvious left G-action. It belongs to the category Mod(G; k) of dis-
crete (G; k)-modules, cf. [BG21, Section 2] for details. We let perm(G; k) be the
additive closure of all these objects k(G/H), H ⩽̊G, in Mod(G; k). It is the cate-
gory of (finitely generated) permutation modules over G with coefficients in k. We
recall from (1.1) that the main character in this paper is the tt-category

K(G) = K(G; k) := Kb(perm(G; k))♮ = Kb(perm(G; k)♮)
obtained from perm(G; k) by taking bounded complexes and maps up to homo-
topy and by idempotent-completing (in any order). We often abbreviate K(G)
for K(G; k), to lighten notation.
2.4. Proposition. Let (Gα)α be an inverse system of profinite groups (e.g. an
inverse system of finite groups) with surjective transition maps, and denote by G =
limαGα its limit. The inflation functor K(Gα) → K(G) is fully faithful and the
category K(G) is the union of the tt-categories K(Gα).
Proof. Inflation functors between finite groups are fully-faithful, as usual. This
implies the same result for profinite groups. And any object in K(G) comes through
inflation from G/N , for some N P̊G. The projection G → G/N factors through
some Gα. This proves the proposition. □

One can Ind-complete K(G):
2.5. Notation. Following [BG21, Section 3], we denote by

T(G) := DPerm(G; k)
the localizing subcategory generated by K(G) inside K(Mod(G; k)). It is a rigidly-
compactly generated ‘big’ tt-category with compact part K(G).
2.6. Definition. We say that a closed subgroup H ⩽ G is of index prime to p if
every open subgroup K ⩽̊G containing H has (usual, finite) index prime to p. We
say that G has order prime to p if H = 1 has index prime to p, meaning that G is
an inverse limit of finite groups of order prime to p.
2.7. Recollection. A minimal subgroup H ⩽ G of index prime to p is called a p-
Sylow subgroup. A profinite group G is a pro-p-group if it is an inverse limit of
finite p-groups, or equivalently, if every finite quotient of G is a p-group. A p-Sylow
subgroup is necessarily a pro-p-group. It is maximal among subgroups with this
property. In fact, much of the Sylow theory familiar from finite groups generalizes
to profinite groups. We refer to [RZ10] for more details.
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2.8. Remark. Let H ⩽ G be a subgroup of index prime-to-p. If G is finite, the
restriction functor ResGH : K(G) → K(H) is faithful (by the usual argument) and,
as a consequence, the map ρH = Spc(ResGH) : Spc(K(H))↠Spc(K(G)) induced on
spectra is surjective, see [BG23b, Proposition 3.8]. One deduces the same state-
ments for G profinite as everything is inflated from a finite quotient.

Similarly, if char(k) = 0, we obtain the first claim of Theorem 1.3.
We will now show that the restriction functor ResGH : T(G) → T(H) is also faithful

on the big categories. Let us write CoIndGH for its right adjoint.

2.9. Proposition. Let H ⩽ G be of index prime to p. Then 1T(G) belongs to
Loc⊗(CoIndGH(1)) and the unit η : Id → CoIndGH ResGH admits a retraction. In
particular, the functor ResGH : T(G) → T(H) is (split) faithful.

Proof. Let ξ : t → 1 be a homotopy fiber in T(G) of the unit η1 : 1 → CoIndGH(1).
We have ResGH(ξ) = 0 and since ResGH is faithful on compacts, this map ξ must
be a phantom map: For every compact c, and every map c → t the composite
c → t

ξ−→ 1 is zero. On the other hand, 1 = k[0] is easily seen to be endofinite, i.e. for
every compact c ∈ T(G)c, the group Hom(c,1) is a module of finite length over the
ring End(1) = k, simply because Hom(c,1) is finite dimensional. It is a general fact
that phantom maps into endofinite objects are zero; see [Kra99, Theorem 1.2 (3)].
Thus ξ = 0 and the unit η1 is a split monomorphism. By the projection formula,
the same holds for η : Id → CoIndGH ResGH ∼= CoIndGH(1) ⊗ Id. □

2.10. Remark. One can also construct a retraction of 1 → CoInd(1) by hand, via a
suitable homotopy colimit of the retractions at each finite stage.

Let us now turn to modular fixed points.

2.11. Construction. We may generalize the construction of modular fixed-points
from [BG23b]. Let N P G be a normal closed pro-p-subgroup. The analogues
of Lemma 5.3 and Proposition 5.4 in [BG23b] are true and we may perform Con-
struction 5.6 in loc. cit. Indeed, let H,K ⩽̊G be open subgroups such that N ⩽ H
and N ̸⩽ K. By [RZ10, Proposition 2.1.4(c)], there exists an open normal subgroup
U P̊G such that NU ⩽ H. Choose an open normal subgroup M P̊G contained in
NU ∩ K. Then NM ⩽ H and NM ̸⩽ K and NM/M ∼= N/N ∩ M is a finite
p-group. One can therefore apply Lemma 5.3 in [BG23b] to G/M , H/M , K/M ,
NM/M and subsequently use inflation to G.

If H ⩽ G is a closed pro-p-subgroup that is not necessarily normal then its
normalizer is also closed and hence profinite. We may therefore repeat [BG23b,
Construction 4.10]. In other words, we now have coproduct-preserving tt-functors

ΨH;G : T(G) → T(G//H),

still called modular H-fixed-points. They are characterized by the facts that on
permutation modules we have ΨH(k(X)) ∼= k(XH) for every finite discrete G-set X
and these functors are applied degreewise on complexes.

2.12. Remark. Let H ⩽ G be a closed pro-p-subgroup and let N P̊G. It is straight-
forward to check that the following square commutes (already at the level of additive
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categories of permutation modules):

T(G) ΨH
// T(G//H)

T(G/N)

Infl

OO

Ψ(HN)/N

// T(G//(HN))

Infl

OO

Therefore, in combination with Proposition 2.4, we could also define the modular
fixed-points functor ΨH for profinite groups as the unique extension of modular
fixed-points for finite groups introduced in [BG23b].

3. General profinite groups

Recall our standing Hypothesis 2.1.

3.A. The spectrum. We begin our discussion of the tt-geometry of K(G) =
Kb(perm(G; k))♮ by applying the general continuity result of [Gal18].

3.1. Proposition. Let (Gα)α be an inverse system of profinite groups with surjec-
tive transition maps, and denote by G = limαGα its limit. On spectra, this yields
a homeomorphism with the inverse limit
(3.2) Spc(K(G)) = lim

α
Spc(K(Gα))

where the transition maps are surjective.

Proof. By Proposition 2.4, we have K(G) = colimαK(Gα) with fully faithful transi-
tion functors. By [Gal18, Proposition 8.2], the functor Spc(−) turns such directed
colimits of tt-categories into limits of spaces. Surjectivity uses that inflation is
faithful and [Bal18, Corollary 1.8]. □

3.3. Recollection. Keep the notation, G = limαGα an inverse limit of profinite
groups. For the set Sub(G) of closed subgroups we have the following bijection:
(3.4) Sub(G) ∼→ lim

α
Sub(Gα).

Let us write Sub(G)/G for the quotient of Sub(G) under G-conjugation. For the
reader’s convenience we recall the proof of the following result.

3.5. Lemma ([Dre71, pp. B8–9]). The canonical map is a bijection:

Sub(G)/G ∼→ lim
α

(Sub(Gα)/Gα) .

Proof. It is enough to show this for a fundamental system of open normal neigh-
borhoods of 1, in other words, for G = limN G/N . Let us show injectivity first.
Let C,D ∈ Sub(G) such that CN/N ∼G/N DN/N for each N . Consider for every
N the subset XN :=

{
g

∣∣CgN = DN
}

of G/N . These define a sub-inverse system
of {G/N}N . Since each XN is finite and non-empty, the limit is non-empty. Any
g ∈ limN XN ⊆ limN (G/N) = G has the property that Cg = D. It remains to
show surjectivity. So let (HN )N ∈ limN (Sub(G/N)/G). Consider for every N the
subset YN :=

{
(HN )g

∣∣ g ∈ G
}

of Sub(G/N). These define a sub-inverse system
of {Sub(G/N)}N . Since each YN is finite and non-empty, the limit is non-empty.
Any C ∈ limN YN ⊆ limN Sub(G/N) = Sub(G), by (3.4), has the property that
CN ∼G/N HN for each N . □



THE SPECTRUM OF ARTIN MOTIVES 7

3.6. Remark. For every profinite group G, we write

VG := Spc(Db(kG))

for the cohomological support space, with the common abuse of notation of writ-
ing Db(kG) for the bounded derived category of finite k-dimensional discrete (G; k)-
modules. It is an easy consequence of the finite case that the cohomological support
space underlies a Dirac scheme, namely the canonical comparison map at the top
of the commutative square

VG
comp

≃
//

≃
��

Spech(H(G; k))

≃
��

limN VG/N
comp

≃
// limN Spech(H(G/N ; k))

is a homeomorphism. See [Gal19, Proposition 6.5].

3.7. Notation. Let H ⩽ G be a closed pro-p-subgroup. Its Weyl group G//H is
again a profinite group. Assume further that H is a pro-p-group. The composite

Ψ̌H : K(G) ΨH

−−→ K(G//H) Υ−→ Db(k(G//H))

induces on spectra a continuous map

(3.8) ψ̌H := Spc(Ψ̌H) : VG//H → Spc(K(G)).

3.9. Corollary. The maps (3.8) are injective and induce a decomposition as sets

Spc(K(G)) =
∐
(H)

VG//H

over conjugacy classes (H) of closed pro-p-subgroups H of G.

Proof. Let x ∈ Spc(K(G)). By Proposition 3.1 and the finite case [BG23b, Propo-
sition 7.32], we may write x = (PG/N (HN/N, pN ))N as a compatible family of
points in Spc(K(G/N)), indexed by N P̊G, where N ⩽ HN ⩽ G and HN/N is a p-
group, and pN ∈ V(G/N)//(HN/N). For all N ⩽ N ′ inflation sends PG/N (HN/N, pN )
to PG/N ′(N ′HN/N

′, π̄G/N
′
pN ), see [BG23b, Remark 7.6 (d)]. Hence N ′HN ∼G

HN ′ , and we conclude from Lemma 3.5 that there exists a closed subgroup H ⩽ G
with NH ∼G HN for all N P̊G. Moreover, H is a pro-p-group, and is unique up to
conjugation. It follows from Remark 3.6 that the pN come from a unique point p
in VG//H . (One uses that the normalizer of HN/N in G/N is given by NG(H)N/N
and the commutative square in Remark 2.12.) □

3.10. Notation. Let H ⩽ G be a closed pro-p-subgroup and p ∈ VG//H . We write

PG(H, p) := ψ̌H(p)

for the corresponding point of Spc(K(G)). We just write P(H; p) when G is clear.

3.11. Remark. In other words, we have proved that all points in Spc(K(G)) are
of the form PG(H, p). Moreover, PG(H, p) = PG(H ′, p′) if and only if there exists
g ∈ G such that H ′ = Hg and p′ = pg, cf. [BG23b, Theorem 7.16].
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3.B. The map induced by restriction. Let us now discuss the topological prop-
erties of the map ρH = ρGH := Spc(ResGH).
3.12. Proposition. Let H ⩽ G be a closed subgroup. Then ρH : Spc(K(H)) →
Spc(K(G)) is a closed map with image⋂

H⩽GK ⩽̊G

supp(k(G/K)).

Before proving the proposition, we recall a point-set topology fact.
3.13. Lemma. Let (Xi), (Yi) be inverse systems in the category Spec of spectral
spaces and spectral maps. Let X and Y be their respective limits (1), and let
fi : Xi → Yi be a natural transformation with limit f : X → Y . Assume each
fi is closed and has finite fibers. Denote by πi : Y → Yi the canonical projection.
Then the map f is closed with image ∩iπ−1

i (Im(fi)).
Proof. Let Z = ∩iπ−1

i (Im(fi)) ⊆ Y . Since πi(f(x)) = fi(πi(x)) it is clear that
Im(f) ⊆ Z. For the converse, let y ∈ Z. Consider, for each i, the subset Ci :={
x ∈ Xi

∣∣ fi(x) = πi(y)
}

of Xi. By assumption, the fiber Ci = f−1
i ({πi(y)}) is

finite and it is non-empty because y ∈ Z. It is also a sub-inverse system of X•

hence its limit is non-empty. Any x ∈ limi Ci ⊆ X maps to y under f .
To show that f is a closed map it suffices to prove that it has the going-up

property [DST19, Theorem 5.3.3]. That is, let x ∈ X and f(x) ⇝ y ∈ Y a
specialization. We need to exhibit x′ ∈ X such that x ⇝ x′ and f(x′) = y. As
the projection πi : Y → Yi is continuous, we also have fi(πi(x)) = πif(x)⇝ πi(y).
Consider, for each i, the subset Di :=

{
x′
i ∈ Xi

∣∣πi(x)⇝ x′
i, fi(x′

i) = πi(y)
}

of Xi.
By assumption, Di is non-empty and finite since Di ⊆ f−1

i ({πi(y)}). The (Di)i
form a sub-inverse system of X• and their limit D = limDi is non-empty. Any
x′ ∈ D ⊆ X has the property that f(x′) = y and x⇝ x′; the former is obvious and
the latter follows from [DST19, Theorem 2.2.1 or 2.3.9]. □

Proof of Proposition 3.12. Let I = {N P̊G} be the directed poset of open normal
subgroups, so that Spc(K(G)) = limN P̊G Spc(K(G/N)) by Proposition 3.1. Since
H = limN P̊GH/(N∩H), we have Spc(K(H)) = limN P̊G Spc(K(H/N∩H)) as well
and it suffices to verify that the maps ρG/NH/H∩N : Spc(K(H/N∩H)) → Spc(K(G/N))
satisfy the hypotheses of the maps fi in Lemma 3.13, for every index N P̊G. As
H/(N ∩ H) is a subgroup of G/N , we are in finite-group territory and can in-
voke [BG23b, Proposition 4.7 and Corollary 4.9]. □

3.14. Remark. One can in fact ‘pass the coequalizers of [BG23b, Proposition 4.7]
to the limit’, in the hopefully obvious sense. As this will not be used here, we leave
this development to the interested reader.
3.15. Example. Suppose that G is a profinite group such that the inclusion of the
pro-p-Sylow P↣G has a retraction. In other words, G = H ⋊ P (for H of order
prime to p). This happens in particular for pro-nilpotent groups, hence for abelian
profinite groups. See [RZ10, Proposition 2.3.8]. In that case, the map on spectra
induced by restriction to P admits a continuous retraction. Since it is also surjective
by Remark 2.8, it is a homeomorphism

ρP = Spc(ResGP ) : Spc(K(P )) ∼→ Spc(K(G)).
1Recall that limits in Spec are computed in Top.
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3.C. The map induced by modular fixed-points. Let us now discuss the topo-
logical properties of the map ψH = ψH;G := Spc(ΨH;G). We generalize [BG23b,
Lemma 7.12]:

3.16. Lemma. Let H ⩽ G be a pro-p-subgroup and p ∈ VG//H . Let K ⩽̊G be
an open subgroup and kosG(K) = ⊗IndGK(0 → k

1−→ k → 0) the Koszul object
of [BG23b, Construction 3.14]. Then kosG(K) ∈ PG(H, p) if and only if H ⩽G K.

Proof. Let N P̊K be an open normal subgroup of G. By [BG23b, Lemma 3.17],
we have kosG(K) = Infl(kosG/N (K/N)). Consequently, kosG(K) ∈ PG(H, p) if and
only if kosG/N (K/N) ∈ PG/N (HN/N, q) where q ∈ VG//HN is the image of p under
inflation. We now apply [BG23b, Lemma 7.12] which tells us that this is equivalent
to HN/N ⩽G K/N , or H ⩽G K, as claimed. □

3.17. Corollary. If PG(H, p) ⊆ PG(H ′, p′) then H ′ ⩽G H. □

3.18. Lemma. Let H P G be a normal pro-p-subgroup. Then the map ψH is a
closed immersion Spc(K(G/H)) ↪→ Spc(K(G)) with image

(3.19)
⋂

H ̸⩽GK ⩽̊G

supp(kosG(K)).

Proof. This map admits a retraction induced by inflation. Therefore it will be a
closed immersion once we know the image is closed. So it suffices to show the second
statement. For each N P̊G, the corresponding map ψHN/N : Spc(K(HN/N)) →
Spc(K(G/N)) is a closed immersion, by [BG23b, Proposition 7.18], with image

(3.20)
⋂

HN/N ̸⩽GK/N

supp(kosG/N (K/N)).

By Remark 2.12, the map ψH in the statement is the limit of these ψHN/N along
inflation and we may therefore apply Lemma 3.13. It tells us that the image of ψH
is the intersection of all subsets (3.20) inflated to K(G), that is,⋂

N P̊G

⋂
HN/N ̸⩽GK/N

supp(kosG(K)).

This subset is precisely (3.19). □

3.21. Corollary. Let H ⩽ G be a pro-p-subgroup, not necessarily normal. Then
the map ψH : Spc(K(G//H)) → Spc(K(G)) is a closed map.

Proof. Since ψH;G = ρGNG(H) ◦ ψH;NG(H) the result follows from Proposition 3.12
for restriction to the normalizer and Lemma 3.18 for the case of H P NG(H). □

3.22. Remark. In the finite group case, we combined the two techniques discussed
above, namely restriction and modular fixed-points, to prove that Spc(K(G)) is
the colimit of the Spc(K(E)) for the elementary abelian subquotients of G. More
precisely, we introduced a category Ep(G) of sections K P H ⩽ G with H/K
elementary abelian and morphisms keeping track of conjugation, restriction and
quotients. See details [BG23b, Section 11].

To avoid repeating ourselves unnecessarily, we have decided not to spell out
the details in the profinite case. In this generality, the category Ep(G) of pro-
elementary abelian p-sections has objects the pairs (H,K) where K ⩽ H ⩽ G
are pro-p-subgroups, with H ⩽ NG(K), and such that H/K is a pro-elementary
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abelian p-group. Morphisms (H,K) → (H ′,K ′) are defined to be elements g ∈ G
such that K ′ ⩽ Kg ⩽ Hg ⩽ H ′ and composition of morphisms is defined by
multiplication in G. One can then prove that the canonical maps Spc(K(H/K)) →
Spc(K(G)) assemble into a continuous bijection

colim
E∈Ep(G)

Spc(K(E)) ∼→ Spc(K(G)).

However, this map is in general not a homeomorphism, i.e. it might not be closed.
This is a shortcoming of the profinite variant. Another one is that, in the case

of E a finite elementary abelian group, we produced in [BG23b] a multi-graded
ring H••(E; k) and a comparison map realizing Spc(K(E)) as an open subspace
of the homogeneous spectrum of H••(E; k). And furthermore the ring H••(E; k)
is a finitely generated k-algebra. In the non-finite case, we have an analogue for
pro-elementary abelian groups but unfortunately the multi-graded ring becomes a
monster, and even the grading involves a non-finitely generated abelian monoid.

In conclusion, the best description of Spc(K(G)) in the profinite case might well
be the formulation as a limit space, as presented in Proposition 3.1.

4. Spectrum in the procyclic case

4.1. Notation. We denote by Ẑp the p-adic integers viewed as a profinite group.
4.2. Remark. A procyclic group G is abelian and thus the inclusion of its p-primary
part (its pro-p-Sylow) Gp↣G yields a homeomorphism

ρGp
= Spc(ResGGp

) : Spc(K(Gp))
∼→ Spc(K(G))

by Example 3.15. Therefore our results on Spc(K(Ẑp)) in this section easily give
similar results for arbitrary procyclic groups. Cf. Corollary 6.8.
4.3. Recollection. Let n ⩾ 1 and consider the cyclic group Cpn of order pn. We
proved in [BG23b, Proposition 8.3] that the spectrum of K(Cpn) is the space

(4.4) Wn =
m0 • • m1 mn−1 • • mn

p1 • · · · • pn

consisting of 2n+ 1 points, with specialization relations indicated above: Every mi
is a closed point and the closure of each pi is {mi−1, pi,mi}. A subset is closed if
and only if it is specialization-closed.
4.5. Definition. We denote by W∞ = colimnW

n the colimit along the canonical in-
clusions ψ : Wn ↪→ Wn+1, pi 7→ pi and mi 7→ mi of the spaces Wn of Recollection 4.3.

We are now ready to describe Spc(K(Ẑp)).

4.6. Theorem. The spectrum of K(Ẑp) is the Alexandroff extension of W∞ =
∪n⩾0W

n, namely it is the space W̄∞ =
{
pn

∣∣ 0 < n < ∞
}

∪
{
mn

∣∣ 0 ⩽ n ⩽ ∞
}

=
W∞ ∪ {m∞} with specialization relations as follows

(4.7)
m0 • • m1 mn−1 • • mn • m∞

p1 • · · · pn • · · ·

whose closed subsets are those Z ⊆ W̄∞ that are specialization-closed (if pn ∈ Z for
0 < n < ∞ then mn−1,mn ∈ Z) and are either finite or contain m∞. The supports
of objects in K(Ẑp) are exactly the following two classes of closed subsets:
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(I) The finite specialization-closed subsets that do not contain m∞.
(II) The cofinite (finite complement) specialization-closed subsets that contain m∞.

Proof. We have Spc(K(Ẑp)) = limn Spc(K(Cpn)), by Proposition 3.1, where the
transition maps are induced by inflation. The latter are described in [BG23b,
Lemma 8.5]. Here is a picture of this system of spaces

...
π
��

...
... . .

.

Spc(K(Cp3)) = W3

π

��

= • m0 • m1 • m2 • m3

• p1 • p2 • p3

Spc(K(Cp2)) = W2

π

��

ψ

``

= • m0 • m1 • m2

• p1 • p2

Spc(K(Cp1)) = W1

π

��

ψ

``

= • m0 • m1

• p1

Spc(K(Cp0)) = W0

ψ

``

= • m0

The transition maps π : Wn+1↠Wn retract the ‘obvious’ inclusions ψ : Wn ↪→
Wn+1 and project everything else in Wn+1, that is, pn+1 and mn+1, to the last
point mn in Wn. So each fiber π−1(x) above x ∈ Wn is a single point, un-
less x = mn in which case π−1(x) consists of three points. A point in the limit
is given by a coherent sequence of points (xn)n⩾0 ∈

∏
n⩾0W

n. For instance,
there is the point m∞ := (mn)n⩾0 which always picks the right-most point. Any
other point (xn)n⩾0 must satisfy xn ̸= mn for some n and by the above com-
ment, has all higher xm forced to be ψm−n(xn). We name those points by their
value for n large enough, yielding the pi and mi of the statement. For instance, p3
means (. . . , p3, p3, p3, p3,m2,m1,m0). Hence Spc(K(Ẑp)) = W∞ ∪ {m∞} as a set.

For the topology, every object of K(Ẑp) is inflated from some c ∈ K(Cpn) and
its support in K(Ẑp) is the preimage of supp(c) ⊆ Wn under π : W̄∞↠Wn. If
c is acyclic, its support does not touch the right-most point mn in Wn, hence its
preimage in W̄∞ will be the (finite) closed supp(c) ⊆ Wn included via Wn ↪→ W∞ ↪→
W̄∞, away from m∞. These yield the closed subsets of type (I). On the other hand,
if c is supported at mn then the preimage of its support in W̄∞ contains m∞ but
also all pi and mi for i ⩾ n. These yield the closed subsets of type (II). The rest
is general tt-geometry [Bal05]: The closed subsets are arbitrary intersections of
supports of objects. The description of the statement is then an exercise. □

We record some easy facts about the topology in W̄∞.

4.8. Remark. The spectrum Spc(K(Ẑp)) is not noetherian, as the open complement
of {m∞} is not quasi-compact.

4.9. Proposition. In W̄∞ we have:
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(a) Every mi for 0 ⩽ i ⩽∞ is closed.
(b) The closure of pj for 0 < j < ∞ is the set {mj−1, pj ,mj}.
(c) A subset V ⊆ W̄∞ is quasi-compact if and only if either m∞ ∈ V or V is finite.
(d) A subset V ⊆ W̄∞ is Thomason if and only if (i) V is stable under specializa-
tions and (ii) m∞ ∈ V implies V cofinite. □

4.10. Remark. Having a list of all Thomason subsets of W̄∞ ∼= Spc(K(Ẑp)), we also
get a list of all tt-ideals in K(Ẑp), by [Bal05]. In particular, there are continuum
many distinct ones. We determine generators for all tt-ideals in Remark 4.14.

4.11. Remark. Let us briefly discuss ‘tt-residue fields’, à la [BKS19]. At each of the
mi (0 ⩽ i ⩽∞) the residue field is Db(k), while at each of the pj (0 < j < ∞) the
residue field is stab(kCp). For i < ∞, the residue field functor rsdmi

is given by the
left-hand diagram below:

K(Ẑp)
rsdmi

&&

Ψ̌⟨pi⟩
//

ResẐp

⟨pi⟩
��

Db(kCpi)

Res1

��

K(⟨pi⟩)
Ψ̌⟨pi⟩

// Db(k).

K(Ẑp)
rsdm∞

%%

Ψ̌1
//

ResẐp
1
��

Db(Ẑp)

ResẐp
1

��

Kb(k)
Ψ̌1=Id

// Db(k).

We write here ⟨pi⟩ for the subgroup of Ẑp of index pi. This still makes sense for i =
∞ if one interprets ⟨p∞⟩ as the trivial subgroup. In other words, rsdm∞ is restriction
to the trivial subgroup as on the right-hand side above. These residue field functors
on each subcategory K(G/N) were denoted by F⟨pi⟩ in [BG23b, Definition 7.26].
Finally, for 0 < j < ∞, the residue field functor rsdpj

is given by

K(Ẑp)

rsdpj

++

Ψ̌⟨pj ⟩
//

ResẐp

⟨pj ⟩
��

Db(kCpj )
Res

⟨pj−1⟩

��

sta // stab(kCpj )

Res
⟨pj−1⟩

��

K(⟨pj⟩)
Ψ̌⟨pj−1⟩

// Db(kCp) sta
// stab(kCp)

where sta denotes the quotient by perfect complexes, i.e. the passage from the
derived to the stable module category.

4.12. Notation. It is convenient to introduce notation for the ‘half-unbounded in-
tervals’ in the space W̄∞. For any 0 ⩽ n ⩽∞:
• We denote by W̄∞

⩽n the subspace {m0, p1, . . . , pn,mn}. This can also be identified
with Wn as long as n < ∞.
• We denote by W̄∞

≥n the subspace {mn, pn+1, . . . ,m∞}.

4.13. Lemma. With notation as above, we have:
(a) supp(k(Ẑp/⟨pn⟩)) = W̄∞

≥n.
(b) supp(kos

Ẑp
(⟨pn⟩)) = W̄∞

⩽n−1.

(c) mi = ⟨k(Ẑp/⟨pi+1⟩), kos
Ẑp

(⟨pi⟩)⟩ for all 0 ⩽ i < ∞.
(d) m∞ = ⟨kos

Ẑp
(⟨pi⟩) | i < ∞⟩.

(e) pj = ⟨k(Ẑp/⟨pj⟩), kos
Ẑp

(⟨pj⟩)⟩ for all 1 ⩽ j < ∞.
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Proof. The first two parts are easy consequences of the residue field functors ex-
hibited in Remark 4.11. Or one may simply refer to [BG23b, Propositions 4.7 and
Corollary 7.17]. The remaining parts then follow by inspecting the supports. □

4.14. Remark. Returning to Remark 4.10, we deduce from Lemma 4.13 that each
tt-ideal in K(Ẑp) is generated by a (possibly infinite) family of objects that are
either permutation modules k(Ẑp/⟨pn⟩) or Koszul complexes kos

Ẑp
(⟨pm⟩) or tensor

products of such. To be more explicit, each closed subset of W̄∞ is of the form
(a)

⋂
i(W̄∞

⩽mi
∪ W̄∞

≥ni
), for 0 ⩽ mi < ni < ∞, or

(b) Z ′ ∩ W̄∞
⩽m, for m ≥ 0, and for Z ′ as in (a), or

(c) Z ′ ∩ W̄∞
≥n, for n ≥ 0, and for Z ′ as in (a).

4.15. Remark. Each of the tt-ideals in K(Ẑp) = K(Ẑp; k) is generated by the images
of objects in K(Ẑp;Z). Indeed, the permutation modules k(Ẑp/⟨pi+1⟩) obviously
have integral lifts. The Koszul objects kos

Ẑp
(⟨pi⟩) also admit an integral lift if

p is odd, see [BG23a, Lemma 3.8]. However, this is not true if p = 2. Still,
we know there is an acyclic complex D ∈ K(C2i ;Z) concentrated in non-negative
degrees, with D0 = Z and D1 a free ZC2i-module. It then follows from [BG23b,
Corollary 3.20] that D generates the ideal of acyclics. The same remains true for
its image in K(C2i ; k). Inflating these complexes to K(Ẑp;Z) yields the claim. (2)

5. About stratification

We isolate a couple of abstract tt-geometric results related to stratification. Both
results are close to folklore but we did not find a convenient reference. We recall
that ‘big’ tt-categories mean rigidly-compactly generated ones and a ‘geometric’
tt-functor means one that preserves coproducts (and compact objects since they
are assumed to agree with rigid objects).

5.1. Lemma. Let F : T → S be a geometric tt-functor. Let V ⊆ Spc(Tc) be a
Thomason subset with preimage W := Spc(F )−1(V ) in Spc(Sc) and let

F̄ : T

Loc(TcV ) → S

Loc(ScW ) .

be the functor induced by F . If F is fully faithful then so is F̄ .

Proof. Recall that TcV and ScW are the tt-ideals of Tc and Sc supported on V and W ,
respectively (and W is Thomason because Spc(F ) is spectral). By [BF11, Theo-
rem 6.3], we have the following equality of tt-ideals in Sc:
(5.2) ScW = ⟨

{
F (c)

∣∣ c ∈ TcV
}

⟩.
Since F is coproduct-preserving, it maps Loc(TcV ) into Loc(ScW ), hence the func-
tor F̄ . Let now U : S → T be the right adjoint to F . We claim that U sends
Loc(ScW ) into Loc(TcV ). As F preserves compacts, U is coproduct-preserving and
it suffices to show U(ScW ) ⊆ Loc(TcV ). By (5.2) the tt-ideal ScW is generated as a
thick subcategory of Sc by objects of the form F (c) ⊗ d, where c ∈ TcV and d ∈ Sc.
By the projection formula, U sends such objects to

U(F (c) ⊗ d) ∼= c⊗ U(d) ∈ Loc⊗(TcV ) = Loc(TcV )

2 This argument should have been spelled out in the proof of [BG22b, Theorem 11.3].
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which proves the claim. Consequently, the adjoint U also descends to a functor

Ū : S

Loc(ScW ) → T

Loc(TcV )

which is automatically right adjoint to F̄ . The unit of this adjunction F̄ ⊣ Ū is
given by the unit of the original adjunction F ⊣ U viewed in the localization. As
the latter is invertible, by assumption, so is the former. □

5.3. Recollection. When T is a big tt-category whose spectrum Spc(Tc) is weakly
noetherian, we have idempotents g(P) ∈ T for every P ∈ Spc(Tc) and a support
theory for big objects given by Supp(t) =

{
P

∣∣ g(P)⊗t ̸= 0
}

⊆ Spc(Tc). See [BF11].
We say that T is BHS-stratified if Spc(Tc) is weakly noetherian and if the localizing
⊗-ideals L of T are in bijection with the subsets X ⊆ Spc(Tc) of the spectrum, via
L 7→ Supp(L) = ∪t∈L Supp(t) and X 7→

{
t ∈ T

∣∣ Supp(t) ⊆ X
}

. See [BHS23].

The question of descending stratification along a ‘sufficiently conservative’ tt-
functor has been discussed in [BHS23, BCH+23] for instance. These methods yield:

5.4. Proposition. Let F : T → S be a geometric functor with right adjoint U : S → T

satisfying the following conditions:
(1) The map φ := Spc(F ) : Spc(Sc) → Spc(Tc) is closed and injective.
(2) The tt-category S is BHS-stratified.
(3) The unit 1 belongs to Loc⊗(U(1)) in T.
Then T is BHS-stratified.

Proof. It follows easily from (3) and the projection formula that F is conservative,
hence φ is actually surjective [BG23b, Proposition 7.1], i.e. a homeomorphism.
Thus Spc(Tc) is weakly noetherian as well. Let P ∈ Spc(Tc) and let Q ∈ Spc(Sc)
be the unique preimage, i.e. φ(Q) = P. Then, by [BF11, Theorem 6.3], F (g(P)) =
g(φ−1({P})) = g(Q). For every t ∈ T it follows that t ⊗ g(P) vanishes in T if
and only if F (t⊗ g(P)) ≃ F (t) ⊗ g(Q) vanishes in S. In other words, Supp(F (t)) =
φ−1(Supp(t)) for all t ∈ T. The result now follows from [BCH+23, Proposition 12.7].

□

Here is an application to our categories T(G) = DPerm(G; k) and T(G)c = K(G).

5.5. Corollary. Under Hypothesis 2.1, let H ⩽ G be a closed subgroup of index
prime to p (Definition 2.6). Assume that the tt-category T(H) is BHS-stratified
(Recollection 5.3). If ρH = Spc(ResGH) : Spc(K(H)) → Spc(K(G)) is injective then
ρH is a homeomorphism and the tt-category T(G) is BHS-stratified as well.

Proof. The map ρH is closed by Proposition 3.12. Thus we apply Proposition 5.4
to F = ResGH . Hypothesis (3) is satisfied in this case by Proposition 2.9. □

6. Stratification in the procyclic case

Having established a fairly complete picture of the tt-geometry of K(Ẑp) in
Section 4, we now turn to big tt-categories. Our goal is to show BHS-stratification
for the big tt-category T(Ẑp); see Recollection 5.3. As mentioned already, the
space W̄∞ ∼= Spc(K(Ẑp)) is not noetherian which complicates matters a bit. It is,
however, generically noetherian in the sense of [BHS23, Definition 9.5].
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6.1. Lemma. The space W̄∞ is generically noetherian, that is, the generalization
closure of every point is noetherian.

Proof. By Proposition 4.9 the generalization closures of all the points are finite:
They are {m0, p1}, {pn} and {pn−1,mn, pn} for 1 ⩽ n < ∞ and {m∞}. □

6.2. Remark. Every generically noetherian space X is weakly noetherian, that is,
every point x ∈ X can be written as the intersection {x} = V ∩W c of a Thomason
subset V with the complement of a Thomason subset W , see [BHS23, Lemma 9.9].
In our case, for each x ∈ W̄∞, we can realize {x} = V ∩W c as follows:

(6.3)

x V W c W

m∞ W̄∞ {m∞} W∞

mi {mi} W̄∞ ∅
pj W̄∞ {pj} W̄∞ ∖ {pj}

6.4. Lemma. The big tt-category T(Ẑp) satisfies the local-to-global principle in the
sense of [BHS23, Definition 3.8].

Proof. Compare the proof of [BIK11, Theorem 3.6] and its translation in [BHS23,
Theorem 3.21]. Consider the localizing ideal of T(Ẑp)

L := Loc⊗(g(P) | P ∈ Spc(K(Ẑp)))

where g(P) is as in Recollection 5.3. We need to prove that L is the whole of T(Ẑp).
Recall that if {P} is Thomason then g(P) = e{P} and if {P}c is Thomason then
g(P) = f{P}c . The first case occurs for all mi, 0 ⩽ i < ∞ while the second case
occurs for m∞ as well as all the pj . See (6.3). We deduce that all of the following
idempotents belong to L:

ei := e{mi}, 0 ⩽ i < ∞, fj := f{pj}c , 0 < j < ∞, f∞ := fW∞ .

We will now prove the following two claims:
(1) For all 0 ⩽ i < ∞, the idempotent e⩽i := eWi also belongs to L.
(2) We have f∞ = hocolimi f⩽i.
Together these would imply the lemma. Indeed, by the first claim hocolimi e⩽i
belongs to L. By the second claim and the exact triangle

hocolim
i

e⩽i → 1 → hocolim
i

f⩽i

we then conclude that 1 ∈ L as required.
The second claim follows from generalities on idempotents and the fact that

W∞ = ∪iWi. For the first claim we proceed by induction on i. The case i = 0 is
clear since e⩽0 = e0 ∈ L. And assuming e⩽i ∈ L we have also e⩽i ∨ ei+1 ∈ L by
the Mayer-Vietoris triangle [BF11, Theorem 3.13]. Consider then the triangle

e⩽i ∨ ei+1 → e⩽i+1 → e⩽i+1 ⊗ fWi∪{mi+1}.

It is easy to see that the last term is equal to e⩽i+1 ⊗ fi+1 ∈ L thus the claim. □

6.5. Proposition. Let G be a profinite group with p-cohomological dimension ≤ 1.
Then K Inj(G; k) has a unique non-trivial localizing ideal and Spc(Db(kG)) = ∗.
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Proof. Our assumptions buy us that Hi(G;N) = 0 for all N ∈ Mod(G; k) and i > 1.
As an arbitrary M ∈ Mod(G; k) is a union M = colimαMα of finite-dimensional
discrete modules Mα ∈ Mod(G; k), we deduce that for each i > 1:

Exti(M,N) = Exti(colimMα, N)
∼= lim Exti(Mα, N)
∼= lim Exti(k,M∗

α ⊗N)
∼= lim Hi(G;M∗

α ⊗N) = 0.

In other words, the abelian category Mod(G; k) is hereditary, which has two con-
sequences that are relevant for us. First, we have K Inj(G; k) ≃ D(kG), the un-
bounded derived category of Mod(G; k) by [Kra05, Example 3.10]. And secondly,
in D(kG) every object t splits as t ∼= ⊕i∈Z Hi(t)[i] so that Hom(t, s) is in bijec-
tion with families αi : Hi(t) → Hi(s) and βi ∈ Ext1

Mod(G;k)(Hi(t),Hi+1(s)). In
particular, if t and s are both non-zero then

HomD(kG)(t, s[m]) ̸= 0

for a suitable choice of m ∈ Z. By [BIK11, Lemma 3.9] we conclude that D(kG) ≃
K Inj(G; k) is the minimal non-zero localizing tensor ideal as announced. □

6.6. Theorem. The big tt-category T(Ẑp) is stratified in the sense of [BHS23].
Moreover, it satisfies the telescope conjecture.

Proof. We verified that Spc(K(Ẑp)) is weakly noetherian in Remark 6.2. We also
verified that T(Ẑp) satisfies the local-to-global principle in Lemma 6.4. It remains to
prove the minimality property ([BHS23, Theorem 4.1]). By [BHS23, Corollary 5.3],
we need to show for every P ∈ Spc(K(Ẑp)) that the local category T(Ẑp)/Loc(P)
satisfies minimality at its closed point. For P ∈ W∞, there exists some 0 ≤ n < ∞
such that P ∈ W̄∞

≤n. Consider the inflation functor F : T(Cpn+1) → T(Ẑp) and
let Q := F−1(P) ∈ Wn+1 be the corresponding prime. Let V ⊆ Wn+1 be the
Thomason subset supp(Q) and W ⊆ W̄∞ its preimage under Spc(F ). Now it pays
off that we inflated from Cpn+1 (instead of Cpn , for example): This ensures that
Spc(F ) restricts to a bijection between the generalizations of P and those of Q so
that we have W = supp(P). By Lemma 5.1, the functor F then induces a fully
faithful tt-functor

(6.7) T(Cpn+1)
Loc(Q) −→ T(Ẑp)

Loc(P)
which turns out to be an equivalence. Indeed, it suffices to show that every
k(Ẑp/⟨pm⟩) is in the essential image. For m > n+1 these are zero, by Lemma 4.13.
And the remaining ones are indeed inflated from Cpn+1 . Minimality of T(Ẑp)/Loc(P)
at its closed point now follows from this equivalence (6.7) and the reverse direction
of [BHS23, Corollary 5.3] since we know stratification for finite groups, by [BG23b,
Theorem 9.11].

For P = m∞ we need to show that T(Ẑp)/Loc(m∞) = K Inj(Ẑp; k) satisfies min-
imality. (For the identification of the two categories see [BG22a].) But Ẑp is a
free pro-p-group and therefore has p-cohomological dimension one [RZ10, Corol-
lary 7.5.2]. Minimality then follows from Proposition 6.5.
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The telescope conjecture then follows from Lemma 6.1 together with [BHS23,
Theorem 9.11]. □

6.8. Corollary. Let G be a profinite group of the form G = H ⋊ Ẑp where H is a
group of order prime to p. (For instance, G could be an abelian or more generally
a pro-nilpotent profinite group, with p-Sylow Ẑp, e.g. G = Ẑ the profinite integers.)
Then Spc(K(G)) ∼= W̄∞ and T(G) is stratified and satisfies the telescope conjecture.

Proof. By Remark 4.2, the map ρ
Ẑp

: Spc(K(Ẑp)) → Spc(K(G)) is a homeomor-
phism. Stratification then follows from Theorem 6.6 and Corollary 5.5. And the
telescope conjecture follows again from Lemma 6.1 together with [BHS23, Theo-
rem 9.11]. □

6.9. Example. We finish with an example showing that the results in this section
will not generalize to arbitrary profinite groups.

Let G = (Cp)N be a countably infinite pro-elementary abelian group. In that
case, the associated cohomological support space is

VG ∼= Spech(H•(G; k)) ∼= Spech (k[ξi | i ∈ N] ⊗k Λk(ηi | i ∈ N)) ∼= P̄∞
k ,

an infinite-dimensional projective space with a unique closed point attached on top.
We claim that this space is not weakly noetherian. More precisely, that the unique
closed point is not visible (equivalently, not weakly visible). Recall this amounts to
showing that it is not the support of any object in Db(kG). But every such object
is inflated from a finite quotient (Cp)I , where I ⊂ N is a finite subset. Let J = N\I
be the complement and t ∈ Db(k(Cp)I) a non-zero object. Writing π = Spc(Infl)
and ρ = Spc(Res), with appropriate decorations, we then have

ρ−1
J (supp(InflC

I
p

G (t))) = ρ−1
J π−1

I (supp(t))
= π−1

∅ ρ−1
∅ (supp(t))

= π−1
∅ (Spc(Db(k)))

= Spc(Db(k(CJp )))

using the fact that the composite (Cp)J → G → (Cp)I factors through the trivial
group ∗ = (Cp)∅. This shows that the support of InflC

I
p

G (t) contains much more
than just the unique closed point in P̄∞.

As ψ̌1 : Spc(Db(kG)) ↪→ Spc(K(G)) is a spectral map, we deduce that the lat-
ter is not weakly noetherian either (nor, a fortiori, generically noetherian). In
anticipation of the next section we also mention that restricting to absolute Ga-
lois groups does not change these comments. For example, the absolute Ga-
lois group ẐNp admits G as a quotient. (Here, we are using [Gey69, p. 352].)
Letting H ⩽ ẐNp be the kernel of this quotient map we observe, similarly, that
ψH : Spc(K(G)) ↪→ Spc(K(ẐNp )) is spectral so that Spc(K(ẐNp )) cannot be weakly
noetherian either.

7. Artin motives over a finite base field

We can translate from procyclic groups to Artin motives over finite fields, via
Voevodsky’s result [Voe00, § 3.4].
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7.1. Recollection. Let F be a field and denote by G = Gal(Fsep/F) its absolute Galois
group with the Krull topology. The classical Grothendieck-Galois correspondence
induces a canonical equivalence of tt-categories DPerm(G; k) ≃ DAM(F; k) with the
triangulated category of Artin motives. In particular, the geometric Artin motives
DAMgm(F; k), which form the compact part, identify with K(G). We refer for a
detailed account of these equivalences (and more) to the survey article [BG21].
7.2. Remark. It follows from Voevodsky’s result and the usual ‘wilderness’ of modu-
lar representation theory that DAMgm(F; k) is typically wild when char(k) = p > 0
and the absolute Galois group admits quotients of large enough p-rank.
7.3. Corollary. Let F be a finite field, or any field with abelian (or pro-nilpotent)
absolute Galois group whose p-Sylow is isomorphic to Ẑp.
(a) The space Spc(DAMgm(F; k)) canonically identifies with W̄∞ of Theorem 4.6.
(b) The big tt-category DAM(F; k) is stratified and satisfies the telescope conjecture.

Proof. By Recollection 7.1, we have DAM(F; k) ∼= T(Ẑ) and use Corollary 6.8. □

In the remainder of the section we compute the spectrum of DAMgm(F;Z) with
integral coefficients.
7.4. Corollary. Let comp: Spc(DAMgm(F;Z)) → Spec(Z) be the comparison map.
(a) Its fiber over (0) is a singleton: comp−1({0}) =: {m∞(0)};
(b) Its fiber over (p) with p > 0 is a copy of the space W̄∞, denoted W̄∞(p).
The following form a basis of closed subsets in Spc(DAMgm(F;Z))
• finite subsets of some W̄∞(p) that are closed in W̄∞;
• subsets containing

{
m∞(p)

∣∣ p ∈ Spec(Z)
}

and whose intersection with W̄∞(p)
is closed for all p ̸= 0.
7.5. Remark. Of course, the condition of a subset of W̄∞ being closed in the state-
ment can be made explicit using Theorem 4.6 and Proposition 4.9.
Proof of Corollary 7.4. Let G be the absolute Galois group of F. We translate
the questions to modular representation theory for G as usual. The fiber over (0)
identifies with the spectrum of K(G;Z) ⊗ Q ≃ K(G;Q). This is a singleton

m∞(0) = ker(K(G;Z) → K(G;Q))
by Remark 2.8.

Now, let p > 0 and denote by L : K(G;Z) → K(G;Z/p) the base change functor,
with right adjoint R. The fiber of the comparison map over (p) is the support
of cone(Z p−→ Z) = R(Z/p) hence

L∗ : Spc(K(G;Z/p)) → Spc(K(G;Z))
surjects onto this fiber, by [Bal18, Theorem 1.7]. We claim that this map is in fact
a homeomorphism onto its image. For injectivity, it suffices to show that every
prime ideal in K(G;Z/p) is generated by the image of L, see [BG22b, Proposi-
tion 2.10(a)]. As L commutes with inflation along G↠ Ẑp we reduce to G = Ẑp
for this question. We may then apply Remark 4.15. To prove that L∗ is a closed
map, it suffices to show it has the going-up property [DST19, Theorem 5.3.3]. So
let x ∈ Spc(K(G;Z/p)) and L∗(x)⇝ y. Since the image of L∗ is closed, y = L∗(x′)
for some x′. It then follows again from [BG22b, Proposition 2.10(a)] together with
Remark 4.15 that x⇝ x′.
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We now proceed to prove that {m∞(0)} is the set {m∞(p) | p ≥ 0} in the
statement. For this, assume that t ∈ m∞(p) for some p > 0. Recall (Remark 4.11)
this means that 0 = ResG1 (L(t)) = L(ResG1 (t)) in K(1;Z/p). But then, ResG1 (t) ∈
K(1;Z) is an object that vanishes after applying L and this implies 0 = ResG1 (t) ⊗
Q = ResG1 (t⊗Q). As ResG1 : K(G;Q) → K(1;Q) is conservative, we deduce that t ∈
m∞(0) as required. Conversely, let 0 ≤ i < ∞ and let us show that mi(p) ̸⊆ m∞(0).
(This will automatically show that pj(p) ̸⊆ m∞(0) either, for all 0 < j < ∞.) By
Lemma 4.13 again (or directly), the permutation module Z(Cpi+1) belongs to mi(p).
On the other hand, it clearly does not belong to m∞(0).

Now, let t ∈ m∞(0). By [Gal19, Proposition 5.10], supp(t) ∩ W̄∞(p) = ∅ for
almost all p. This concludes the proof since the topology is generated by the
supports of objects. □
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[DST19] Max Dickmann, Niels Schwartz, and Marcus Tressl. Spectral spaces, volume 35 of New
Mathematical Monographs. Cambridge University Press, Cambridge, 2019.

[DV23] Peng Du and Alexander Vishik. On the Balmer spectrum of Morel-Voevodsky category.
Preprint arxiv/2309.09077, 2023.

[Gal18] Martin Gallauer. Tensor triangular geometry of filtered modules. Algebra Number The-
ory, 12(8):1975–2003, 2018.

[Gal19] Martin Gallauer. tt-geometry of Tate motives over algebraically closed fields. Compos.
Math., 155(10):1888–1923, 2019.

[Gal21] Martin Gallauer. A note on Tannakian categories and mixed motives. Bull. Lond.
Math. Soc., 53(1):119–129, 2021.

arXiv:2305.02308
https://arxiv.org/abs/2107.11797
http://arxiv.org/abs/2309.09077


20 PAUL BALMER AND MARTIN GALLAUER

[Gey69] Wulf-Dieter Geyer. Unendliche algebraische Zahlkörper, über denen jede Gleichung
auflösbar von beschränkter Stufe ist. Journal of Number Theory, 1(3):346–374, 1969.

[HO18] Jeremiah Heller and Kyle M. Ormsby. Primes and fields in stable motivic homotopy
theory. Geom. Topol., 22(4):2187–2218, 2018.

[Kra99] Henning Krause. Decomposing thick subcategories of the stable module category.
Math. Ann., 313(1):95–108, 1999.

[Kra05] Henning Krause. The stable derived category of a Noetherian scheme. Compos. Math.,
141(5):1128–1162, 2005.

[MV99] Fabien Morel and Vladimir Voevodsky. A1-homotopy theory of schemes. Inst. Hautes
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