
PRODUCTS OF DEGENERATE QUADRATIC FORMS

PAUL BALMER

Abstract. We challenge the classical belief that products of degenerate qua-

dratic forms must remain degenerate and we show that this fails in general, e.g.

over tensor triangulated categories with duality. This opens new ways of con-
structing non-degenerate quadratic forms and hence classes in Witt groups.

In addition, we encapsulate in a Leibniz-type formula the behaviour of the

product with respect to the symmetric cone construction. We illustrate these
ideas by computing the total Witt group of regular projective spaces.
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Introduction

Perpetuation of degeneracy is the following well-known phenomenon : Given a
degenerate symmetric form α1 on a finite dimensional vector space V1 and any
symmetric form α2 on a space V2, the tensor product symmetric form α1 ⊗ α2 on
V1⊗V2 is again degenerate, except, of course, in the trivial case where the space V2

is zero, i.e. when V1 ⊗ V2 = 0. Perpetuation of degeneracy is not specific to vector
spaces and holds similarly in all classical frameworks, like for finitely generated
projective modules over rings with involution, or for vector bundles over schemes.

The present work builds on the surprising observation that perpetuation of de-
generacy does not hold in more flexible frameworks, like in triangulated categories
with duality [2, 3]. To formalize this observation, we introduce a topological invari-
ant of the forms α1 and α2 , called the consanguinity of α1 and α2 , which captures
their inclination for a degenerate product. In particular, we prove :

Theorem. If α1 and α2 have no consanguinity then α1 ⊗ α2 is non-degenerate.

This is Corollary 4.6. The definition of consanguinity is given in Section 4.
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We want to interpret the above in terms of Witt groups, so let us briefly sketch
the definition of triangular Witt groups. To do this, we need a notion introduced
in [2], namely the symmetric cone of a possibly degenerate symmetric form α. This
symmetric cone is a non-degenerate symmetric form associated to α , that we denote
by d(α) in the present paper. Symmetric spaces of the form d(α) are precisely the
metabolic ones and a symmetric form α is non-degenerate if and only if d(α) = 0.
In particular d(d(α)) = 0, which means that d behaves like a differential : d ◦d = 0.
So, triangular Witt groups, which classify non-degenerate symmetric forms modulo
metabolic ones, can be remembered as the homology of the complex defined by this
symmetric cone construction α 7→ dα. This is explained in Section 2. We have
established in [3] that all classical Witt groups can be recovered as some triangular
Witt groups, for suitable derived categories, at least if 2 is invertible in the original
setting. The reader can find in the survey [5] basic notions and motivations for the
theory of classical and triangular Witt groups, in particular in algebraic geometry.

We now translate into Witt group language the appearance of non-degenerate
symmetric forms as products of forms with no consanguinity. Indeed, this method
allows us to construct Witt classes [α1⊗α2] out of two symmetric forms α1 and α2

which might be degenerate and hence might not define Witt classes themselves. In
the form of a slogan, this reads :

(1) 6 ∃ [α1] or 6 ∃ [α2] but still ∃ [α1 ⊗ α2] .

Before moving towards geometric applications, let us make a second general obser-
vation. Namely, assume that one of the forms, say α2 , is metabolic, then it may
happen that not only the product α1 ⊗ α2 is non-degenerate, as explained above,
but is quite surprisingly non-metabolic. In some sense, the degeneracy of the form
α1 can compensate the metabolicity of the form α2. Sloganized, this becomes :

(2) 6 ∃ [α1] and [α2] = 0 but [α1 ⊗ α2] 6= 0 .

These two observations (1) and (2) will be illustrated by geometric examples. They
both imply that the Witt class of the product should not be understood as the
product of the classes [α1 ⊗ α2] 6= [α1] · [α2], at least in this generality.

In the presence of a differential α 7→ d(α) and of a product (α1, α2) 7→ α1 ⊗ α2,
it is legitimate to wonder if these structures satisfy some type of Leibniz formula :
d(α1 ⊗ α2)

?= d(α1) ⊗ α2 ± α1 ⊗ d(α2). For symmetric forms, this is not true
in general for the simple reason that the left-hand side d(α1 ⊗ α2) is always non-
degenerate, as is d(α) for all α, whereas the right-hand side is only conditionally
non-degenerate. Here again, the consanguinity obstruction can be used for d(α1)
and α2 , or, for α1 and d(α2). Indeed, the consanguinity of d(α1) and α2 is exactly
equal to the consanguinity α1 and d(α2) and coincides with the locus of common
degeneracy of α1 and α2 (Prop. 5.1). When this obstruction is empty, we have :

Theorem (Leibniz-type formula). Let α and β be symmetric forms whose de-
generacy loci do not intersect. Then, we have an isometry :

d (α⊗ β) = d (α)⊗ β + α⊗ d (β)

up to signs which are made precise in Section 5.

This is Theorem 5.2, where + of course means the orthogonal sum. Unfortunately,
the signs are not as easy as in the usual Leibniz formula.
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We now want to see these abstract considerations at work in algebraic geometry.
In the last few years, triangular Witt theory [2, 3] led to a certain number

of applications (see a survey in [5]), among which the recent computation of the
total Witt group of projective bundles by Charles Walter [16], who considerably
generalized Arason’s famous theorem W(Pn

k ) = W(k), see [1], where k was a field.
The total Witt group of a scheme X

WTot(X) =
⊕

i∈Z/4

⊕
L∈Pic(X)/2

Wi(X,L)

is the graded ring of all (derived) Witt groups for all possible shifts i and all
possible twists L of the duality. Walter’s computation constitutes a real tour de
force, involving a precise description of derived categories of projective bundles.
Over regular schemes though, this level of technicality is not always necessary and
Witt groups can sometimes be computed by means of more geometric results like
Mayer-Vietoris, homotopy invariance and the like, as developed in [4]. Such a
geometric strategy would typically consist in guessing the answer, in constructing
a homomorphism globally, between this conjectured answer and the Witt groups
under study, and in proving it an isomorphism locally. The crucial step, namely the
construction of the custom-tailored global homomorphism, is where consanguinity
might be used. We illustrate these ideas in Section 7 where we give a very simple
geometric proof of Walter’s theorem [16] in the special but emblematic case of Pn

X

with X regular :

Theorem. Let X be a regular Z[ 12 ]-scheme. Then the total graded Witt ring
WTot(Pn

X) is canonically a free WTot(X)-module of rank 2 generated by the unit
〈1〉 ∈ W(Pn

X) and one other class [β(n)

X ] ∈ Wn(Pn
X ,O(n+ 1)), whose square is zero.

This is Theorem 7.4 and we now explain how to construct the symmetric space β(n)

X

defining the crucial generator [β(n)

X ] by means of products of symmetric forms with
no consanguinity. Indeed, our method is not specific to projective bundles and does
not use regularity. (The regularity assumption comes from the geometric theorems
of [4] mentioned above.) The general method goes as follows.

Let X be a scheme. Consider L ∈ Pic(X) a line bundle over X and s ∈ Γ(X,L)
a global section. This can be seen as a one-dimensional “diagonal” symmetric form
α(s ; L) on the vector bundle OX with respect to the L-twisted (unshifted) duality :

α(s ; L) :=
(
OX , OX

s−→L
)
.

Such a symmetric form α(s ; L) is usually degenerate, unless s yields a trivialization
of the line bundle L. The product of a finite number of such symmetric forms
α(s1;L1)⊗. . .⊗α(sm;Lm) = α(s1⊗. . .⊗sm ; L1⊗. . .⊗Lm) still has the same nature
and degeneracy clearly tends to increase in this process. So, this cannot lead us to
a non-degenerate symmetric space unless we are simply considering a good old one-
dimensional form 〈u〉 for a global unit u ∈ Γ(X,OX)× – and this would not be worth
the trouble. However, we can also consider mixed products involving one diagonal
form α(s0 ; L0) as well as symmetric cones dα(si ;Li) for i = 1, . . . , n. Orthogonal
sums of such mixed products are the pseudo-diagonal forms of Section 6. Pseudo-
diagonal forms may be non-degenerate without necessarily being mere diagonal
forms 〈u1, . . . , un〉 for global units u1, . . . , un. Indeed, using consanguinity methods,
we establish in Corollary 6.13 the following result :
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Theorem. Let n ≥ 0, let L0, . . . ,Ln be n + 1 line bundles over a scheme X
and let si ∈ Γ(X,Li), for i = 0, . . . , n, be global sections which do not vanish
simultaneously :

⋂n
i=0 Z(si) = ∅. Then

α(s0 ; L0) ⊗ dα(s1 ; L1) ⊗ . . .⊗ dα(sn ; Ln)

is a non-degenerate symmetric space and defines a class in the Witt group Wn(X,L)
where L = L0 ⊗ . . .⊗ Ln.

It is an interesting open question to know for which schemes the total Witt group
is generated by such pseudo-diagonal spaces. This would be a global version of the
well-known diagonalization theorems over fields and local rings.

In any case, if we apply this to the scheme Pn
X , to L0 = . . . = Ln = O(1) and to

si = Ti (the homogeneous coordinates), then it is clear that ∩n
i=0{Ti = 0} = ∅ and

that the above result provides us with a non-degenerate space. This is nothing but
the announced generator of the total Witt group of Pn

X :

β(n)

X = α(T0 ; O(1)) ⊗ dα(T1 ; O(1))⊗ . . .⊗ dα(Tn ; O(1)) .

This quite non-trivial application illustrates the strength of the abstract machin-
ery of consanguinity. It also provides examples of the above “surprises” (1) and (2).
Let us also stress that consanguinity needs not to be applied only to diagonal forms
but is a very general concept.

Although slightly beside the point of this article, let us briefly comment of the
various projective bundle theorems for Witt groups. This is easy to summarize :
only Walter [16] reaches maximal generality. Note that for non-trivial projective
bundles P(E), Walter’s description is not always as simple as above and can involve
a non-split exact sequence of Witt groups. As already mentioned, Walter does not
use regularity of the ground scheme. For the history between Arason and Walter,
we refer to [16]. For the very recent post-Walter times, let us mention Nenashev
current series of articles, see [14] and more references there, which also provides a
geometric approach to Witt groups of projective bundles over a regular basis, using
non-oriented cohomology theories and deformation to the normal cone techniques.
Note that Nenashev also considers P(E) for some vector bundles E .

However, the goal of the present article is certainly not the projective bundle
theorem itself. This only appears as a nice by-product of our main theme : the
study of non-degenerate products of possibly degenerate symmetric forms.

Let us briefly review the part of the material not mentioned so far.
Our natural language is the one of algebraic geometry, that is, the reader could

have in mind his favorite scheme X and various derived categories over X. Al-
though everything could be expressed at this level of generality, we introduce a
more abstract language, namely the one of a triangulated category defined over a
topological space X, see Section 1. This has the following advantages. First, even
in the above algebro-geometric examples, it will avoid making a different story for
each type of derived category we can associate to X (of vector bundles, of coherent
modules, of perfect complexes, ...) and it also makes clear which geometric prop-
erties are really needed. Moreover, of course, our general formalism can possibly
serve outside this algebro-geometric context.

The short Sections 2 and 3 contain basic notions about symmetric forms, like
degeneracy, support, symmetric cones, Witt groups and the like. Although not
revolutionary, the presentation of Witt groups as the homology groups of the
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graded semiring of possibly degenerate symmetric forms, see 2.5, ideally prepares
the reader’s mind to the Leibniz formula of Section 5.

Section 4 deals with products and consanguinity. We essentially use the product
in triangular Witt theory of Gille and Nenashev [10], except for the simplifying
trick they introduced in their main definition, a trick which only works if the forms
are non-degenerate, that is precisely what we cannot afford to assume here. We use
instead a more natural construction, but in the same framework, namely the one
of “triangulated categories with product and duality” or TPD-categories, recalled
in Appendix A for the reader’s convenience. In order to prove the above Leibniz
formula in Section 5, we also need to control the behaviour of the tensor product
with respect to the triangulation in a more precise way than just requiring the prod-
uct be exact in each variable. For this, we need May’s recent axiomatization [12],
revamped à la Keller-Neeman [11] and also transcripted in Appendix A.

Acknowledgements : I thank Stefan Gille, Bernhard Keller, Dämian Mallaby,
Fabien Morel, Damien Roeßler and Charles Walter for various useful discussions.

Preliminaries and conventions

Remark 0.1. In mathematics, some things must be made explicit, some other things
must absolutely not. This circumspection applies in particular to natural isomor-
phisms. Here, our rule is to label those natural isomorphisms which are relevant to
the current argument and to consider as identities those which are not.

Convention 0.2. We assume without mention that 2 is invertible, i.e. our schemes
are Z[ 12 ]-schemes and our categories with duality are Z[ 12 ]-categories.

Convention 0.3. A scheme is called regular if it is noetherian, separated and
locally regular.

Notation 0.4. Grothendieck-Verdier’s notion of triangulated category is defined
in [15]. We usually assume that our triangulated categories are essentially small.
We denote by T : K−→K the translation functor in the triangulated category K

(a.k.a. the “suspension” in topology or the “shift” in homological algebra).

Definition 0.5. Let u : A → B be a morphism in a triangulated category. We
call cone of u any object C, or more precisely any triple (C, u1, u2), such that the

triangle A
u // B

u1 // C
u2 // TA is distinguished. For a fixed morphism u, its

cone is unique up to non-unique isomorphism and we denote it by cone(u).

1. Triangulated categories defined over a topological space

Definition 1.1. Let X be a topological space. A triangulated category defined over
X is a pair ( K , supp ) where K is a triangulated category and supp assigns to each
object A ∈ K a closed subset of X

supp(A) ⊂ X

called the support of A and subject to the following four elementary rules :

(S1) Only the support of zero is empty : supp(A) = ∅ ⇔ A ∼= 0.
(S2) The support respects direct sums : supp(A⊕B) = supp(A) ∪ supp(B).
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(S3) The support respects translation : supp(A) = supp(TA).
(S4) The support respects distinguished triangles : if there exists a distinguished

triangle A // B // C // TA then supp(C) ⊂ supp(A) ∪ supp(B).

Remark 1.2. By the rotation axiom and by (S3), we can equivalently say in (S4)
that supp(A) ⊂ supp(B) ∪ supp(C) or that supp(B) ⊂ supp(A) ∪ supp(C). It
follows from this and from (S1) that the support respects isomorphisms : A ' B
⇒ supp(A) = supp(B).

Example 1.3. Let X be a scheme. The following are triangulated categories over
the underlying topological space of X. In all cases, the support is the homological
support, that is, the usual support of the total homology OX -module.

(a) Let K = Db(VBX) the derived category of bounded complexes of vector
bundles over X. (We use D not to confuse below with the D of dualities.)

(b) Assume X noetherian and let K = Db(CohX) the derived category of
bounded complexes of coherent OX -modules.

(c) Let K = Dperf(X) the derived category of perfect complexes over X.
In all derived categories, for shifts and mapping cones, we follow the (homological)
sign conventions of Weibel [17].

Definition 1.4. Let (K, supp) be a triangulated category defined over X as in
Def. 1.1. Assume that K carries a structure (K, D, δ,$) of triangulated category
with duality as recalled in Def. A.2. We say that K is a triangulated category with
duality defined over X if

(S5) the support respects the duality : supp(DA) = supp(A).

Definition 1.5. Let (K, suppK), (L, suppL) and (M, suppM) be triangulated cat-
egories defined over X as in Def. 1.1. Assume that � : K× L → M is a pairing of
triangulated categories as recalled in Def. A.1. We say that the pairing � is defined
over X if

(S6) supports respect products : suppM(A�B) = suppK(A) ∩ suppL(B).

Definition 1.6. A pairing of triangulated categories with duality defined over X is
the data of three triangulated categories K, L and M, all equipped with a duality,
all defined over X, and of a pairing � : K×L → M of triangulated categories with
duality in the sense of [10] (see Def. A.4), such that both axioms (S5) and (S6) are
satisfied.

In the special case where K = L = M, we say that K is a TPD-category defined
over X or longer : a triangulated category with product and duality, defined over X.

Example 1.7. In Ex. 1.3 (a) and (c), the categories are equipped with product and
duality without further assumption, by simply deriving the usual ones on vector
bundles. They define TPD-categories over X in the sense of Def. 1.6. We shall also
consider dualities twisted by line bundles, as usual. In Ex. 1.3 (b), it is recommended
to assume X be Gorenstein of finite Krull dimension to get a duality (see [7]). The
author does not know of a good condition for the existence of a reasonable tensor
product on Db(CohX) itself. More common is the pairing Db(VBX)×Db(CohX) →
Db(CohX) which is defined over X in the sense of Def. 1.6. This external pairing
turns Db(CohX) into a module over Db(VBX) and illustrates why external pairings
are really necessary.
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Remark 1.8. It is clear from Prop.A.7 and from axiom (S3) that shifting the duali-
ties on K, L and coherently on M still produces a pairing of triangulated categories
with duality defined over X.

Remark 1.9. A naive misconception would be to think that the cone of a morphism
of the form u� u′ simply is the product � of the cones of u and u′. The situation
is more complicated, as explained in App. A. The following statement gives some
control on supports of such cones.

Lemma 1.10. Let � : K×L−→M be a pairing of triangulated categories over X.
Consider two morphisms u : A → B in K and u′ : A′ → B′ in L. Let us denote
their cones by C := cone(u) ∈ K and C ′ := cone(u′) ∈ L. Then the support of the
cone of u� u′ is contained in the following 4-term union :

suppM(cone(u� u′)) ⊂ suppK(A) ∩ suppK(B) ∩ suppL(C ′)

∪ suppL(A′) ∩ suppL(B′) ∩ suppK(C)

∪ suppK(A) ∩ suppL(A′) ∩ suppK(C) ∩ suppL(C ′)

∪ suppK(B) ∩ suppL(B′) ∩ suppK(C) ∩ suppK(C ′) .

If moreover � is a pairing of triangulated categories with duality over X and if
B = D

K
A and B′ = D

L
A′, then the above reduces to :

suppM(cone(u� u′)) ⊂ suppK(A) ∩ suppL(C ′) ∪ suppL(A′) ∩ suppK(C) .

Proof. Let us abbreviate C ′′ := cone(u � u′) ∈ M. We have by definition two
distinguished triangles in K and L as follows :

A
u // B // C // TA and A′

u′ // B′ // C ′ // T (A′) .

From the relation

u� u′ = (u� idB′) ◦ (idA �u′) ,

the octahedron axiom guarantees the existence of a distinguished triangle relating
the cones of these three morphisms. The cone of u�u′ is our object C ′′ by definition
and the cones of u� idB′ and idA �u′ are simply obtained from the above distin-
guished triangles by applying the exact functors − � B′ and A � − respectively.
So, we have from the octahedron a distinguished triangle as follows :

A� C ′ // C ′′ // C �B′ // T (A� C ′) .

By axiom (S4), we deduce that suppM(C ′′) ⊂ suppM(A�C ′)∪ suppM(C�B′)
(S6)
=

suppK(A) ∩ suppL(C ′) ∪ suppK(C) ∩ suppL(B′). Using the other decomposition
u� u′ = (idB �u′) ◦ (u� idA′), we establish similarly the inclusion suppM(C ′′) ⊂
suppK(B)∩suppL(C ′) ∪ suppK(C)∩suppL(A′). Hence suppM(C ′′) is contained in
the intersection of the two sets we just found, which gives the set of the statement.

For the last part, it suffices to use (S5) to replace suppK(B) by suppK(A) and
similarly with B′ and A′. In this case, the above 4-term union boils down to the
announced one, as is easily checked. �
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2. Symmetric forms, cones and Witt groups

For this section, (K, D, δ,$) is a triangulated category with duality as recalled
in Def. A.2. Although quite standard, we fix the following terminology since the
distinction between degenerate and non-degenerate forms is essential here.

Definition 2.1. We define a symmetric pair to be a couple (A, a) formed by an
object A ∈ K and a symmetric morphism a : A→ DA. As usual, symmetry means
D(a)◦$A = a. Note that we do not require a to be an isomorphism. The morphism
a is referred to as the form of the symmetric pair (A, a).

When a is moreover an isomorphism, we say that the form a : A → DA is
non-degenerate and that the symmetric pair (A, a) is a symmetric space.

Let i ∈ Z be an integer. A symmetric i-pair, a symmetric i-space, an i-form, with
respect to the duality D, respectively mean a symmetric pair, a symmetric space,
a form for the ith shifted duality (D(i), δ(i), $(i)) over K, as recalled in Def. A.3.

Notations 2.2. We define isometries of symmetric pairs as usual and denote by

Symm(K) or Symm(K, D, δ,$)

the monoid of isometry classes of symmetric forms over the considered category with
duality. Our assumption about essential smallness of K implies that Symm(K) is
a set. It is a monoid with the usual orthogonal sum. We shall not adopt a new
notation for the class of a symmetric pair (A, a) in Symm(K) and simply write
it (A, a). For an integer i ∈ Z, we denote by

Symm(i)(K) := Symm(K, D(i), δ(i), $(i))

the corresponding monoid for the ith shifted duality.

Definition 2.3. We now recall from [2, § 2] the notion of symmetric cone of a
symmetric form. The cone of a morphism a : A→ B is recalled in Def. 0.5. If B =
DA and if the morphism a is symmetric, then its cone C = cone(a) also becomes
symmetric, in the sense that it carries a non-degenerate symmetric form, but for
the 1-shifted duality D(1). Namely there exists a symmetric 1-space (C,Φ), unique
up to isometry [2, Thm. 2.6], such that the following triangle is distinguished :

(3) A
a // DA

a1 // C
a2 // TA

and is symmetric in the sense that the following equation holds :

(4) Φ ◦ a1 = −T (D(a2)) .

It is equivalent to say that (C,Φ) is a 1-space such that the following diagram with
distinguished rows commutes :

A
a //

δ·$A ∼=
��

DA
a1 // C

a2 //

Φ '
��

T (A)

δ·T ($A)∼=
��

D(DA)
δ·D(a)

// DA
−T (D(a2))

// T (D(C))
T (D(a1))

// T (D(DA)) ,

in which the second row is the dual of the first.
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The symmetry of Φ : C −→D(1)(C) for the 1-shifted duality D(1) = T ◦D reads
by definition : D(1)(Φ)◦$(1)

C = Φ. Unfolding Def. A.3 gives : −δ ·T (D(Φ))◦$C = Φ.
This new symmetric space is denoted by :

Cone(A, a) := (C,Φ)

and is the symmetric cone of the symmetric pair (A, a). See an example in 3.5.

Remark 2.4. In the next statement, we use freely the language of TWG [2, § 2].
The reader unfamiliar with TWG can consider the following as (quite conceptual)
definitions for the monoids MWi(K), NWi(K) and the groups Wi(K).

Proposition and Definition 2.5. Let (K, D, δ,$) be a triangulated category with
duality. The symmetric cone construction (see 2.3) induces for all i ∈ Z a well-
defined homomorphism of monoids :

d : Symm(i)(K) −→ Symm(i+1)(K)

(A, a) 7−→ Cone(A, a)

which enjoys the following properties :

(a) The homomorphism d is a differential : d ◦d = 0.

· · · d−→ Symm(i−1)(K) d−→ Symm(i)(K) d−→ Symm(i+1)(K) d−→ · · ·

(b) Its kernel coincides exactly with the submonoid of Symm(i)(K) made of sym-
metric i-spaces :

MWi(K) = ker(d) := d−1(0) .

(c) Its image coincides exactly with the submonoid of Symm(i+1)(K) made of
metabolic or neutral (i+ 1)-spaces :

NWi+1(K) = im(d) := d (Symm(i)(K)) .

(d) Its homology is the ith triangular Witt group of K :

Wi(K) = MWi(K)/NWi(K) = ker(d)/ im(d) .

Proof. The fact that the isometry class of Cone(A, a) only depends on the isometry
class of (A, a) is immediate from the definition, see 2.3, and the fact that the
symmetric space (C,Φ) constructed there is unique up to isometry [2, Thm. 2.6].

Part (a) is clear since Cone(A, a) is a space, so it has a trivial symmetric cone. (In
the above notation, we have cone(Φ) = 0 .) Conversely, Cone(A, a) = 0 implies that
the form a is an isomorphism, which proves (b). Parts (c) and (d) are transcriptions
of the definitions, see [2, § 2]. �

Remark 2.6. Observe that the “homology” of a complex of monoids is probably
as slippery a notion as the one of “exact sequence” of monoids. We do not know
if there is a reasonable version of the above complex Symm(•)(K) made of abelian
groups (its group completion for instance) whose homology coincides with the above
Witt groups. Although elements in Symm(i)(K) do not admit an opposite, we can
define −α := (A,−a) for any symmetric pair α = (A, a) in Symm(i)(K) and we
have d(−α) = −d(α). This does provide the opposite in the Witt group.
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Remark 2.7. We have 4-periodicity of Witt groups, which is already visible on the
level of Symm(i)(K) and is simply induced by the translation :

Symm(i)(K) ∼−→ Symm(i+4)(K)

(A, a) 7−→
(
T 2(A), T 2(a)

)
,

using that TD = DT−1 which gives in particular T 2 ◦ D = D(4) ◦ T 2. Note also
that the signs involved in δ(i) and $(i) are 4-periodic, as recalled in Def. A.3.

Example 2.8. Returning to our geometric examples 1.3 and 1.7, we can now
define Witt groups of the respective derived categories with duality associated to
the schemeX. In case (a), that is for Db(VBX), and for any line bundle L ∈ Pic(X),
we obtain the so-called (derived) Witt groups Wi(X,L) := Wi(Db(VBX), DL), with
i-shifted and L-twisted duality, where DL is the derived duality twisted by L :

DL(−) = HomOX
(−,OX)⊗ L .

The same duality applies in case (c), that is on Dperf(X), yielding what could be
called perfect (derived) Witt groups of X. In case (b), that is for Db(CohX), and
under the assumptions insuring the existence of the duality, we obtain the coherent
(derived) Witt groups of X, see [7, § 2.5]. We shall not use here the latter two
examples but only derived Witt groups (of vector bundles).

3. Support and degeneracy locus

Let K be a triangulated category with duality defined over a topological space X
(Def. 1.4). We have the following concepts.

Definition 3.1. We define the support of a symmetric pair α = (A, a) as the
support of the object A :

Supp(α) := supp(A) ⊂ X .

Definition 3.2. We define the degeneracy locus of a symmetric pair α = (A, a) to
be the support of the cone of the morphism a :

DegLoc(α) := supp(cone(a)) .

Combined with Definitions 2.5 and 3.1, this gives :

(5) DegLoc (α) = Supp (d(α)) .

Proposition 3.3. The degeneracy locus of a symmetric form is contained in its
support : DegLoc(α) ⊂ Supp(α).

Proof. Write α = (A, a) and use the distinguished triangle (3) of Def. 2.3. Then

DegLoc(α) def.= supp(C)
(S4)
⊂ supp(A) ∪ supp(DA)

(S5)
= supp(A) def.= Supp(α) . �

Proposition 3.4. A symmetric pair is a symmetric space if and only if its degen-
eracy locus is empty.

Proof. In a triangulated category, a morphism is an isomorphism if and only if its
cone is zero. The statement follows from (S1) of Def. 1.1. �



PRODUCTS OF DEGENERATE QUADRATIC FORMS 11

Example 3.5. Let X be a scheme and let s ∈ Γ(X,OX) be a global section
of the structure sheaf OX . Let α(s) = (OX , s) be the obvious symmetric pair
for the unshifted untwisted duality on Db(VBX), i.e. consider OX as a complex
concentrated in degree 0 and s as a morphism from OX to its dual, which is OX

again. Then the support of α is the support of OX , that is, the whole of X. The
degeneracy locus of α is the zero set Z(s) of s. The symmetric cone 2.5 of α(s), is
the following symmetric 1-space (C,Φ) :

dα(s) =


C :=

Φ :=

��

· · · 0 //

��

OX
−s //

−1

��

OX
//

+1

��

0 //

��

0 · · ·

��
TD(C) = · · · 0 // OX s

// OX
// 0 // 0 · · ·


with the objects OX in homological degrees 1 and 0. This metabolic space has
support Z(s), compare (5), and its degeneracy locus is empty, as for any space. We
shall generalize this example in Section 6, see Def. 6.4 and Prop. 6.5.

4. Product and consanguinity

In this section, � : K×L → M is a pairing of triangulated categories with duality
defined over X as in Def. 1.6. We write supp for the three support-assignments,
independently of the category K, L or M.

Let α = (A, a) and β = (B, b) be two symmetric pairs in K and L respectively.

Definition 4.1. We define the product of the symmetric pairs α and β to be the
symmetric pair α ? β :=

(
A�B , µA,B ◦ (a� b)

)
. The same notation ? applies also

to the form itself. So, we have

(A, a) ? (B, b) = (A�B , a ? b)

where we use µ to identify the product of the duals with the dual of the product :

A�B
a � b //

a ? b

@@
D

K
A � D

L
B

µA,B

∼=
// D

M
(A�B) .

Remark 4.2. See Def. A.6 for how to define µ(i,j) so that (�, µ(i,j)) is again a
pairing of triangulated categories with duality, when using the i-shifted duality
(K, D(i), δ(i), $(i)) on K, the j-shifted duality (L, D(j), δ(j), $(j)) on L and (i + j)-
shifted duality (M, D(i+j), δ(i+j), $(i+j)) on M. With this in mind, Definition 4.1
also applies to the shifted dualities. So, for all i, j ∈ Z, we have a bi-additive
pairing of monoids :

? : Symm(i)(K)× Symm(j)(L) → Symm(i+j)(M) .

(Distributivity with respect to orthogonal sum, is obvious.) It is clear that this
pairing respects 4-periodicity, see Rem. 2.7. We shall see in Theorem 5.2 how this
pairing behaves with respect to the differential d : Symm(i) → Symm(i−1).
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Definition 4.3. We define the consanguinity of the symmetric pairs α and β to
be the following closed subset of X :

Cons(α, β) :=
(
Supp(α) ∩DegLoc(β)

)
∪
(
DegLoc(α) ∩ Supp(β)

)
.

With α = (A, a), β = (B, b) and Defs. 3.1 and 3.2, the above subset of X is

Cons(α, β) =
(
supp(A) ∩ supp

(
cone(b)

))
∪
(
supp

(
cone(a)

)
∩ supp(B)

)
.

We say that the symmetric pairs α and β have no consanguinity if Cons(α, β) = ∅.

Proposition 4.4. We have DegLoc(α ? β) ⊂ Cons(α, β).

Proof. This is the last statement of Lemma 1.10. �

Remark 4.5. In algebraic geometry, we have in fact equality DegLoc(α ? β) =
Cons(α, β). We do not know whether this can be proved for all triangulated cat-
egories defined over a topological space without further assumptions. Anyway, we
only need the inclusion of Prop. 4.4 to apply Prop. 3.4 and obtain the following :

Corollary 4.6. If the symmetric pairs α and β have no consanguinity then α ? β
is a symmetric space. �

* * *

Remark 4.7. We now want to extend the above considerations to products of several
symmetric pairs α1?. . .?αn. We find it too cumbersome to consider a multiple-entry
product � : K1×. . .×Kn−→M and to unfold all the relevant natural isomorphisms.
Therefore, we now restrict attention to TPD-categories (K,⊗) defined over X in
the sense of Def. 1.6, that is, to the case where all the categories involved coincide.
We do not assume the tensor product to be associative, although it will be so in the
geometric examples, for the reason that the sign conventions hidden in associativity
isomorphisms would unnecessarily overburden the presentation.

Definition 4.8. We extend the definition of the product α ? β given in Def. 4.1 to
several symmetric pairs by induction over n ≥ 2 :

α1 ? . . . ? αn := (α1 ? . . . ? αn−1) ? αn .

Definition 4.9. Let α1, . . . , αn be symmetric forms in our TPD-category K defined
over the topological space X. We define the consanguinity of α1, . . . , αn to be the
following closed subset of X :

Cons(α1, . . . , αn) :=
n⋂

i=1

Supp(αi) ∩
( n⋃

j=1

DegLoc(αj)
)
.

Observe that this definition is symmetric in α1, . . . , αn. We say that the forms
α1, . . . , αn have no consanguinity if this set is empty : Cons(α1, . . . , αn) = ∅.

Lemma 4.10. Let α1, . . . , αn be symmetric pairs.
(a) For n = 1, we have Cons(α1) = DegLoc(α1).
(b) For n ≥ 2, we have the following inductive formula :

Cons(α1, . . . , αn) =(
Supp(α1 ? . . . ? αn−1) ∩ Cons(αn)

)
∪
(
Cons(α1, . . . , αn−1) ∩ Supp(αn)

)
which, by (a), coincides with Definition 4.3 when n = 2.
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Proof. Statement (a) is immediate from the definition and from Prop. 3.3. Let us
compute directly the right-hand side of (b) :

Supp(α1 ? . . . ? αn−1) ∩ Cons(αn) ∪ Cons(α1, . . . , αn−1) ∩ Supp(αn)

(S6)
=

n−1⋂
j=1

Supp(αj) ∩ Cons(αn) ∪ Cons(α1, . . . , αn−1) ∩ Supp(αn)

(a) & 4.9
=

n−1⋂
j=1

Supp(αj) ∩ DegLoc(αn) ∪
n⋂

j=1

Supp(αj) ∩
( n−1⋃

i=1

DegLoc(αi)
)

3.3=
n⋂

j=1

Supp(αj) ∩ DegLoc(αn) ∪
n⋂

j=1

Supp(αj) ∩
( n−1⋃

i=1

DegLoc(αi)
)

4.9= Cons(α1, . . . , αn) . �

Proposition 4.11. Let α1, . . . , αn be symmetric forms. Then, we have :

DegLoc(α1 ? . . . ? αn) ⊂ Cons(α1, . . . , αn) .

Proof. By induction over n. For n = 1 both sides are equal to DegLoc(α1) by
Lem. 4.10 (a). Assume that n ≥ 2 and that the result holds for n− 1. We have

DegLoc(α1 ? . . . ? αn)
4.4
⊂ Cons((α1 ? . . . ? αn−1) , αn)

4.3= Supp(α1 ? . . . ? αn−1) ∩DegLoc(αn) ∪ DegLoc(α1 ? . . . ? αn−1) ∩ Supp(αn)
I.H.
⊂ Supp(α1 ? . . . ? αn−1) ∩DegLoc(αn) ∪ Cons(α1, . . . , αn−1) ∩ Supp(αn)

4.10= Cons(α1, . . . , αn) ,

where the inclusion labelled “ I.H.” holds by induction hypothesis. �

Remark 4.12. The above proof shows that if equality holds in Prop. 4.4 then it
holds in Prop. 4.11 as well. This is in particular the case in algebraic geometry as
mentioned in Rem. 4.5. Still, we only need the above inclusion for the following :

Corollary 4.13. Let α1, . . . , αn be symmetric forms with no consanguinity. Then
α1 ? . . . ? αn is non-degenerate. �

5. Leibniz formula

We return to the general situation of a pairing � : K× L−→M of triangulated
categories with duality, defined over a topological space X, as in Def. 1.6.

Proposition and Definition 5.1. Let α and β be symmetric forms. Then the
following are equivalent :

(a) The degeneracy loci of the forms α and β do not intersect.
(b) The forms d(α) and β have no consanguinity.
(c) The forms α and d(β) have no consanguinity.

In this case, we say that α and β have no common degeneracy, which implies in
particular that d(α) ? β and α ? d(β) are non-degenerate.
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Proof. We have DegLoc(d(α)) = ∅ and Supp(d(α)) = DegLoc(α), see Eq. (5).
By Definition 4.3, it follows that Cons(d(α), β) = DegLoc(α) ∩ DegLoc(β) =
Cons(α, d(β)). This proves the equivalence of the three conditions. The conclusion
about the non-degeneracy of the products comes from Cor. 4.6. �

For the next result, we need to assume that the pairing � : K×L−→M is com-
patible with the octahedron axiom, as recalled in Def. A.11. This axiomatization
follows May [12] and holds of course for any pairing observable in nature.

Theorem 5.2 (Leibniz-type formula for symmetric spaces). Let α and β be sym-
metric forms with no common degeneracy (see 5.1). Then, we have an isometry :

δ
M
· d(α ? β) ' δ

K
· d(α) ? β + δ

L
· α ? d(β) ,

where we recall that the signs δ
K
, δ

L
, δ

M
= ±1 express the exactness of the three

dualities involved D
K
, D

L
and D

M
.

Proof. Write the symmetric forms α = (A, a) and β = (B, b) and consider distin-
guished triangles in K and L respectively :

(6) A
a // DA

a1 // C
a2 // TA

(7) B
b // DB

b1 // C ′
b2 // TB

as well as the cone symmetric forms Φ : C ∼→ D(1)
K

(C) and Φ′ : C ′ ∼→ D(1)
L

(C ′) which
satisfy the following equations, see (4) in Def. 2.3 if necessary :

(8) Φ ◦ a1 = −D(1)

K
(a2) and Φ′ ◦ b1 = −D(1)

L
(b2) .

From now on, we shall write D for D
K

, D
L

and D
M

since it is always clear which
duality is meant from the object or the morphism it is applied to.

The proof will consist in finding a distinguished triangle over the morphism a? b
and in showing that the symmetric form Φ′′ on its cone satisfying an equation of
type (8) can be chosen to be Φ′′ = δ

K
δ
M
· (Φ ? b) ⊥ δ

L
δ
M
· (a ? Φ′) as announced

in the statement. This will be the symmetric cone d(α ? β) by uniqueness of the
construction, see 2.3. Indeed, it is not hard to see that the cone of a?b, which is the
cone of a� b, is isomorphic to the direct sum of C �B and A�C ′ as predicted by
the Theorem. It is harder to get the right morphisms in this distinguished triangle
in order to check the equation of type (4) for Φ′′. We proceed as follows.

The assumption ∅ = DegLoc(α) ∩ DegLoc(β) = supp(C) ∩ supp(C ′)
(S6)
=

supp(C � C ′) implies by (S1) the vanishing of the product C � C ′ = 0. We use
this in the next diagram. Applying the bi-exact functor − � − to the above dis-
tinguished triangles (6) and (7), we obtain a diagram with distinguished rows and
columns, which commutes except for the lower-right square which anti-commutes :
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(9) A�B
a�id //

id �b

��

DA�B
a1�id //

id �b

��

C �B
λ·(a2�id) //

id �b

��

T (A�B)

T (id �b)

��
A�DB

a�id //

id �b1

��

DA�DB
a1�id //

id �b1

��

C �DB
λ·(a2�id) //

id �b1

��

T (A�DB)

T (id �b1)

��
A� C ′

a�id //

ρ·(id �b2)

��

DA� C ′
a1�id //

ρ·(id �b2)

��

C � C ′
λ·(a2�id) //

ρ·(id �b2)

��

(−1)

T (A� C ′)

−T (ρ·(id �b2))

��
T (A�B)

T (a�id)
// T (DA�B)

T (a1�id)
// T (C �B)

−T (λ·(a2�id))
// T 2(A�B)

Plugging C � C ′ = 0 in this diagram, we immediately deduce the following :

(10) ā := a� idC′ : A� C ′
∼−→ DA� C ′ is an isomorphism

(11) b̄ := idC � b : C �B
∼−→ C �DB is an isomorphism

from exactness of the third rows and columns, whereas commutativity of the squares
“(2,3)” and “(3,2)” gives :

(12) a2 � b1 = 0 and a1 � b2 = 0 .

From compatibility of the pairing � with the octahedron axiom (Def. A.11) there
exist in M three distinguished octahedra :

DA�DB

c

""D
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
D

idDA � b1
ww

ww
ww

ww
w

{{www

OO

a�b

DA�B

idDA � b

44iiiiiiiiiiiiiiiiiiiiiiiiiii

a1�idB

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
; DA� C ′

ρ◦(idDA � b2)
·oo

0

·

��

A�B

a�idB TTTTTTTTTTT

jjTTTTTTTTTTTTTTTT

a�b

OO

(C �B)⊕ (DA� C ′)d
·oo

“
0 1

”kkVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

C �B

λ◦(a2�idB)xxxxxxx

·xxx

;;xxx

0@1
0

1A

33hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
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DA�DB

c

""D
DDDDDDDDDDDDDDDDDDDDDDDDDDDD

a1�idDB
ww

ww
ww

ww
w

{{www

OO

a�b

A�DB

a�idDB

44iiiiiiiiiiiiiiiiiiiiiiiiiii

idA � b1

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
; C �DB

λ◦(a2�idDB)
·oo

0

·

��

A�B

idA � b TTTTTTTTTTT

jjTTTTTTTTTTTTTTTT

a�b

OO

(C �B)⊕ (DA� C ′)d
·oo

h

kkVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

A� C ′

ρ◦(idA � b2)xxxxxxx

·xxx

<<xxx

g

33hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

A� C ′

g

!!C
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC
CC

CC

āwwwwwwwww

{{www
w

OO

0

0

55kkkkkkkkkkkkkkkkkkkkkkkkkkk

��5
55

55
55

55
55

55
55

55
55

55
55

5 DA� C ′·oo

0

·

��

T−1(C �DB)

SSSSSSSSSS

iiSSSSSSSSSSSSSS

0

OO

(C �B)⊕ (DA� C ′)h
·oo

“
0 1

”kkVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

C �B

b̄wwwwwwww

·www

;;ww

0@1
0

1A

33hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

These three octahedra are simply (37), (38) and (39) of Definition A.11 applied
to the distinguished triangles (6) and (7), in which we used the above information
C �C ′ = 0, as well as a2 � b1 = 0 and a1 � b2 = 0. As explained in Rem. A.13, we
also allowed ourselves to choose one of the distinguished triangles (34), (35), (36),
namely (35), the one over a1 � b2 = 0, which we chose to be

C �B

e :=
(

1
0

)
// (C �B)⊕ (DA� C ′)

f :=
(
0 1

)
// DA� C ′

0 // T (C �B) .

This is also how we know that the object E of A.11 is here (C �B)⊕ (DA� C ′).
From the commutativity in the third octahedron, we immediately compute one

entry, in matrix notation, of each of the morphisms g and h. Since h ◦ g = 0 and
since ā and b̄ are isomorphisms, we deduce that there exists a morphism

(13) k : A� C ′ → C �B such that g =
(
k
ā

)
and h =

(
b̄ −b̄ k ā−1

)
.
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We are now going to use the trick of A.13 again, namely the one explained in the

second part of A.13, carefully keeping our two morphisms e =
(

1
0

)
and f =

(
0 1

)
.

For this, consider the automorphism

` :=
(

1 −kā−1

0 1

)
: (C �B)⊕ (DA� C ′) ∼−→ (C �B)⊕ (DA� C ′) .

Composing the above octahedra with this isomorphism ` gives three new octahedra,
which are of course as distinguished as the above ones. Let us see what happens
to the morphisms involved in this composition, namely the six morphisms having
source or target equal to the modified object. They become :

` ◦
(

1
0

)
,
(
0 1

)
◦ `−1, ` ◦ c, d ◦ `−1, ` ◦ g and h ◦ `−1 .

Now, by choice of the automorphism ` and by (13) these six morphisms simply are :(
1
0

)
,
(
0 1

)
, ` ◦ c, d ◦ `−1,

(
0
ā

)
and

(
b̄ 0

)
.

Let us rebaptise the last four morphisms c, d, g and h, respectively. So, we now
have three octahedra exactly as above, with in addition

g =
(

0
ā

)
and h =

(
b̄ 0

)
.

Using this in the second octahedron it follows that

(14) c =
(
b̄−1 ◦ (a1 � idDB)

?

)
and d =

(
?? ρ ◦ (idA � b2) ◦ ā−1

)
whereas the first octahedron gives us :

(15) c =
(

???
idDA � b1

)
and d =

(
λ ◦ (a2 � idB) ????

)
.

Since it is the same c and the same d in both octahedra (this is the whole point of
this proof !), we can put (14) and (15) together and obtain :
(16)

c =
(
b̄−1 ◦ (a1 � idDB)

idDA � b1

)
and d =

(
λ ◦ (a2 � idB) ρ ◦ (idA � b2) ◦ ā−1

)
,

that is, we have the complete description of a distinguished triangle over a� b :

A�B
a� b // DA�DB

c // (C �B)⊕ (DA� C ′) d // T (A�B) .

From this we deduce the distinguished triangle over a ? b = µA,B ◦ a � b in the
obvious way, since µA,B : DA�DB

∼→ D(A�B) is an isomorphism :

(17) A�B
a ? b // D(A�B)

m1 // (C �B)⊕ (A� C ′)
m2 // T (A�B) ,

in which we also replaced DA � C ′ by the isomorphic A � C ′, using the isomor-
phism ā. The morphisms m1 and m2 are explicitly given by :

(18) m1 =
(

id 0
0 ā−1

)
◦ c ◦ µ−1 (16)

=
(
b̄−1 ◦ (a1 � idDB)
ā−1 ◦ (idDA � b1)

)
◦ µ−1 ,
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and

(19) m2 = d ◦
(

id 0
0 ā

)
(16)
=
(
λ ◦ (a2 � idB) ρ ◦ (idA � b2)

)
.

Consider now the two symmetric 1-forms :

Φ ? b : C �B
∼−→ D(1)(C �B) and a ? Φ′ : A� C ′

∼−→ D(1)(A� C ′)

which are non-degenerate by Proposition 5.1. The claim of the Theorem is that
their orthogonal sum Φ′′ (up to the signs δ

K
, δ

L
, δ

M
announced in the statement)

(20) Φ′′ := δ
K
δ
M
· (Φ ? b) ⊥ δ

L
δ
M
· (a ? Φ′)

Φ′′ : (C �B)⊕ (A� C ′) ∼−→ D(1)
(
(C �B)⊕ (A� C ′)

)
is isomorphic to Cone(a ? b). To check this, using the definition of the symmetric
cone 2.3, we have to find a distinguished triangle over a?b, which we indeed already
have in (17), and we then have to establish the analogue of equation (4), namely :

Φ′′ ◦m1 = −D(1)(m2)

or equivalently, since µA,B : DA�DB
∼−→ D(A�B) is an isomorphism :

(21) Φ′′ ◦m1 ◦ µ = −D(1)(m2) ◦ µ .

To show this, first observe that

(22) Φ ? b
def.= µ ◦ (Φ � b) = µ ◦ (Φ � idDB) ◦ (idC � b)

(11)
= µ ◦ (Φ � idDB) ◦ b̄ .

Similarly, using (10), we get that

(23) a ? Φ′ = µ ◦ (idDA �Φ′) ◦ ā .

Hence, the left-hand side of (21) becomes in matrix notation :

Φ′′ ◦m1 ◦ µ
(20)
= (δ

K
δ
M
· Φ ? b ⊥ δ

L
δ
M
· a ? Φ′) ◦m1 ◦ µ

(18)
=
(
δ
K
δ
M
· Φ ? b 0
0 δ

L
δ
M
· a ? Φ′

)
·
(
b̄−1 ◦ (a1 � idDB)
ā−1 ◦ (idDA � b1)

)
(22),(23)

=
(
δ
K
δ
M
· µ ◦ (Φ � idDB) ◦ (a1 � idDB)

δ
L
δ
M
· µ ◦ (idDA �Φ′) ◦ (idDA � b1)

)
(8)
= −

(
δ
K
δ
M
· µ ◦ (D(1)(a2) � idDB)

δ
L
δ
M
· µ ◦ (idDA �D(1)(b2))

)
.

We are almost done except that we need to move the natural isomorphism µ around.
At this stage, it is necessary to add decorations µ(i,j) to specify the considered natu-
ral isomorphism betweenD(i)(−)�D(j)(−) andD(i+j)(−�−), induced by µ(0,0) = µ
as defined in A.6. Otherwise, it is impossible to understand the appearance of the
signs. We have indeed established :

(24) Φ′′ ◦m1 ◦ µ = −
(
δ
K
δ
M
· µ(1,0) ◦ (D(1)(a2) � idDB)

δ
L
δ
M
· µ(0,1) ◦ (idDA �D(1)(b2))

)
.
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Using naturality of the transformation µ(i,j) our left-hand side of (21) becomes :

Φ′′ ◦m1 ◦ µ = −

(
δ
K
δ
M
·D(1)(a2 � idB) ◦ µ(1,0)

TA,B

δ
L
δ
M
·D(1)(idA � b2) ◦ µ(0,1)

A,TB

)
A.6= −

(
D(1)(a2 � idB) ◦ δ

K
δ
M
· T (µTA,B) ◦ λDTA,DB

D(1)(idA � b2) ◦ δLδM · T (µA,TB) ◦ ρDA,DTB

)
(PD2) inA.4

= −
(
D(1)(a2 � idB) ◦D(1)(λA,B) ◦ µA,B

D(1)(idA � b2) ◦D(1)(ρA,B) ◦ µA,B

)
= −

(
D(1)

(
λA,B ◦ (a2 � idB)

)
D(1)

(
ρA,B ◦ (idA � b2)

)) ◦ µA,B
(19)
= −D(1)(m2) ◦ µA,B .

This establishes the wanted equation (21) and finishes the proof. �

Corollary 5.3. Suppose that α and β have no common degeneracy (5.1). Then
the two symmetric spaces d(α) ? β and α ? d(β) define, up to a sign, the same Witt
class :

[ d(α) ? β ] = −δ
K
δ
L
· [α ? d(β) ]

in the suitable Witt group of M. �

Remark 5.4. Of course, if we choose β to be non-degenerate in Theorem 5.2, the
formula simply says

d(α ? β) = ± d(α) ? β .
This also proves that d(α) ? β is metabolic for any non-degenerate symmetric
form β, i.e. that ? induces a well-defined product ? on Witt groups, as already
established in [10]. The linearity of the connecting homomorphism in the localiza-
tion long exact sequences follows from this same equation. The verification of the
details is left to the reader, simplifying slightly [10, § 2.3].

6. Pseudo-diagonal forms

Notation 6.1. In this section, we move towards geometric applications. So, we fix
a Z[ 12 ]-scheme X and, as explained in Examples 1.3 (a), 1.7 and 2.8, we consider the
bounded derived category Db(VBX) of vector bundles over X as a TPD-category
(A.5) with the usual product ⊗OX

. Here, support, degeneracy locus and con-
sanguinity are closed subsets of the underlying topological space of X. We shall
consider dualities twisted by various line bundles L ∈ Pic(X). Recall that the whole
theory is 2-periodic in the twists, exactly as for classical dualities, and 4-periodic
in the shifts, see Rem. 2.7. So, if we abbreviate the monoid of symmetric pairs
(Def. 2.2) for the triangulated category with L-twisted duality (Db(VBX), DL) by

Symm(i)(X,L) := Symm(i)
(

Db(VBX) , DL
)
,

we obtain a bi-graded monoid :

SymmTot(X) :=
⊕

i∈Z/4

⊕
L∈Pic(X)/2

Symm(i)(X,L)

and the product of symmetric pairs of Def. 4.1 defines a product :

? : Symm(i)(X,L1)× Symm(j)(X,L2) −→ Symm(i+j)(X , L1 ⊗ L2)

( α , β ) 7−→ α ? β .
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Recall from Def. 4.8 that the product of several symmetric pairs is α1 ? . . . ? αn =
(α1 ? . . . ? αn−1) ? αn, with shifts and twists adding up as above.

Remark 6.2. It might be useful to think of SymmTot(X), equipped with orthogonal
sum and product, as a graded semiring, i.e. almost a graded ring but no opposite
for the addition. Note that, although it comes equipped with a differential (the
symmetric cone d of 2.5), SymmTot(X) is not a differential graded semiring since
the Leibniz rule holds only conditionally by Thm. 5.2.

We do not formalize commutativity and associativity of ⊗ in the abstract trian-
gular framework, but they hold in this geometric situation for ⊗OX

. Note however
that signs might be involved in the associativity of the product, depending on con-
ventions. We renounce these rather arid considerations here, since we can moreover
circumvent them in applications, see Rem.7.8. So, we leave the proof of the fol-
lowing rather obvious statement to the careful reader. For 〈1〉, recall that it is the
symmetric pair (OX , 1) which is clearly a unit for ? .

Lemma 6.3. Up to signs (see 2.6), the product on SymmTot(X) is commutative
and associative. Moreover, it admits a unit 〈1〉 ∈ Symm(0)(X,OX). �

We generalize Example 3.5 as follows :

Definition 6.4. Let L be a line bundle and let s : OX → L be a global section.
(a) We denote by Z(s) ⊂ X the zero locus of s, that is, the smallest closed

subset of X outside of which s is an isomorphism :

s
∣∣
XrZ(s)

: OXrZ(s)
∼−→ L

∣∣
XrZ(s)

.

(b) We denote by α(s ; L) := (OX , s) ∈ Symm(0)(X,L) the symmetric pair

α(s;L) =


· · · 0 //

��

0 //

��

OX
//

s
��

0 //

��

0 · · ·

��
· · · 0 // 0 // L // 0 // 0 · · ·


formed by the objectOX , considered in Db(VBX) as a complex concentrated
in degree 0, and by the form s : OX → DL(OX) = L. For simplicity, we
might write α(s) instead of α(s;L).

(c) We call diagonal symmetric pair any (orthogonal) sum of symmetric pairs
as above α(s1;L1) + . . . + α(sn;Ln) ∈ SymmTot(X).

Proposition 6.5. With the above notation, the symmetric cone of α(s ;L) is

d
(
α(s ;L)

)
=


· · · 0 //

��

OX
−s //

−1

��

L //

+1

��

0 //

��

0 · · ·

��
· · · 0 // OX s

// L // 0 // 0 · · ·

 ∈ Symm(1)(X,L)

with L in degree 0. (The object is the complex in the first row, its DL-dual the object
in the second row and the symmetric 1-form the vertical morphism of complexes.)
Therefore

Supp
(
α(s)

)
= X DegLoc

(
α(s)

)
= Z(s)

Supp
(
dα(s)

)
= Z(s) DegLoc

(
dα(s)

)
= ∅ .
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Proof. By definition, the cone C of the morphism s is the complex depicted in the
first row, see [17, § 1.5]. One has to check that the vertical morphism defines the
form Φ : C → TDL(C) of formula (4) in 2.3. This is easy since the morphism a1

is idL in degree zero and 0 elsewhere, whereas a2 is − idOX
in degree 1 and zero

elsewhere, with the same convention [17, 1.5.2].
Therefore : Supp

(
α(s;L)

) 3.1= supp(OX) = X. The next two equalities come

from DegLoc
(
α(s;L)

) (5)
= Supp

(
dα(s;L)

) 3.1= supp(cone(s))
6.4(a)
= Z(s). Finally,

d(α) is non-degenerate for any symmetric pair α. �

Definition 6.6. We denote by

PDiagTot(X) =
⊕

i∈Z/4

⊕
L∈Pic(X)/2

PDiag(i)(X,L)

the graded sub-semiring of SymmTot(X) generated by all symmetric pairs α(s;L)
for all global sections s : OX → L of line bundles and by all their cones d(α(s;L)).
We call it the total sub-semiring of pseudo-diagonal symmetric pairs.

Here are examples :

Notation 6.7. Let n ≥ 0. Consider n + 1 line bundles L0, . . . ,Ln ∈ Pic(X) and
consider global sections sj : OX → Lj for j = 0, . . . , n. Consider the following
pseudo-diagonal pair involving one symmetric pair and n symmetric cones :

β(s0, . . . , sn ; L0, . . . ,Ln) := α(s0;L0) ? dα(s1;L1) ? . . . ? dα(sn;Ln) .

This symmetric pair, sometimes only written β(s0, . . . , sn), defines an element of
PDiag(n)(X,L) ⊂ Symm(n)(X,L) where L := L0 ⊗ . . . ⊗ Ln ∈ Pic(X)/2 since all
factors contribute to a twist by Li but only the last n factors contribute to a shift
by 1. For n = 0, we simply have β(s0) = α(s0). For instance, β(1;OX) = 〈1〉.
Remark 6.8. The support Supp

(
β(s0, . . . , sn ; L0, . . . ,Ln)

)
of such a form is equal

to Supp(α(s0;L0)) ∩
⋂n

i=1 Supp(dα(si;Li)) = ∩n
i=1Z(si) by Prop. 6.5. We shall

consider its degeneracy locus in Prop. 6.11.

Proposition 6.9. Let i ∈ Z/4 and L ∈ Pic(X)/2. Then, any element of the
monoid of pseudo-diagonal L-twisted symmetric i-pairs PDiag(i)(X,L), as defined
in 6.6, is an orthogonal sum of symmetric pairs β(s0, . . . , sn ; L0, . . . ,Ln) as defined
in 6.7, for various integers n ≡ i modulo 4 and for various families of n line bundles
L0, . . . ,Ln ∈ Pic(X) such that L0 ⊗ . . .⊗ Ln ≡ L modulo 2 Pic(X).

Proof. Observe the following two properties :
(a) −α(s0;L0) = α(−s0;L0) by definition of −α, see 2.6 ;
(b) α(s1;L1) ? α(s2;L2) = α(s1 ⊗ s2;L1 ⊗ L2) by definition of the product.

Now, by construction, PDiag(i)(X,L) is the (i,L)-graded part of PDiagTot(X) and
the latter is the sub-semiring of SymmTot(X) generated by diagonal symmetric
pairs α(sj ;Lj), see 6.4, and by their cones dα(sj ;Lj). So, a priori, an element
of PDiag(i)(X,L) is a sum of products of such pairs. Using commutativity and
associativity up to signs (Lem. 6.3), we can regroup such a product as

±α(s1;L1) ? . . . ? α(sm;Lm) ? dα(sm+1;Lm+1) ? . . . ? dα(sm+n;Lm+n) .

Using (a) and (b), we can regroup the m factors with no “d” into only one and we
can even incorporate the possible sign into it. Such a product is a symmetric pair
β as in the statement. �
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Remark 6.10. This says that the symmetric forms β(s0, . . . , sn ; L0, . . . ,Ln) of 6.7
essentially describe all pseudo-diagonal forms, in the sense of Def. 6.6. These
pseudo-diagonal forms constitute the natural generalization to arbitrary schemes
of the usual diagonal forms over fields (where no “d” intervenes). It would be
interesting to know the answer to the following two open questions :

Q 1 : When (i.e. over which schemes) is any symmetric space pseudo-diagonal ?
Q 2 : When is any symmetric space Witt-equivalent to a pseudo-diagonal one ?

We only know that the weaker Question 2 is stable by passing from X to A1
X

or to Pn
X when X is regular. We now decide when such a pseudo-diagonal form

β(s0, . . . , sn) is non-degenerate :

Proposition 6.11. We have DegLoc
(
β(s0, . . . , sn)

)
⊂

n⋂
i=0

Z(si).

Proof. By Prop. 6.5, Supp(α(s0)) ∩ Supp(dα(s1)) ∩ . . . ∩ Supp(dα(sn)) = Z(s1) ∩
. . . ∩ Z(sn) whereas DegLoc(α(s0)) ∪ DegLoc(dα(s1)) ∪ . . . ∪ DegLoc(dα(sn)) =
Z(s0). So, by Def. 4.9, we obtain Cons(α(s0),dα(s1), . . . ,dα(sn)) = ∩n

i=0Z(si).
Since β(s0, . . . , sn) is the product α(s0) ? dα(s1) ? . . . ? dα(sn) by definition. The
result now follows from Prop. 4.11. �

Remark 6.12. Continuing Rems. 4.5 and 4.12, observe that equality holds in this
statement. However, the above inclusion suffices to apply Prop. 3.4 and to obtain :

Corollary 6.13. For each n ≥ 0, for each collection of n+1 line bundles L0, . . . ,Ln

and for each family of global sections si ∈ Γ(X,Li) such that
⋂n

i=0 Z(si) = ∅, the
pseudo-diagonal symmetric pair

β(s0, . . . , sn) = α(s0) ? dα(s1) ? . . . ? dα(sn)

is non-degenerate and hence defines a class in the Witt group Wn(X,L) where
L = L0 ⊗ . . .⊗ Ln. �

Remark 6.14. Observe that Corollary 6.13 allows us to determine all non-degenerate
pseudo-diagonal forms MWi(X,L) ∩ PDiag(i)(X,L) by means of Prop. 6.9. They
will be sums of pseudo-diagonal spaces as in the corollary.

Remark 6.15. In Corollary 6.13, we do not say that α(s0) ? . . . ? α(sn) is non-
degenerate since this is completely wrong. Indeed, the consanguinity of the forms
α(s0), . . . , α(sn) is the union of the Z(si) for i = 0, . . . , n and so this product
is non-degenerate only if every si is an isomorphism. We do not either consider
dα(s0) ? . . . ? dα(sn), which is always non-degenerate, without assumption on the
Z(si), but is also always metabolic and hence of little interest for Witt groups,
although they may define useful non-zero classes in Witt groups with support.

Let us draw the attention of the hurried reader to the asymmetry of the definition
of β(s0, . . . , sn) in s0, . . . , sn. The choice of having no d only in front of α(s0) is not
so important up to Witt equivalence though. Indeed, suppose that ∩n

i=0Z(si) = ∅,
then it follows from commutativity and associativity of ? up to signs (Lem. 6.3) and
from the Leibniz formula (Cor. 5.3) that, up to signs again, the Witt class of the
symmetric space β(s0, . . . , sn) in Wn(X,L) does not depend on the order of the si,
that is, for every permutation σ of {0, . . . , n}, we have

[β(s0, . . . , sn ; L0, . . . ,Ln)] = ± [β(sσ(0), . . . , sσ(n) ; Lσ(0), . . . ,Lσ(n))] .
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Remark 6.16. It is clear that our graded semirings SymmTot(X), PDiagTot(X), and
so on, are functorial in X, in a contravariant way. Both definitions of α(s;L) and
of β(s0, . . . , sn ; L0, . . . ,Ln) are natural in the obvious sense.

Proposition 6.17. For n ≥ 1, under the condition that ∩n
i=0Z(si) = ∅, the sym-

metric space β(s0, . . . , sn ; L0, . . . ,Ln) is locally trivial in the Witt group, namely
each point of X has a neighborhood on which this space is metabolic.

Proof. We have by assumption a covering ofX by the complements of the Z(si). On
the first open U0 := XrZ(s0) the space becomes a product of a space α(s0;L0)

∣∣
U0

with the metabolic space d(α(s1;L1)) ? . . . ? d(α(sn;Ln))
∣∣
U0

and the product is
therefore metabolic since n ≥ 1. On the other open subsets X r Z(si) for i =
1, . . . , n the object supporting the space is indeed zero since one of the factors is
zero dα(si;Li)

∣∣
XrZ(si)

= 0. Hence the result. �

7. Explicit examples over projective spaces

In this section, X is a scheme. Recall Conventions 0.2 and 0.3.

Notation 7.1. Recall that Pn
X = Pn

Z ×Spec(Z) X where Pn
Z = Proj(Z[T0, . . . , Tn]).

For each i = 0, . . . , n, we also denote by Ti the corresponding global section of O(1)
over Pn

Z and over Pn
X as well. We denote by

Zi := Z(Ti) ⊂ Pn
X and Ui := Pn

X r Zi ⊂ Pn
X

the closed subscheme Zi ' Pn−1
X corresponding to “Ti = 0” and its open comple-

ment Ui ' An
X . We shall also consider the closed subset

Y := Z1 ∩ . . . ∩ Zn = {T1 = 0, . . . , Tn = 0} ⊂ U0 ⊂ Pn
X

corresponding to the point [1 : 0 : . . . : 0] of Pn and its open complement

V := Pn
X r Y ⊂ Pn

X .

For simplicity we denote by the same letter π all projection morphisms to X :

An
X

π
))SSSSSSSSSSSSSSSSSSoo

'
Ui

π

##G
GGGGGGGG

� � // Pn
X

π
��

V

π
{{wwwwwwwww

? _oo

X

and even π : Pn−1
X → X. It is always clear from the context which projection is

meant. For n ≥ 2, we have a morphism over X

η : V −→ Pn−1
X

[t0 : . . . : tn] 7−→ [t1 : . . . : tn]
(25)

which is obtained by base change to X from the integral morphism described in
the second line. That is, η can be defined for X = Spec(Z) by the above formula
in homogenous coordinates and then pull-backed to any scheme X. For n = 1 we
make the convention that η : V → P0

X = X is the structure morphism π.

Remark 7.2. We adopt the following notation to drop unnecessary mentions of π∗.
(a) For M∈ Pic(X), we simply write Wi(Pn

X ,M) to mean Wi
(
Pn

X , π∗M
)
.
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(b) For any class w ∈ WTot(Pn
X), the homomorphism WTot(X)−→WTot(Pn

X)
consisting in π∗ followed by multiplication by w will simply be denoted
by ·w and will be called multiplication by w (say, on the right).

Definition 7.3. We apply the constructions of the previous sections :

(a) For any i = 0, . . . , n, following Def. 6.4, we define the symmetric pair

αi := α(Ti ; O(1) ) ∈ Symm(0)(Pn
X ,O(1)) .

(b) In the notation of 6.7, we define the symmetric pair

β(n)

X : = β(T0, . . . , Tn ; O(1), . . . ,O(1))

= α0 ? dα1 ? . . . ? dαn ∈ Symm(n)(Pn
X ,O(n+ 1)) .

Observing that ∩n
i=0Zi = ∅ we know from Cor. 6.13 that the above β(n)

X is
non-degenerate and therefore defines a Witt class

[β(n)

X ] ∈ Wn(Pn
X , O(n+ 1)) .

(c) Using the short notation of 7.2 (b), we define a homomorphism :(
1 [β(n)

X ]
)

: WTot(X)⊕WTot(X) −→ WTot(Pn
X)

( φ , ψ ) 7−→ π∗(φ) + π∗(ψ) ? [β(n)

X ] .

Theorem 7.4. Let X be a regular scheme and n ≥ 1. The above homomorphism(
1 [β(n)

X ]
)

: WTot(X)⊕WTot(X) −→ WTot(Pn
X)

is an isomorphism. The ring structure is determined by the property that

[β(n)

X ] ? [β(n)

X ] = 0

in W2n(Pn
X) and by the fact that π∗ : WTot(X) → WTot(Pn

X) is a homomorphism.

Proof. We proceed by induction on n ≥ 1. For any line bundle L ∈ Pic(Pn
X), we

have a localization long exact sequence, see [2, Thm. 6.2 & 6.8] or [4, Thm. 1.6] :

(26) · · · −→Wi
Y (Pn

X ,L)−→Wi(Pn
X ,L)−→Wi(V,L

∣∣
V

) ∂L−→Wi+1
Y (Pn

X ,L)−→· · ·

where the connecting homomorphism ∂L : Wi(V,L
∣∣
V

)−→Wi+1
Y (Pn

X ,L) is induced
by the cone construction, see [2, § 5]. Before proceeding to a term-by-term analysis
of (26), we recall, for those readers who might fear the loss of some twists in the
sequel, that we have an isomorphism Pic(X)⊕ Z ∼−→ Pic(Pn

X) given by (M,m) 7→
π∗(M)(m) = π∗(M) ⊗ O(m). Also observe that the global section Ti : OPn

X
→

OPn
X

(1) is an isomorphism outside Zi = Z(Ti), that is, on Ui ' An
X . So, we have

the following situation for Picard groups (written as abelian groups) :

(27) Pic(X)/2

'π∗

��

Pic(X)/2 ⊕ Z/2

'
“
π∗ O(1)

”
��

“
id 0

”
oo // Pic(Pn−1

X )/2

η∗'
��

Pic(Ui)/2 Pic(Pn
X)/2 resV

//
resUi

oo Pic(V )/2 .

Note that, for n = 1, the right-hand groups are isomorphic to Pic(X)/2 whereas
for n ≥ 2, we have codimPn

X
(Pn

X r V ) = codimPn
X

(Y ) = n ≥ 2 so the restriction
resV : Pic(Pn

X) → Pic(V ) is an isomorphism. Therefore, when n ≥ 2, all morphisms
in the right-hand square of (27) are isomorphisms.
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Lemma 7.5. Consider the metabolic symmetric space γ := dα1 ? . . . ? dαn in
Symm(n)(Pn

X ,O(n)). Let M∈ Pic(X)/2. Then, we have two isomorphisms :

Wi−n(X,M)
·[γ]
'

//Wi
Y

(
Pn

X ,M(n)
)

and

Wi−n(X,M)
·[β(n)

X ]
'

//Wi
Y

(
Pn

X ,M(n+ 1)
)

given by multiplication by the classes of γ and of β(n)

X , respectively.

Proof. First observe that Supp(γ) = ∩n
i=1Zi = Y and that therefore the first homo-

morphism is well-defined. Similarly we have Supp(β(n)

X ) = Y , see Rem. 6.8. Indeed,
in the notation of 6.7, we have γ = β(1, T1, . . . , Tn ; O,O(1), . . . ,O(1)).

On An
X := Spec(Z[T ′1, . . . , T

′
n]) × X, consider the Koszul symmetric space κ :=

dα′1?. . .?dα′n , where α′i := α(Ti,O) following the notation of 6.4. Gille has proved
in [9, Thm. 9.3] that

Wi−n(X,M)
·[κ]−→WY ′(An

X ,M)

is an isomorphism where Y ′ = {T ′1 = 0, . . . , T ′n = 0}, at least in the case of X affine
and regular and of M = OX . The global case is an immediate corollary of Gille’s
result by applying Mayer-Vietoris on the base X. Consider the morphisms :

Wi−n(X,M)
·[κ]

'
//Wi

Y ′(An
X ,M) '

//Wi
Y (U0,M) Wi

Y (Pn
X ,M(m)) .'

resU0oo

The first one is an isomorphism by the above result of Gille. The second one is
an isomorphism since U0 ' An

X . The last isomorphism follows by Zariski excision
(which is only a question of underlying categories, not of dualities), see [4, Cor. 2.3].
Note that O(1)

∣∣
U0
' OU0 and so the m ∈ Z/2 disappears on U0.

We are left to show that the two following diagrams commute, one for γ (with
m = n) and one for β(n)

X (with m = n+ 1) :

Wi−n(X,M)
·[γ] //

·[β(n)
X ]

//

·[κ] '
��

Wn
Y

(
Pn

X ,M(m)
)

resU0'
��

Wi
Y ′(An

X ,M) '
//Wi

Y (U0,M) .

To see this, recall that the classical isomorphism U0
∼→ An

X corresponds to T ′i 7→
Ti/T0 and that we use multiplication with T0 to identify OU0 ' O(1)

∣∣
U0

. Therefore,

this isomorphism U0
∼→ An

X , which of course sends Y to Y ′, also sends the symmetric
pair α′i to αi for i = 1, . . . , n. Via this isomorphism, we have a fortiori [κ] 7−→
[γ
∣∣
U0

] = [β(n)

X

∣∣
U0

]. This last equality follows from (α0)
∣∣
U0

= 〈1〉. This is the
claimed commutativity and the lemma follows. �

Lemma 7.6. Let M ∈ Pic(X)/2, m ∈ Z/2. Suppose that n ≥ 2. Then we have
an isomorphism :

η∗ : Wi
(
Pn−1

X ,M(m)
) ∼−→ Wi

(
V,M(m)

)
.

For n = 1, we simply have an isomorphism η∗ : Wi(X,M) ∼→ Wi
(
V,M

)
.
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Proof. The morphism η : V → Pn−1
X has A1-fibers and the result follows by gener-

alized homotopy invariance, see Gille [8, Cor. 4.2]. �

Lemma 7.7. Suppose that n ≥ 2. Recall γ = dα1 ? . . . ? dαn from Lemma 7.5.
The image of the class [β(n−1)

X ] ∈ Wn−1(Pn−1
X ,O(n)) via the composition

Wn−1(Pn−1
X ,O(n))

η∗ //Wn−1(V,O(n))
∂ //Wn

Y (Pn
X ,O(n))

is given by ∂(η∗[β(n−1)

X ]) = ± [γ]. Here of course ∂ = ∂O(n).

Proof. The definition of the connecting homomorphism ∂ is as follows. To compute
∂
(
[η∗(β(n−1)

X )]
)

we need to find a symmetric pair on Pn
X whose restriction to V is

the symmetric space η∗(β(n−1)

X ) and then apply the symmetric cone construction d
to this “lift”. See details in [2, 5.16]. In formula, it means that we have

∂([η∗(β(n−1)

X )]) = [d(α1 ? dα2 ? . . . ? dαn)]

as soon as observe that α1 ? dα2 ? . . . ? dαn is a symmetric pair on Pn
X whose

restriction to V is η∗(β(n−1)

X ). The latter is obvious by definition of η, see (25), and
by definition of β(n−1)

X , see Def. 7.3. Therefore we have

[d(α1 ? dα2 ? . . . ? dαn)] 5.4= ± [dα1 ? dα2 ? . . . ? dαn] = ± [γ]

which gives the Lemma. �

End of proof of Theorem 7.4 : For n ≥ 2, consider the diagram :

(28) WTot
Y (Pn

X) //WTot(Pn
X) //WTot(V )

∂ //WTot
Y (Pn

X)

WTot(Pn−1
X )

'η∗

OO

WTot(X)
2

'
“
[γ] [β(n)

X ]
”

OO

0@0 0
0 1

1A
//WTot(X)

2

“
1 [β(n)

X ]
”

OO

0@1 0
0 0

1A
//WTot(X)

2

'
“
1 [β(n−1)

X ]
” OO

0@0 ± 1
0 0

1A
//WTot(X)

2

'
“
[γ] [β(n)

X ]
”

OO

where WTot(X)
2

= WTot(X)⊕WTot(X) and where we use the notation WTot
Y (Pn

X)
for ⊕i∈Z/4 ⊕L∈Pic(Pn

X)/2 Wi
Y (Pn

X ,L).
Exactness of the first row is a compact form of the localization exact sequence (26).

The second row is trivially exact.
The first (hence the last) vertical morphism is an isomorphism by Lemma 7.5.

The vertical morphisms in the third column are isomorphism by induction hypoth-
esis and by Lemma 7.6 for η∗.

To see commutativity of the first square it suffices to prove that [γ] = 0 in
WTot(Pn

X), which is obvious since γ = dα1?. . .?dαn is a product of metabolic forms.
To see commutativity of the second square, it suffices to see that resV ([β(n)

X ]) = 0
in WTot(V ) which is obvious since [β(n)

X ] comes from WTot
Y (Pn

X), that is, β(n)

X is sup-
ported on ∩n

i=1Zi = Y as we already checked in Remark 6.8. To see commutativity
of the third square it suffices to prove ∂(η∗([β(n−1)

X ]) = ± [γ], which is Lemma 7.7.
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We get the wanted isomorphism by the 5-Lemma, since diagram (28) is periodic.

For n = 1, we have V = U1 and hence α1 is non-degenerate on V and defines a
class in W0(V,O(1)

∣∣
V

). Consider the diagram :

(29) WTot
Y (P1

X) //WTot(P1
X) //WTot′(V )

∂ //WTot
Y (P1

X)

WTot(X)
2

'
“
[γ] [β(1)

X ]
”
OO

0@0 0
0 1

1A
//WTot(X)

2

“
1 [β(1)

X ]
”
OO

0@1 0
0 0

1A
//WTot(X)

2

'
“
η∗ [α1]

”
OO

0@0 1
0 0

1A
//WTot(X)

2

'
“
[γ] [β(1)

X ]
”
OO

where we use WTot′(V ) to mean ⊕i∈Z/4 ⊕L∈Pic(P1
X)/2 Wi(V,L

∣∣
V

), which is not
WTot(V ) but rather two copies of it, since O(1)

∣∣
V
∼= OV , see also (27). We need

WTot′(V ) because the first line of (29) is the sum over all shifts and all possible
twists over Pn

X (not over V !) of the localization exact sequence (26). Note also
that the connecting homomorphism ∂L of the localization exact sequence (26) de-
pends on the “ambient” category with duality, here

(
Db(Pn

X), DL
)
(i). So, although

[α1] = 〈1〉 if we identify W0(V,O(1)
∣∣
V

) with W0(V ), the connecting homomor-
phism which applies to α1 is the connecting homomorphism ∂O(1) with respect to
the twisted duality DO(1). So, we get ∂(α1) = [dα1] = [γ] as wanted. The rest
of the proof is as above : the diagram commutes and has two isomorphisms out of
three by the previous Lemmas.

To prove that [β(n)

X ]2 = 0 observe that α0 ?dα1 ? . . . ?dαn ?α0 is non-degenerate
since α0,dα1, . . . ,dαn have no consanguinity and since consanguinity does not
change if we repeat some of the symmetric pairs (here α0) as can be verified directly
on the definition, see 4.9. Therefore, we are allowed to consider the Witt class of
this space [α0 ? dα1 ? . . . ? dαn ? α0] ∈ Wn(Pn

X ,O(n)) and to make the following
computation in WTot(Pn

X) :

[β(n)

X ]2 =
[
α0 ? dα1 ? . . . ? dαn ? α0 ? dα1 ? . . . ? dαn

]
=
[
α0 ? dα1 ? . . . ? dαn ? α0

]
?
[
dα1 ? . . . ? dαn

]︸ ︷︷ ︸
=0

= 0 .

The latter class vanishes since the spaces dαi are metabolic (and since n ≥ 1). �

Remark 7.8. It is a triviality that to prove
(
1 [β(n)

X ]
)

an isomorphism we can as
well replace [β(n)

X ] by its opposite −[β(n)

X ]. Therefore, any variation in the definitions
leading to a sign change of β(n)

X does not really affect the presentation of the total
Witt group of Pn

X .

Remark 7.9. It is also immediate from the general considerations of Proposition 6.17
that the generator [β(n)

X ] of WTot(Pn
X) is locally trivial on Pn

X .
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Appendix A. Recalling products, dualities and octahedra

Definition A.1. Consider three triangulated categories K, L and M. A pairing of
triangulated categories is triple (�, λ, ρ) formed by a bifunctor

� : K× L−→M .

which is exact in each variables with the natural isomorphisms

ρA,B : A� (TLB) ∼→ TM(A�B) and λA,B : (TKA) �B
∼→ TM(A�B)

expressing compatibility with translation for the exact functors A�− and −�B.
The following square is moreover assumed to be skew-commutative :

(30) (T
K
A) � (T

L
B)

ρT A,B

��

λA,T B //

(−1)

T
M

(
A� (T

L
B)
)

T (ρA,B)

��
T

M

(
(T

K
A) �B

)
T (λA,B)

// T 2
M

(A�B) .

Definition A.2. A duality on a triangulated category K is a triple (D, δ,$) where

• D : K
op → K is a ±1-exact contravariant functor (the duality); exactness

means in particular that D ◦ T = T−1 ◦D.
• δ = ±1 gives the exactness of D. So, 1-exact means exact and −1-exact

means that distinguished triangles are sent to skew-distinguished ones (those
which are distinguished after changing the sign of the three morphisms).

• $ : IdK → D◦D is an isomorphism of functors, such that D($A)◦$D(A) =
idD(A) and T ($A) = $T (A) for all A ∈ K.

A triangulated category with duality is a quadruple (K, D, δ,$). See details in [2].

Definition A.3. Given a triangulated category with duality (K, D, δ,$) and an
integer i ∈ Z, the i-th shifted duality

(D, δ,$)(i) = (D(i), δ(i), $(i))

on the same category K is defined by

D(i) := T i ◦D , δ(i) := (−1)i · δ and $(i) := (−1)
i(i+1)

2 · δi ·$ .

It is easy to see that (D, δ,$)(i+j) =
(
(D, δ,$)(i)

)(j) for all i, j ∈ Z.

Definition A.4 (Gille-Nenashev). Consider (K, D
K
, δ

K
, $

K
), (L, D

L
, δ

L
, $

L
) and

(M, D
M
, δ

M
, $

M
) three triangulated categories with duality. Following [10, Def. 1.11],

a pairing of triangulated categories with dualities between the three considered cat-
egories is a pair (�, µ) where :

• � : K× L−→M is a pairing of triangulated categories (Def. A.1),
• µ is a natural isomorphism

µA,B : D
K
A�D

L
B

∼−→ D
M

(A�B)

such that the following two properties are satisfied :
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(PD 1) The following diagram commutes :

A�B

$
A�B

��

$
A

� $
B // D2

K
(A) �D2

L
(B)

µ DA,DB

��
D2

M
(A�B)

D
M

(µA,B)
// D

M

(
(D

K
A) � (D

L
B)
)
.

(PD 2) The following diagram commutes up to signs (given in the center) :

T
M

(D
K
T

K
A � D

L
B)

T
M

(µT A,B)

��

(δ
K
·δ

M
)

D
K
A � D

L
B

λDT A,DBoo
ρDA,DT B //

µA,B

��

(δ
L
·δ

M
)

T
M

(D
K
A � D

L
T

L
B)

T
M

(µA,T B)

��
T

M
D

M
(T

K
A � B) D

M
(A � B)

T
M

D
M

(λA,B)
oo

T
M

D
M

(ρA,B)
// T

M
D

M
(A � T

L
B) .

In the special case where K = L = M, this gives :

Definition A.5. A triangulated category with product and duality, or in short a
TPD-category is a triple

(
K, (D, δ,$), (⊗, µ)

)
where (K, D, δ,$) is a triangulated

category with duality (Def. A.2) and (⊗, µ) with

⊗ : K×K → K

is a pairing compatible with the duality as in Def. A.4.

Definition A.6. Consider a pairing (�, µ) of triangulated categories with duality
� : K× L−→M as in Def. A.4. Let i, j ∈ Z be two integers. Define a new pairing
(�, µ)(i,j) := (�, µ(i,j)) by the formula :

µ
(i,j)
A,B := T i+j

M
(µA,B) ◦ T i

M
(ρ(j)

DA,DB) ◦ λ(i)

DA,D(j)B

where λ(i)

A,B : (T i
K
A) � B

∼→ T i
M

(A � B) and ρ(j)

A,B : A � (T j
K
B) ∼→ T j

M
(A � B) are

the obvious iterations of λ and ρ. More explicitly :

(D(i)
K
A) � (D(j)

L
B) =

µ
(i,j)
A,B

:=

��

(T i
K
D

K
A) � (T j

L
D

L
B)

λ
(i)
DA,T jDB��

T i
M

(
(D

K
A) � (T j

L
D

L
B)
)

T i

M
(ρ

(j)
DA,DB)

��
T i+j

M
(D

K
A � D

L
B)

T i+j

M
(µA,B)

��
D(i+j)

M
(A�B) = T i+j

M
D

M
(A�B) .

Proposition A.7. With notation of Def. A.6, the pairing � : K× L → M is also
compatible with the shifted dualities of K, L and M in the sense that the above
(�, µ(i,j)) is again a pairing of triangulated categories with duality from the pair
(K, D(i), δ(i), $(i)), (L, D(j), δ(j), $(j)) and with values in (M, D(i+j), δ(i+j), $(i+j)).
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Proof. We do not give all details but a pattern the cautious reader can follow.
First, we prove that µ(1,0) turns � into a pairing of triangulated categories with

duality between (K, D(1), δ(1), $(1))× (L, D(0), δ(0), $(0)) and (M, D(1), δ(1), $(1)).
To check the new (PD1), proceed as follows : first write it down ; then replace

µ(1,0) by its definition (write this inside the diagram) ; then the central diagram is
the juxtaposition of the old (PD 1) and of the old (PD2) for (DA,DB) instead of
(A,B) ; use also that $(1) = (−δ) ·$.

To check the new (PD2), proceed as follows : first write it down ; then replace
µ(1,0) by its definition (write this inside the diagram) ; then the left-hand diagram is
the translation T

M
of the left square of the old (PD2) plus the fact that TDT = D,

whereas the right-hand diagram is obtained by the juxtaposition of the translation
T

M
of the right square of the old (PD2) with diagram (30).

The similar statement for µ(0,1) can be established by following the mirror ar-
gument. Then, by induction, the statement holds for µ(i,0) and µ(0,j). Finally, we
use that µ(i,j) = (µ(0,j))(i,0). �

Remark A.8. Two words of caution about the definition of µ(i,j) : There is no sign
choice hidden in the definitions of λ(i) and ρ(j). They can be given explicitly as
in [10, Rem. 1.1]. There are sign choices in the definition of µ(i,j) coming from the
order in which we apply the natural isomorphism λ, ρ and µ. This roots back to the
possible skew-commutativity of diagrams (30) and (PD 2), which roughly say that
these natural isomorphisms only commute up to signs. With this in mind, there is
not really a distinction between a left and a right product as in [10] but rather lots
of choices for the order of stage appearance of λ, ρ and µ in the definition of the
natural isomorphism µ(i,j), all choices giving the same result up to sign.

We now turn to the compatibility of product and triangulation. First, recall :

Definition A.9. In a triangulated category, an octahedron is a diagram as follows :

(31) Z

w1

��@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@

v1
||

||
||

}}||

OO

w

Y

v

44iiiiiiiiiiiiiiiiiiiiiiii

u1

��?
??

??
??

??
??

??
??

??
??

V
v2

·oo

h

·

��

X

u UUUUUUUU

jjUUUUUUUUUUUUUUU

w

OO

W
w2

·oo

g

jjUUUUUUUUUUUUUUUUUUUUUUUU

U

u2|||||

·||
==

f

44iiiiiiiiiiiiiiiiiiiiiiii

in which the morphisms pictured with a broken arrow · // are of degree one,
namely u2 : U → TX, v2 : V → TY , w2 : W → TX and h : V → TU . This
octahedron is called distinguished if the following conditions hold :

(Oct1) the four triangles which can commute (
<<yyy //
bbEEE ) do commute ;

(Oct2) the four triangles which can be distinguished ( ·yy|| //
bbEEE ) are distinguished ;

(Oct3) both ways from Y to W coincide : w1 v = f u1 ;
(Oct4) both ways from W to T (Y ) coincide : T (u)w2 = v2 g.
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If moreover, to close the ring, the following two triangles containing the morphisms
of (Oct3) and (Oct4) are distinguished :

(Oct5) Y
s // W

(
g
w2

)
// V ⊕ TX

(
v2 −Tu

)
// TY where s := w1 v

Oct3= f u1 ,

(Oct6) Y

(
u1

v

)
// U ⊕ Z

(
−f w1

)
// W

t // TY where t := T (u)w2
Oct4= v2 g ,

then we say that (31) is a very distinguished octahedron. In this case, all morphisms
extractable from octahedron (31) have an explicit distinguished triangle to live in.

Z

Y

v
66lllllllll

X
u

hhRRRRRRRRR

w

OO

In a triangulated category, the octahedron axiom (TR4), or composition axiom,
asserts that any commutative triangle as in the left margin can
be completed into a distinguished octahedron (31). The enriched
octahedron axiom (TR4+) asserts the same with a very distin-
guished octahedron. Our triangulated categories are assumed to
satisfy (TR4+), as all known triangulated categories do. This
enrichment is due to Beilinson–Bernstein–Deligne [6].

* * *

Remark A.10. The following axiomatization is adapted from May [12] and Keller–
Neeman [11]. Consider a pairing of triangulated categories � : K × L−→M as in
Def. A.1 and two distinguished triangles in K and L respectively :

A
a // A′

a1 // A′′
a2 // TA(32)

B
b // B′ b1 // B′′ b2 // TB .(33)

Choose one morphism in each triangle, say a and b, and write their product as

a� b = (idA′ � b) ◦ (a� idB) .

This produces an octahedron. Note however that the above product can also be
decomposed as a � b = (a � idB′) ◦ (idA � b), yielding another octahedron. In
good logic, since there are 9 such pairs of morphisms, we can a priori produce 18
octahedra. As the reader would expect, there is some redundancy in this way of
axiomatizing the relation between � and octahedra. Minimizing the redundancy is
precisely the point of the following definition.

Definition A.11. We say that a pairing of triangulated categories � : K×L−→M

as in Def. A.1 is compatible with the octahedron axiom if for any two distinguished
triangles (32) and (33) in K and L respectively, there exists an object E in M and
distinguished triangles in M :

(34) A�B
a� b // A′ �B′ c // E

d // T (A�B) ,

(35) A′′ �B
e // E

f // A′ �B′′
ρ ◦ (a1 � b2) // T (A′′ �B)

(36) A�B′′
g // E

h // A′′ �B′
λ ◦ (a2 � b1) // T (A�B′′) ,
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involving the same object E and six morphisms c, d, e, f , g and h, such that the
following three octahedra are (very) distinguished :

(37) A′ �B′

c

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;

idA′ � b1
ww

ww
ww

ww
w

{{ww
w

OO

a�b

A′ �B

idA′ � b

44iiiiiiiiiiiiiiiiiiiiiiiiiiiii

a1�idB

��?
??

??
??

??
??

??
??

??
??

??
??

??
??

A′ �B′′
ρ◦(idA′ � b2)

·oo

ρ◦(a1�b2)

·

��

A�B

a�idB UUUUUUUUUUU

jjUUUUUUUUUUUUUUUUUU

a�b

OO

E
d

·oo

f

jjUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

A′′ �B

λ◦(a2�idB)wwwwwww

·www

;;ww

e

44iiiiiiiiiiiiiiiiiiiiiiiiiiiii

(38) A′ �B′

c

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;

a1�idB′
ww

ww
ww

ww
w

{{ww
w

OO

a�b

A�B′

a�idB′

44iiiiiiiiiiiiiiiiiiiiiiiiiiiii

idA � b1

��?
??

??
??

??
??

??
??

??
??

??
??

??
??

A′′ �B′
λ◦(a2�idB′ )

·oo

λ◦(a2�b1)

·

��

A�B

idA � b UUUUUUUUUUU

jjUUUUUUUUUUUUUUUUUU

a�b

OO

E
d

·oo

h

jjUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

A�B′′

ρ◦(idA � b2)wwwwwww

·www

;;ww

g

44iiiiiiiiiiiiiiiiiiiiiiiiiiiii

(39)
A�B′′

g

��;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

a�idB′′
wwwwwwwww

{{www
w

OO

−T−1(λ◦(a2�b1))

T−1(A′′ �B′′)

−T−1(λ◦(a2�idB′′ ))

33hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

T−1(ρ◦(idA′′ �b2))

  B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
A′ �B′′

a1�idB′′
·oo

ρ◦(a1�b2)

·

��

T−1(A′′ �B′)

T−1(idA′′ �b1) VVVVVVVVVV

jjVVVVVVVVVVVVVVVVVVV

−T−1(λ◦(a2�b1))

OO

E
h

·oo

f

jjTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

A′′ �B

idA′′ �bwwwwwww

·www
;;ww

e

44iiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
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Remark A.12. The information encapsulated in the (very) distinction of those three
octahedra is exactly equivalent to May’s axiom (TC3) of [12]. (Easier to check
with May’s (TC3’) of [12, Lem. 4.7].) For more on tensor triangulated categories,
see Keller-Neeman [11]. Note that distinguished octahedra with objects exactly
as above always exist without any extra compatibility axiom. The real point of
Def. A.11 is that these three octahedra can be built with the same six morphisms
c, d, e, f , g and h, each of them staging in two different octahedra.

Remark A.13. We can always replace the object E obtained in Definition A.11 via
an isomorphism ` : E ∼→ E′, changing accordingly the morphisms c, d, e, f , g and
h having source or target equal to E, into the six morphisms

` ◦ c , d ◦ `−1 , ` ◦ e , f ◦ `−1 , ` ◦ g and h ◦ `−1 .

This allows us to choose one distinguished triangle among (34), (35) and (36).
Moreover, once one of these triangles is chosen, say the second one (35), that is, if
we want to keep e and f as they are, then we can still apply the above procedure
a second time to modify the four other morphisms c, d, g and h, but only with an
automorphism ` : E → E such that ` ◦ e = e and f ◦ `−1 = f . This is what we do
in the proof of Thm. 5.2. The new octahedra are again (very) distinguished, since
this property is preserved by isomorphism of octahedra.
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