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Abstract. We construct a new local-global spectral sequence for Thomason’s
non-connective K-theory, generalizing the Quillen spectral sequence to possi-
bly non-regular schemes. Our spectral sequence starts at the E1-page where
it displays Gersten-type complexes. It agrees with Thomason’s hypercohomol-
ogy spectral sequence exactly when these Gersten-type complexes are locally
exact, a condition which fails for general singular schemes, as we indicate.

Our main result is the following application of abstract triangular geometry [2].

Theorem 1. Let X be a (topologically) noetherian scheme of finite Krull dimen-
sion. Then there exists a spectral sequence whose first page is

(1) Ep,q
1 =

⊕
x∈X(p)

K−p−q

(
OX,x on {x}

)
for p, q ∈ Z,

converging toward K−n(X) for n ∈ Z, “along n = p + q”, that is, the indexing
in the spectral sequence is such that dr : Ep,q

r → E p+r , q−r+1
r for r ≥ 1. Here,

K∗(X on Y ) stands for Thomason’s non-connective (or “Bass”) K-theory of those
perfect complexes of OX-modules which are acyclic on X − Y , see [12, § 6].

Note the presence of negative K-groups, a crucial fact throughout the paper.
Negative K-theory roots back to work of Bass and of Karoubi, independently.

For X regular, this coniveau spectral sequence is due to Quillen [10, Thm. 5.4],
who also used dévissage to replace the local terms K∗

(
OX,x on {x}

)
by K-groups of

residue fields, K∗(κ(x)). Although Theorem 1 can also be proved by starting with
(10.3.6) in Thomason [12, proof of Thm. 10.3], the conceptual proof given here relies
on deep geometric facts and easily transposes to other theories, see Remark 3. Im-
portant progress appeared even before [12], e.g. in Levine [8] or Weibel [15, 16, 17],
but always under restrictions on the singularities. The above Theorem seems to
provide the most general coniveau spectral sequence one could wish for. Our proof
is a direct application of two recent results : First, Schlichting’s localization long
exact sequence involving negative K-groups, see [11], and secondly, the author’s
decomposition in local terms of the idempotent completion of the successive quo-
tients of the coniveau filtration of Dperf(X), see [2] or (7) below. These two recent
papers, [2] and [11], grew as new branches of the same trunk, namely Thoma-
son’s masterpiece [12] mentioned above. Actually, in [12, Thm. 10.3], Thomason
constructs another spectral sequence, the hypercohomology spectral sequence :

(2) Ep,q
2 = Hp

Zar(X,K−q)
p+q=n
=⇒ K−n(X) ,
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where Km is the sheafification of the presheaf U 7→ Km(U), for m ∈ Z. It is
legitimate to ask whether the E2-page of our spectral sequence (1) coincides with
that of (2). We shall see in Remark 6 that this fails in general. Note that our
spectral sequence (1) is potentially interesting even for local schemes, where the
vanishing of cohomology forces Thomason’s spectral sequence (2) to be trivial.

Actually, we can also construct a niveau spectral sequence, involving dimension
instead of codimension. To synthesize, let us consider a general dimension function

(3) dim : Irred(X) −→ Z

on the set Irred(X) of irreducible closed subsets of X ; i.e. we assume dim(Y ) <
dim(Y ′) for every two Y, Y ′ ∈ Irred(X) such that Y ⊂ Y ′ and Y 6= Y ′. The Krull
dimension dim(Y ) := dimKrull(Y ) is an example, and so is the opposite of the Krull
codimension dim(Y ) := − codimKrull(Y ) but there are other dimension functions,
e.g. in intersection theory. As usual, we extend our dimension function to any non-
empty closed Z ⊂ X by dim(Z) := max

{
dim(Y )

∣∣ Y ∈ Irred(X) and Y ⊂ Z
}
∈ Z

(and dim(∅) := −∞). We moreover assume that there exists d ∈ N such that

(4) −d ≤ dim(Z) ≤ d

for every non-empty closed subset Z ⊂ X. This obviously holds for dimKrull and
for − codimKrull since we assume X to have finite Krull dimension.

For every i ∈ Z, we define X(i) :=
{

x ∈ X
∣∣ dim

(
{x}

)
= i

}
. Note that the set

X(i) =
{

x ∈ X
∣∣ dimKrull(OX,x) = i

}
of Theorem 1 is nothing but X(−i) for the

dimension function − codimKrull. With this general notion of dimension, we prove :

Theorem 2. Let X be a topologically noetherian scheme with a dimension func-
tion (3) satisfying (4). Then there exists a converging spectral sequence

Ep,q
1 =

⊕
x∈X(−p)

K−p−q

(
OX,x on {x}

) p+q=n
=⇒ K−n(X) .

Proof. We define for each p ∈ Z the following subcategory of Dperf(X)

(5) Dp = Dperf
(≤p)(X) :=

{
E ∈ Dperf(X)

∣∣ dim(supph(E)) ≤ p
}

,

where the closed subset supph(E) ⊂ X is the support of the total homology of the
perfect complex E. Because of (4), we have a finite filtration

(6) 0 = D−d−1 ⊂ D−d ⊂ · · · ⊂ Dp−1 ⊂ Dp ⊂ · · · ⊂ Dd = Dperf(X) .

Since this filtration can be realized at the level of Waldhausen models, there is a
“naive” spectral sequence starting with the Waldhausen K-theory of (some model
of) Dp / Dp−1 and converging to Thomason’s connective K-theory of X. This would
lead to Quillen’s classical spectral sequence for X regular. Nevertheless there is no
good description of the quotient Dp / Dp−1 when X is singular. Still, following
Thomason’s insight of [12, § 5], we can instead describe the idempotent completion
of this quotient. Recall from [3] that the idempotent completion K̃ of a triangulated
category K inherits a unique triangulation such that K ↪→ K̃ is exact. Then,
by [2, Thm. 3.24 and § 4.1], we know that for every p ∈ Z, localization induces an
equivalence

(7) ˜Dp / Dp−1
∼−→

∐
x∈X(p)

Dperf
{x} (OX,x)
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between the idempotent completion of the quotient Dp / Dp−1 and the coproduct
over x ∈ X(p) of the derived categories of perfect complexes of OX,x-modules with
homology supported on the closed point x ∈ Spec(OX,x).

The K-theoretic price to pay for introducing idempotent completions is the ap-
pearance of negative K-groups in the localization long exact sequence. To explain
this, we introduce some notations and results from Schlichting [11]. Let M be a col-
lection of “models” and let D(A) be a triangulated category functorially associated
to A ∈ M. Here M will be the category of complicial bi-Waldhausen categories and
D(A) the derived category of A. We loosely speak of the non-connective K-theory
of D(A) to mean the non-connective K-theory of A, as defined in [11].

We say that a sequence A → B → C is exact in M if D(A) → D(B) → D(C)
is exact up to direct summands, meaning that D(A) is a thick triangulated sub-
category of D(B), that the composite D(A) → D(C) is zero and that the induced
functor D(B)/D(A) → D(C) is fully faithful and cofinal, i.e. is an equivalence
after idempotent completion, which means in particular that any object of D(C)
is a direct summand of an object of D(B)/D(A). Given such an exact sequence
A → B → C, we have by [11, Thm. 1, Thm. 6 and § 6.5] a long exact sequence of
K-groups :

· · · → K1(B) → K1(C) → K0(A) → K0(B) → K0(C) → K−1(A) → K−1(B) → · · ·

In our situation, since the filtration (6) can be defined on the level of models,
and using our abuse of notation K∗(D(A)) = K∗(A), we get a long exact sequence

· · · → Kn(Dp−1) → Kn(Dp) → Kn

( ˜Dp / Dp−1

)
→ Kn−1(Dp−1) → · · · (n ∈ Z) .

So, we obtain as usual an exact couple and the associated spectral sequence, which
looks as follows in cohomological indexing : Ep,q

1 = K−p−q

( ˜D−p / D−p−1

)
. This

spectral sequence has the wanted form by (7) and by agreement of the negative
K-theory of [11] with Thomason’s, see [11, Thm. 5]. Convergence is clear since
Ep,q

1 is concentrated in the band −d ≤ p ≤ d by (3). �

Remark 3. We can replace everywhere K-theory by any cohomology theory which
associates a long exact sequence to every short sequence of triangulated categories
J → K → L which is exact up to direct summands (see above). This is true in par-
ticular for triangular Witt groups tensored with Z[ 12 ] by the localization theorem [1,
6.2& 6.8] and the cofinality theorem of Hornbostel–Schlichting [7, App. A].

Definition 4. Let X be a (topologically) noetherian scheme of finite Krull dimen-
sion d. For any q ∈ Z, we define the qth augmented weak Gersten complex

0 →Kq(X) →
⊕

x∈X(0)

Kq(OX,x) →
⊕

x∈X(1)

Kq−1

(
OX,x on {x}

)
→ · · ·

· · · →
⊕

x∈X(p)

Kq−p

(
OX,x on {x}

)
→ · · · →

⊕
x∈X(d)

Kq−d

(
OX,x on {x}

)
→ 0 .

to be the −qth line of the E1-page of our coniveau spectral sequence (1), augmented
by the edge homomorphism Kq(X) → ⊕x∈X(0)Kq(OX,x), which is just localization.
We can of course drop the “on {x}” when x ∈ X(0), since there {x} = Spec(OX,x).
A similar complex exists with dimension instead of codimension and differs from
the above in general. We call these complexes weak Gersten complexes because
they differ from Gersten complexes for regular schemes in that we cannot replace
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the local terms by the K-groups of the residue fields, since we do not have dévissage
in this context.

Remark 5. After Mochizuki [9], one might say that a local noetherian ring R sat-
isfies the generalized Gersten conjecture if the augmented weak Gersten complexes
are exact for X = Spec(R), for all q ∈ Z. This is equivalent to the vanish-
ing of Kn(Dp+1) → Kn(Dp) for all n ∈ Z and p ≥ 0, where the subcategory
Dp :=

{
E ∈ Dperf(X)

∣∣ codim(supph(E)) ≥ p
}

is again nothing but D−p in nota-
tion (5) applied to the dimension function − codimKrull.

Remark 6. For q ≥ 2 this conjecture is known to fail in general. For instance,
for the local domain R obtained by localization of a cusp at its singularity, say
R = k[t2, t3](t2,t3), the (edge) homomorphism K2(R) → K2(k(t)) is not injective as
proved in Dennis–Sherman [6, Appendix], where other examples are provided.

Proposition 7. If OX,x satisfies the above generalized Gersten conjecture for every
x ∈ X then the E2-page of our spectral sequence (1) agrees with that of Thoma-
son (2). Conversely, for R local, if the E2-page of our spectral sequence agrees with
Thomason’s on X = Spec(R) then the generalized Gersten conjecture holds for R.

Proof. The argument is standard. Assume the weak Gersten complex locally exact
on X. Since the unaugmented complex (i.e. without Kq(X) at the beginning) is
already a complex of skyscraper Zariski sheaves on X, it defines a flasque resolution
of the sheafification Kq of the presheaf U 7→ Kq(U). Hence, the homology of
this complex, which sits in our E2-page, equals the Zariski cohomology of Kq.
Conversely, for X = Spec(R) local, suppose the E2-page of our spectral sequence
consists of Zariski cohomology, then it vanishes except for p = 0, which is equivalent
to the exactness of the augmented weak Gersten complex. �

Remark 8. By Proposition 7 and Remark 6, our coniveau spectral sequence (1)
differs from Thomason’s (2) in general. As already mentioned, an advantage of our
spectral sequence is that it can be non-trivial even for local schemes, where there
is no non-trivial cohomology.

We now give an example of a local ring R for which the inclusion Dp+1 ↪→ Dp

does not even induce the zero map on K0 (see Remark 5).
Let k be an infinite field and define the ring R as the localization of k[x, y, z, w] =

k[X, Y, Z,W ]/〈XW−Y Z〉 at the point m = 〈x, y, z, w〉. In [5], Dutta, Hochster and
McLaughlin provide examples of finite length R-modules M which admit a finite
projective resolution (that is M ∈ Dperf

{m}(R) = D3) but with the property that

(8) χ(M,R/p) 6= 0 (and even χ(M,R/p) < 0)

for some p ∈ Spec(R)(1), for instance for p = 〈x, y〉, see [5, middle of p. 254]. Of
course, χ(M1,M2) =

∑
(−1)i length

(
TorR

i (M1,M2)
)

is Serre’s intersection mul-
tiplicity. Note that this χ(M1,M2) ∈ Z is well-defined for any perfect complex
M1 ∈ Dperf(R) = Kb(R–free) and any finitely generated R-module M2 satisfying
supph(M1) ∩ supp(M2) ⊂ {m} ; in this case TorR

i (M1,M2) simply is the homology
in degree i of the (naive) tensor product M1⊗M2 ; these homology groups are finite
length R-modules since supph(M1 ⊗M2) ⊂ supph(M1) ∩ supp(M2) ⊂ {m}.
Proposition 9 (Levine). With the above notations, [M ] ∈ K0(D3) does not map
to zero under the canonical homomorphism K0(D3) → K0(D2). In particular, this
local ring R does not satisfy the generalized Gersten Conjecture of Remark 5.
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Proof. For each a ∈ k consider the prime pa := 〈x−az, y−aw〉 ∈ Spec(R)(1). Note
that for a 6= b, we have pa + pb = 〈x, y, z, w〉 = m. Hence, for each q ∈ Spec(R)
with q 6= m, we have at most one a ∈ k such that pa ⊂ q. Consider now a closed
subset C ⊂ Spec(R) such that codim(C) = 2. Then C = V (q1) ∪ . . . ∪ V (qn) for
prime ideals q1 , . . . , qn ∈ Spec(R)(2). By the above considerations, since the field
k is infinite, there exists an element a ∈ k such that pa 6⊂ qi for all i = 1, . . . , n.
Therefore, C ∩ V (pa) = V (q1 + pa) ∪ · · · ∪ V (qn + pa) = {m}.

Let us assume ab absurdo that [M ] 7→ 0 ∈ K0(D2). For C ⊂ Spec(R), recall the
standard notation Dperf

C (R) :=
{

E ∈ Dperf(R)
∣∣ supph(E) ⊂ C

}
. Since we have

K0(D2) = colim
C⊂Spec(R), closed
with codim(C)≥2

K0

(
Dperf

C (R)
)
,

we can assume that [M ] 7→ 0 in K0(D
perf
C (R)) for some closed subset C ⊂ Spec(R)

with codim(C) ≥ 2, that is, codim(C) = 2 or C = {m}. In any case, by the first
part of the proof, there exists a ∈ k such that C ∩ V (pa) = {m}. Let us fix such a
C ⊂ Spec(R) and such an a ∈ k.

In this situation, the intersection multiplicity χ(E,R/pa) ∈ Z is defined for
any E ∈ Dperf

C (R). Since it is additive on distinguished triangles in Dperf
C (R), the

expression χ(E,R/pa) only depends on the class of E in K0(D
perf
C (R)). Therefore,

our assumption [M ] = 0 in K0(D
perf
C (R)) implies

(9) χ(M,R/pa) = 0 .

Similarly, since M ∈ Dperf
{m}(R), the number χ(M,M2) is defined for any finitely gen-

erated R-module M2 and, as before, induces a well-defined homomorphism χ(M,−)
on K0(R–mod) = G0(R). To get a contradiction between (8) and (9), hence to fin-
ish the proof, it now suffices to show that [R/pa] = [R/p] in G0(R) for all a ∈ k.
To see this, it is enough to check that the following sequence is exact :

(10) 0 → Ker(β) → R2 β−→R2 αa−→R → R/pa → 0

where αa =
(
x− az y − aw

)
and β =

(
w −y
−z x

)
, for this will imply that

[R/pa] = [R] − [Ker(β)] in G0(R) and the latter is independent of a ∈ k. In
fact, only exactness at the middle R2 requires proof, and this can be given in the
spirit of [5, Lemma 2.2]. Since localization is exact, we prove exactness of (10) with
R replaced by R = k[x, y, z, w] = k[X, Y, Z,W ]/〈XW − Y Z〉. Let

(
u
v

)
∈ R2 in the

kernel of αa. Let U, V ∈ k[X, Y, Z,W ] such that U 7→ u and V 7→ v in R. Then
αa ·

(
u
v

)
= 0 reads

(X − aZ) U + (Y − aW ) V = (XW − Y Z) G

for some G ∈ k[X, Y, Z,W ]. A direct computation from the above gives

(X − aZ) (U −WG) = −(Y − aW ) (V + ZG) .

This implies that (Y − aW ) | (U − WG), i.e. U = WG + (Y − aW ) H for some
H ∈ k[X, Y, Z,W ]. Replacing U in the last equation and canceling by (Y − aW )
gives V = −ZG− (X − aZ) H. Finally, defining g and h in R to be the classes of
G and H respectively, we obtain

(
u
v

)
=

(
w −y
−z x

)
·
(

g−ah
−h

)
, as was to be shown. �
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Remark 10. One can visualize the above proof by tracking the following objects(
[M ] , [R/pa]

) � [R/pa]=[R/p] in G0(R) //
_

[M ]=0 in K0(D
perf
C (R))

��

(
[M ] , [R/p]

)
_

χ

��(
0 , [R/pa]

) �
χ

// 0 6= χ(M,R/p) ,

in the commutative diagram

K0

(
Dperf
{m}(R)

)
×K0

(
Db

V (pa)(R – mod)
)

//

��
χ

++XXXXXXXXXXXXXXXXXXXXXXXXXXXX
K0

(
Dperf
{m}(R)

)
×K0

(
Db(R – mod)

)
χ

��
K0

(
Dperf

C (R)
)
×K0

(
Db

V (pa)(R – mod)
)

χ
// Z ,

whose lower homomorphism χ is well-defined because of the construction of a ∈ k
such that C ∩ V (pa) = {m}, made at the very beginning of the proof.

Finally, we discuss a condition for (1) to be a fourth quadrant spectral sequence.

Conjecture 11 (Weibel [14, 2.9]). For X a noetherian scheme of Krull dimen-
sion d, we have Km(X) = 0 for m < −d.

Very recently, this Conjecture has been proved for X essentially of finite type
over a field of characteristic zero by Cortiñas–Haesemeyer–Schlichting–Weibel [4].
As already observed by Vorst [13, Cor. 1.9 (iii)], at least in the reduced affine case,
we now show that it suffices to prove Conjecture 11 for local rings. (This can also
be proved with Thomason’s hypercohomology spectral sequence.)

Proposition 12. Let X be a noetherian scheme of Krull dimension d. Then the
following are equivalent :

(i) Conjecture 11 holds for the local ring OX,x for every x ∈ X.
(ii) For all p ≥ 0, all x ∈ X(p) and all q > 0 we have K−p−q

(
OX,x on {x}

)
= 0.

Moreover, when (i) and (ii) hold true, then X satisfies Conjecture 11 as well.

Proof. Of course Ep,q
1 = 0 except for 0 ≤ p ≤ d since X(p) is empty for other p ∈ Z.

Claim : Suppose that K−p−q

(
OX,x on {x}

)
= 0 for all 0 ≤ p ≤ d− 1, all x ∈ X(p)

and for all q > 0, then for n > d, we have K−n(X) ∼=
⊕

x∈X(d)

K−n

(
OX,x on {x}

)
.

The hypothesis of the Claim means that in our spectral sequence (1), we have :
Ep,q

1 = 0 for p 6= d and q > 0. So, for q > 0, we have Ep,q
1 = Ep,q

∞ and this group
vanishes except for p = d where it gives the above direct sum. Hence the Claim.

Assume (i) and let us prove (ii) by induction on p ≥ 0. For p = 0, we have of
course K∗

(
OX,x on {x}

)
= K∗(OX,x), so (ii) is true by assumption (i). For p ≥ 1

and x ∈ X(p), apply the Claim to the scheme Spec(OX,x). The hypothesis of the
Claim holds by induction hypothesis. Then, for q > 0, the conclusion of the Claim
applied to n = p + q gives K−p−q(OX,x) = K−p−q

(
OX,x on {x}

)
and the former

vanishes by (i). This proves (ii).
Conversely, assume (ii). Then the first page of our spectral sequence (1) vanishes

for q > 0. Since it is concentrated in 0 ≤ p ≤ d and converges to K∗(X), we get
Conjecture 11 for X. This already shows the “moreover part” of the statement.
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This implication “(ii)⇒Conj. 11” applied to X = Spec(OX,x) also proves (ii)⇒(i),
since (ii) is a local property. �

Corollary 13. Conjecture 11 is equivalent to : For every noetherian local ring (R,m)
of Krull dimension d and all n > d, we have K−n

(
Spec(R) on {m}

)
= 0. This is

also equivalent to our coniveau spectral sequence (1) being concentrated in the fourth
quadrant (p ≥ 0 and q ≤ 0) for every finite dimensional noetherian scheme X. �
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