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Abstract. We prove two results about Witt rings W(−) of regular schemes. First, given a semi-

local regular ring R of Krull dimension d, if U is the punctured spectrum, obtained from Spec(R)
by removing the maximal ideals of height d, then the natural map W(R) → W(U) is injective.

Secondly, given a regular integral scheme X of finite Krull dimension, consider Q its function field

and the natural map W(X)→W(Q). We prove that there is an integer N , depending only on the
Krull dimension of X, such that the product of any choice of N elements in Ker

(
W(X)→W(Q)

)
is zero. That is, this kernel is nilpotent. We give upper and lower bounds for the exponent N .

1. Introduction.

In [9], Knebusch defined the Witt group W(X) of an arbitrary scheme X. It is the quotient of
the abelian monoid of symmetric spaces up to isometry by the sub-monoid of metabolic spaces.
The tensor product turns W(X) into a commutative ring with unit.

Assume in what follows that X is integral with function field Q and that 2 is everywhere
invertible on X. Let us consider the natural map W(X) → W(Q). This map is known not to be
injective in general, even when X is affine and regular, see for instance Knus [10, Example 2.5.3,
p. 480]. A very old conjecture says : W(R) → W(Q) is injective when R is regular local, see for
instance [9, p. 256]. So, for convenience, we shall refer to it as Knebusch’s conjecture.

This conjecture is known to hold when R contains a field, see Ojanguren-Panin [11, Theo-
rem A]. The general case is still open, but known to be true when dim(R) ≤ 4, see [4, Corol-
lary 10.4]. Here, we shall extend this low dimension result to R semi-local, see Corollary 3.6.
This will follow from the first main result of this paper, true in any dimension :

Theorem. Let R be a noetherian semi-local regular ring containing 1
2 . Let U be the punctured

spectrum, obtained from Spec(R) by removing the maximal ideals of maximal height. Then the
natural homomorphism W(R) → W(U) is injective. (See Theorem 3.3 below.)

Our second theme is the kernel Ker
(
W(X) → W(Q)

)
, for a global scheme X, noetherian

and regular. It is known since Knebusch [9], that its elements are nilpotent in W(X). Actually,
in the affine case, the result is due to Craven-Rosenberg-Ware [6, Theorem 2.8], and the global
case follows easily from [9, Corollary p. 185]. If X is of Krull dimension at most 3, Charles
Walter and the author proved that this kernel is zero, see [4, Corollary 10.3]. The first non-
zero kernel appears in dimension 4. Here we improve the Craven-Rosenberg-Ware–Knebusch
nilpotence result as follows :

Theorem. Let X be a noetherian separated regular integral scheme containing 1
2 . Let Q be

its function field. Assume that X is of finite Krull dimension. Then there exists an integer
N depending only on [dim(X)

4 ] such that the N -th power of the ideal Ker
(
W(X) → W(Q)

)
is

zero. For 0 ≤ dim(X) ≤ 3, we have N = 1 and for 4 ≤ dim(X) ≤ 7, we have N = 2.
(See Corollary 4.3 and Theorem 4.5.)
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In general, we can take N = 2[dim X
4 ]. If moreover the conjectural injectivity W(OX,x) ↪→

W(Q) holds for any local ring of X, then we can take the exponent N to be [dim X
4 ]+1. Observe

that both coincide up to dimension 7 included. We prove also, by giving examples, that we
cannot expect a better general bound than N = [dim X

4 ] + 1, see Corollary 5.3.
Both results are classical, in the sense that they can already be stated in the 1976 language

introduced by Knebusch. Their proofs are triangular, in the sense that they rely on the series
triangular Witt groups [1], [2], where Witt groups of triangulated categories are introduced
and some of their basic properties are established. These techniques have already brought
interesting classical applications as can be seen in [3] and [4]. For the convenience of the
reader, we included in Section 2 a short introduction to this material. We shall also make use
of the multiplicative structure on these triangular Witt groups, induced by the tensor product.
Details on multiplicative structures can be found in Gille and Nenashev [8].

In this triangular Witt theory, we have not only one but several Witt groups Wn(X) for
n ∈ Z, in a 4-periodic way : Wn+4 ' Wn. The multiplicative structure on the total Witt group
W(X) ⊕ W1(X) ⊕ W2(X) ⊕ W3(X) makes it a Z/4-graded ring. We also prove in the last
Section that the “new” part W1(X)⊕W2(X)⊕W3(X) is nilpotent in this total Witt ring, still
for X regular of finite Krull dimension, see Proposition 6.1.

Acknowledgments : I hope that Stefan Gille, Michel Matthey, Manuel Ojanguren, Winfried
Scharlau and Charles Walter will accept my sincere thanks for their precious and friendly
support.

2. Triangular Witt groups for the working mathematician.

The basic concepts of “triangulated categories with duality”, of “Witt groups” of such ob-
jects, of “shifted dualities”, and so on, are to be found in the series triangular Witt groups [1]
and [2]. These two articles include many details and should provide an easy introduction to
this material. We only give here a quick overview in order to make the reading of the present
article easier.

A triangulated category K is an additive category, equipped with a translation T : K ∼→ K,
in which we have chosen a collection of exact triangles, which are taking the role played by
exact sequences in exact or abelian categories. The foundations are due to Grothendieck and
Verdier [13], a good introduction can be found in Weibel [15, Chapter 10], and a minimal
baggage can be acquired in [1, Section 1], where the enriched octahedron axiom is stated.
This axiom is due to Beilinson, Bernstein and Deligne [5, 1.1.14, p. 26], is true in all known
triangulated categories, and is always assumed below without further notice. The basic example
of a triangulated category is the (bounded) derived category of an exact category E , that is
the category of bounded complexes over E , with morphisms obtained from homotopy classes of
morphisms of complexes by inverting quasi-isomorphisms.

A duality # on a triangulated category K is a contravariant functor # : Kop → K which
is exact (respects triangles) and is an involution Id ' (#)2. We can define the Witt group of
a triangulated category with duality almost by the usual procedure, namely we consider the
monoid of symmetric spaces (pairs (E,ϕ) where ϕ = ϕ# : E ∼→ E# is a symmetric isomorphism)
and divide out the metabolic spaces, rather called neutral spaces when we have to distinguish the
triangular and classical frameworks. These neutral spaces are those possessing a Lagrangian, no
surprise about that, except that this definition must involve exact triangles where we classically
used exact sequences. See a detailed and precise definition in [1, Section 2]. The reader who
wants to refresh his knowledge of classical Witt groups can browse [9, Chapter I] for schemes
or [2, Section 1] for the obvious extension to exact categories. We connect the classical and
triangular Witt groups as follows.
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Definition 2.1. Let X be a scheme. We denote here by

Db(X)

the derived category of bounded complexes of vector bundles over X. (This sloppy notation,
not dwelling on the choice of vector bundles as opposed to other classes of OX -modules, is of
no harm over noetherian separated regular schemes as we shall use below. Better but heav-
ier is Db(VBX).) The triangulated category Db(X) is equipped with a duality, derived from
HomOX

(−,OX). We have a natural homomorphism W(X) → W(Db(X)) which sends a sym-
metric space to the complex concentrated in degree zero with the obvious symmetric form. This
is an isomorphism.

Theorem 2.2. Let X be a scheme on which 2 is everywhere invertible, then the natural ho-
momorphism W(X) → W(Db(X)) described above is an isomorphism.

This agreement between the usual and the “derived” Witt groups holds more generally
for exact categories with duality and is the main result of [2]. Triangular Witt groups were
introduced in order to study the behaviour of Witt groups with respect to localization. In its
most abstract and general form, the Localization Theorem is the following.

Theorem 2.3. Let J �K�L be an exact sequence of triangulated categories with duality in
which 2 is invertible. Then there is a long exact sequence of Witt groups :

· · · → W−1(L) → W0(J) → W0(K) → W0(L) → W1(J) → · · ·

which is 12-term periodic.

This Theorem is the main result of [1]. In the above, a short exact sequence of triangulated
categories with duality J �K�L means that J is a full triangulated subcategory of K which
is saturated (E ⊕ F ∈ J ⇒ E,F ∈ J) and L is the quotient of K by J ; moreover J , K and L
carry dualities in a compatible way.

Remark 2.4. The shifted Witt groups Wn, n ∈ Z, which appear in this long exact sequence
are simply obtained by shifting the duality, that is essentially replacing the duality # by Tn◦#.
They are 4-periodic : Wn ∼= Wn+4 and W0 is the above W. We warn the careful reader that this
overview hides the existence and importance of signs, which appear in the “shifted dualities”.
Precise definitions are to be found in [1, Section 2].

Hypothesis 2.5. In what follows, we shall consider regular schemes, by which we mean schemes
which are separated noetherian and regular. We shall also say that a scheme contains 1

2 , when
2 is invertible in the global sections of the structure sheaf.

Definition 2.6. Let X be a regular scheme and U be an open subscheme. Let Z be the
closed complement of U in X. We have an exact sequence of triangulated categories with
duality : Db

Z(X) � Db(X) � Db(U) where Db
Z(X) is by definition the kernel of the localization

Db(X) → Db(U). We denote by Wn
Z(X) the n-th Witt group of Db

Z(X), called the n-th Witt
group of X with supports in Z. More on this Witt cohomology theory and its use has appeared
in [3]. This subcategory Db

Z(X) is a ⊗-ideal in the sense that, for any E,F ∈ Db(X), if E or
F belongs to Db

Z(X) so does E ⊗ F .

Construction 2.7. Let X be a noetherian scheme. For any complex E ∈ Db(X) let us
denote by Supph(E) the support of the homology of E, that is the following closed subset of X :
{x ∈ X |Ex 6' 0 in Db(OX,x)}. For k ≥ 0, consider the full subcategory of Db(X) on the
following objects :

D(k)(X) := {E ∈ Db(X) | codim(Supph(E)) ≥ k}.
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We have a decreasing filtration Db(X) = D(0)(X) ⊃ D(1)(X) ⊃ D(2)(X) ⊃ · · · of Db(X). If we
assume that X has finite Krull dimension d, then the filtration ends with zeros · · · ⊃ D(d)(X) ⊃
D(d+1)(X) = D(d+2)(X) = · · · = 0. Since triangular Witt groups form a cohomology theory,
this leads to the so-called Gersten Witt spectral sequence as studied in [4]. We unfold here some
building blocks of this spectral sequence, that we shall use below.

Notations 2.8. If X is a scheme, we denote by X(k) the points of X such that OX,x is of
Krull dimension k. We denote the residue field at x by κ(x). Both notations are standard.

Theorem 2.9. (Balmer – Walter) Let X be a regular scheme containing 1
2 . Let k ≥ 0

be an integer. The category D(k+1)(X) is a saturated subcategory of D(k)(X) and the quotient
D(k)(X)/D(k+1)(X) is naturally isomorphic to

∐
x∈X(k)

Db(OX,x - fin.leng.) where we denote by

“OX,x - fin.leng.” the abelian category of finite length OX,x-modules. Moreover this induces the
following isomorphisms :

Wn
(
D(k)(X)/D(k+1)(X)

)
'


⊕

x∈X(k)

W(κ(x)) for n ≡ k mod 4

0 otherwise.

This is [4, Proposition 7.1 and Theorem 6.1]. For a point x ∈ X(k), the duality on the
abelian category OX,x - fin.leng. is given by Extk(−,OX,x). We shall not use the above result in
full strength and in particular, we should not worry about the explicit isomorphism W(κ(x)) ∼→
W(OX,x - fin.leng.), which includes a choice of local parameters. The main thing we use is
that the W(OX,x)-module W(OX,x - fin.leng.) is generated by any form on the finite length
OX,x-module κ(x).

Corollary 2.10. With the above notations, for any integer k ≥ 0, we have a surjection

W(D(4k+4)(X))� W(D(4k+3)(X)) ∼→ W(D(4k+2)(X)) ∼→ W(D(4k+1)(X)).

Proof. Out of Theorem 2.3, we get long exact sequences associated to the short exact se-
quences D(j+1)(X) � D(j)(X)� D(j)(X)/D(j+1)(X). Using the vanishing of the Witt groups
of D(j)(X)/D(j+1)(X) for the suitable values of j, we get the above result. �

Remark 2.11. The last thing we shall make use of is the multiplicative structure which is
induced on all the Witt groups in sight by the (derived) tensor product. This is actually slightly
more subtle that one can think, in particular for shifted Witt groups, where there exists a left
and a right product which differ up to signs. A careful and general exposition of this can be
found in Gille and Nenashev [8]. These signs do not appear in W0, the unshifted Witt group,
where the reader can follow his classical intuition. The essential thing we shall use below is
that the product of the Witt class of a symmetric space (E,ϕ) with the class of a symmetric
space (F,ψ) will always be defined on some complex quasi-isomorphic to E⊗F . This is enough
for our purposes, because we shall only use Supph(E ⊗ F ) ⊂ Supph(E) ∩ Supph(F ) – we even
have equality. It is also true that the multiplicative structure gives a W0(K)-module structure
to all groups appearing in the localization long exact sequence of Theorem 2.3, when of course
K is equipped with a reasonable tensor product and J is a ⊗-ideal. The homomorphisms in
the long exact sequence are all W0(K)-linear, including the connecting homomorphisms. See if
necessary [8, Section 2.3].
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Example 2.12. Let R be a commutative ring and let x ∈ R. Consider the Koszul complex
Kos(x) := · · · → 0 → R

x−→R → 0 → · · · , with R in degree 1 and 0. Then Kos(x) has a
natural symmetric form for the shifted duality T 1 ◦ #, see Remark 2.4 for signs. Tensoring
n such complexes produces the usual Koszul complex, with its symmetric form for the n-th
shifted duality. If R is moreover local regular of dimension n and x1, . . . , xn is a system of
parameters generating the maximal ideal, then the Koszul complex over x1, . . . , xn maps into
D(n)(R) ' Db(R - fin.leng.) on the residue field κ, concentrated in degree 0, and therefore the
form obtained above defines a form on κ. When n ≡ 0 mod 4, this form is a generator of the
W(R)-module W(R - fin.leng.), since the latter is isomorphic to W(κ), see 2.9 and after.

Back to an arbitrary commutative ring R, observe that the class in W1(R) of the form on
Kos(x) is zero, because the form is an isomorphism in each degree (see [2, Remark 5.8]), or
simply and directly because the complex having R concentrated in degree 0 is a Lagrangian.
Therefore, the same vanishing holds in Wn for the symmetric space on Kos(x1, . . . , xn) =
Kos(x1)⊗ · · · ⊗Kos(xn), the product of zero classes being zero. The reader might be puzzled
down by the attention paid to a symmetric space which is in the end zero in the Witt group.
Observe that Kos(x1, . . . , xn) can actually make sense in other triangulated categories than
Db(R), for instance in Db

Z(R) for any closed Z ⊃ V (< x1, . . . , xn >). In the latter, the above
Lagrangian cannot be used because the complex R (concentrated in degree 0) is of course not
in Db

Z(R) unless Z = Spec(R). In other words, the Witt class of Kos(x1, . . . , xn) in Wn
Z(R)

will not necessarily be zero, although it goes to zero in Wn(R), via the natural homomorphism
Wn

Z(R) → Wn(R). We shall use this in the proof of Theorem 3.3.

3. The Witt group of the punctured spectrum in the semi-local case.

In this Section, we denote by R a noetherian semi-local regular ring in which 2 is invertible.

Remark 3.1. Let m be a maximal ideal of R. Recall that the natural homomorphism W(R) →
W(κ(m)) is surjective. In fact, since any form over κ(m) is diagonalizable, it is enough to see
that the homomorphism of the groups of units R× → κ(m)× is surjective. This is an immediate
consequence of the Chinese Remainder Theorem, since R has only finitely many maximal ideals.

Lemma 3.2. Let R be a noetherian semi-local regular ring. Let m be a maximal ideal of
height n. Then there exists x1, . . . , xn ∈ m such that :

(1) in the local ring Rm the sequence x1, . . . , xn is a system of parameters;
(2) if p is any prime ideal of R such that x1, . . . , xn ∈ p then p = m.

Proof. Consider the ideal I := m1
2 ·m2 · . . . ·mr where m1 = m,m2, . . . ,mr are all the maximal

ideals of R. Consider the module R/I ' R/m2 ×
∏r

j=2R/mj . Choose v1, . . . , vn a R/m-basis
of m/m2 ⊂ R/m2. For each i = 1, . . . , n define xi ∈ m such that xi ≡ vi mod m2 and xi ≡ 1
mod m′ 6= m. These x1, . . . , xn will do. �

Theorem 3.3. Let R be a noetherian semi-local regular ring which contains 1
2 and let m1, . . .mr

be the maximal ideals of maximal height. Consider the “punctured spectrum”, that is the open
subscheme U = Spec(R) \ {m1, . . .mr}. Then the natural map W(R) → W(U) is injective.

More precisely, for any n ∈ Z, the natural map Wn(R) → Wn(U) is injective and is an
isomorphism except when dim(R) ≡ n + 1 mod 4. When dim(R) ≡ n + 1 mod 4, we have an
exact sequence :

0 → Wn(R) → Wn(U) →
r⊕

i=1

W (R/mi) → 0.

Proof. Let d := dim(R) be the Krull dimension of R. Consider the short exact sequence of
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triangulated categories D(d)(R) � Db(R)� Db(U). (See notations in 2.7.) We obtain a long
exact sequence in which, by Theorem 2.9, the Witt groups of D(d)(R) can be replaced 3 times
out of four by zero and the fourth time by ⊕r

i=1W (R/mi). This changes according to d mod 4.
With this, it is easy to reduce the Theorem to the fact that the map

Wn(D(d)(R)) → Wn(R)

is zero. To see this, we can assume that n ≡ d mod 4 otherwise the lefthand group is already
zero, again by Theorem 2.9, which also tells us that when n ≡ d mod 4, Wn(D(d)(R)) '
⊕r

i=1W (Rmi - fin.leng.). It suffices to show that the map W(Rmi - fin.leng.) → Wd(R) is zero for
each i = 1, . . . , r. For this, recall that this map is W(R)-linear and that W(Rmi - fin.leng.) is
generated as a W(R)-module by any class on the finite length module R/mi, see 2.9 and after,
as well as Remark 3.1. So it suffices to show that the image of one symmetric form on the finite
length Rmi

-module R/mi is zero in Wd(R). Let us assume that i = 1 to fix the ideas.
In other words, the result will follow once we have found a complex E ∈ Db(R) carrying a

symmetric form ϕ for the d-th shifted duality, and such that :

(1) The complex E belongs to D(d)(R);
(2) Via the equivalence D(d)(R) '

∐r
i=1 Db(Rmi

- fin.leng.), E maps to R/m1 (and to zero
for i = 2, . . . , r);

(3) The Witt class [E,ϕ] is zero in Wd(R).

Now we use the above Lemma to choose x1, . . . , xd ∈ R such that they form a system of
parameters in Rm1 and such that the only prime ideal containing all of them is m1. Consider
the Koszul complex E = Kos(x1, . . . , xd) over x1, . . . , xd in R with its usual symmetric form
for the d-th shifted duality, as described in Example 2.12. It is clear from the Lemma, that E
satisfies properties (1) and (2) above. To see (3), just give an explicit Lagrangian of Kos(x1)
and use the multiplicative structure, as explained in Example 2.12. �

Remark 3.4. This result is of course important because it relates the Witt group of two
regular schemes Spec(R) and U , with Krull dimension going down by one. This could be
of some help, one day, in a proof of Knebusch’s conjecture for semi-local regular rings by
induction on the Krull dimension. Of course, the scheme U is not semi-local anymore, and
its Witt group does not inject in the Witt group of its function field in general. To see this,
it suffices to construct a (semi-) local ring of dimension congruent to 1 modulo 4, in which
the exact sequence of Theorem 3.3 splits. For instance R = κ[X1, . . . , X4k+1]<X1,... ,X4k+1> or
R = κ[[X1, . . . , X4k+1]] where κ is a field of characteristic different from 2. It the latter case,
one can check that W(U) = W(κ)[ε]/ε2 and that the class ε goes to zero in the Witt group of
the field of fractions.

Remark 3.5. Theorem 3.3 was proved for R local regular of dimension ≤ 3 by Ojanguren,
Parimala, Sridharan and Suresh [12], and for higher dimensional such rings in [4]. The above
short proof is very much in the spirit of [4]. The proof that Wn(D(d)(R)) → Wn(R) is the zero
map is clarified by the use of the multiplicative structure.

Corollary 3.6. Let R be a noetherian semi-local regular domain which contains 1
2 . Assume

that R is of Krull dimension less than or equal to 4. Let Q be its field of fractions. Then the
natural map W(R) → W(Q) is injective.

Proof. Let U be the punctured spectrum as in Theorem 3.3. Consider the obvious factorization
of W(R) → W(U) → W(Q). The scheme U is regular of dimension 3, so we know that
W(U) → W(Q) is injective. This was established by Charles Walter and the author in [4,
Theorem 10.3]. (This is also an easy consequence of Corollary 2.10.) The statement now
follows from Theorem 3.3. �
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4. Nilpotence of locally trivial symmetric spaces.

Recall the abbreviated terminology introduced in 2.5.

Main Lemma 4.1. Let X be a regular scheme containing 1
2 . Let k ≥ 0 be an integer. Let

α and β ∈ W(X). Assume that α belongs to the image of W(D(4k)(X)) → W(X) and that
β ∈ W(X) goes to zero in W(OX,x) for all x ∈ X(4k). Then α ·β ∈ W(X) belongs to the image
of W(D(4k+4)(X)) → W(X).

Proof. We abbreviate D(k) for D(k)(X), since there is only one scheme under consideration.
Let α′ ∈ W(D(4k)) such that α′ 7→ α ∈ W(X). Define γ = α′ · β ∈ W(D(4k)), using the
multiplicative structure (see 2.11). We claim that γ 7→ 0 in W(D(4k)/D(4k+1)). Since the map

W(D(4k)) → W(D(4k)/D(4k+1)) '
⊕

x∈X(4k)

W(Db(OX,x - fin.leng.))

is W(X)-linear by 2.11, it suffices to see that β ∈ W(X) acts by zero on the righthand side.
This is clear since the action of W(X) on each W(Db(OX,x - fin.leng.)) factors through the ring
W(OX,x) where β is zero by assumption. This proves γ 7→ 0 in W(D(4k)/D(4k+1)).

By the exact sequence W(D(4k+1)) → W(D(4k)) → W(D(4k)/D(4k+1)), we can lift γ to some
γ′ ∈ W(D(4k+1)). By Corollary 2.10, we can lift γ further to W(D(4k+4)). This proves the
Lemma since γ 7→ α · β in W(X). �

Theorem 4.2. Let X be a regular scheme containing 1
2 . Assume that X has finite Krull

dimension. Then the ideal of locally trivial Witt classes over X is nilpotent. More precisely :

( ⋂
x∈X

Ker W(X) → W(OX,x)
)[

dim(X)
4

]
+1

= 0.

Proof. This follows easily from the Main Lemma. As before, we abbreviate D(k) for D(k)(X).
Choose α ∈

⋂
x∈X Ker W(X) → W(OX,x).

From the exact sequence W(D(1)) → W(D(0)) → W(D(0)/D(1)) and the identifications
D(0) = Db(X) and D(0)/D(1) '

∐
x∈X(0) Db(OX,x), we can lift α to W(D(1)). Now using

W(D(4)) � W(D(3)) ' W(D(2)) ' W(D(1)) of Corollary 2.10, we lift our α to W(D(4)). Note
that if dim(X) ≤ 3, this forces α = 0. For X of higher Krull dimension, we want to lift α
further up to W(D(4k)), for k = 2, 3, . . . By the Main Lemma, this can be done if we multiply
α by some Witt class which goes to zero in all W(OX,x) for x ∈ X(4k), like for instance any
other class in our kernel. Hence we obtain the result by induction on the Main Lemma. �

Corollary 4.3. Let X be a regular integral scheme defined over a field of characteristic not 2.
Let Q be the function field of X. Assume that X has finite Krull dimension. Then

(
Ker W(X) → W(Q)

)[dim(X)
4

]
+1 = 0.

Proof. When X is defined over a field, the above kernel coincides with the kernel of Theo-
rem 4.2 since W(OX,x) ↪→ W(Q) for all x ∈ X, by Ojanguren-Panin [11, Theorem A]. �

Remark 4.4. Once Knebusch’s conjecture will be proved, Corollary 4.3 will be true without
assuming the existence of a ground field. For the moment, we record the following secular
result.
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Theorem 4.5. Let X be a regular integral scheme containing 1
2 . Let Q be its function field.

Assume that X has finite Krull dimension. Then there exists an integer N ≥ 1 such that(
Ker W(X) → W(Q)

)N = 0. Moreover, we can take N ≤ 2
[dim(X)

4 ]
.

Proof. As before, we write D(k) for D(k)(X). The result is a simple induction on the following

Claim : for any k ≥ 1 we have
(
Im

(
W(D(4k)) → W(X)

))2
⊂ Im

(
W(D(4k+4)) → W(X)

)
.

This Claim follows from the Main Lemma 4.1 once we know that for any x ∈ X(4k), k ≥ 1, the
natural map W(D(4k)) → W(OX,x) is zero. To see this, let Ux be the punctured spectrum of
OX,x and observe that the following composition is zero

W(D(4k)(X)) → W(OX,x) → W(Ux)

because the composition of the underlying morphisms D(4k)(X) → Db(OX,x) → Db(Ux) is
already zero on the level of triangulated categories. Now the map W(OX,x) → W(Ux) is
injective by Theorem 3.6 or [4, Theorem 9.1]. This finishes the proof of the Claim. �

Remark 4.6. It is shown in [6] that the regularity assumption is necessary for these nilpotence
results.

5. The best general exponent.

We want to prove that N = [dim X
4 ] + 1 is the best exponent in general. To see this, we shall

compute a collection of examples. We keep the abbreviated terminology introduced in 2.5.

Proposition 5.1. (Walter) Let X be a regular scheme which contains 1
2 . Let n ∈ Z. We

have an isomorphism :
Wn(P1

X) ' Wn(X)⊕Wn−1(X)

such that
(1) This isomorphism is W(X)-linear, with the natural action of W(X) on both sides (2.11).
(2) For n = 0, the usual multiplication on W(P1

X) ' W(X)⊕W−1(X) becomes on the direct
sum : (a, e) · (b, f) = (a · b, a · f + b · e); in particular, (0, e) · (0, f) = 0.

(3) Again for n = 0, if we assume moreover that X is integral, the summand W−1(X) goes
to zero via the homomorphism W(P1

X) → W(Q) where Q is the function field of P1
X .

Proof. This isomorphism will appear in Walter [14] and is already in Gille [7, Theorem 5.4]
for X affine. We sketch the gross strategy of the proof here for the convenience of the reader.
Consider the closed subscheme Z0 of P1

X given by the image of the zero section i0 : X → P1
X .

Its open complement U is an affine line over X, U ' A1
X , and by [3, Theorem 3.4], Wn(U) '

Wn(X), for instance via the natural map U → P1
X → X. Therefore the homomorphism

Wn(P1
X) → Wn(U) is split surjective. The result follows essentially from the Localization

Theorem 2.3 applied to P1
X and the open U . The main difficulty is to establish the non-trivial

isomorphism Wn−1(X) ∼→ Wn
Z0

(P1
X); this is done in loc. cit. It is obvious that Wn

Z0
(P1

X)
goes to zero in the function field of P1

X because it is made of elements supported on a proper
closed subscheme of P1

X . To see (2), it essentially amounts to prove that the product of two
elements in Ker

(
W(P1

X) → W(U)
)

is zero in W(P1
X). This is true since we could use another

section X → P1
X in the above localization argument, for instance i1 : X → P1

X . The image in
W(P1

X) of both Witt groups with supports WZ0(P1
X) and WZ1(P1

X) are isomorphic by homotopy
invariance, since both the 0-section and the 1-section can be included in an affine line A1

X , for
instance outside ∞. Clearly, the product in W(P1

X) of an element coming from WZ0(P1
X) with

an element coming from WZ1(P1
X) is zero since it will come from WZ0∩Z1(P1

X) = W∅(P1
X) = 0.

Details will be found in [14], and moreover for arbitrary projective bundles. �
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Lemma 5.2. Let X be a regular integral scheme containing 1
2 . Assume that there is an integer

m ≥ 0 and an element α ∈ W(X) which satisfy the following conditions :
(1) The element α goes to zero in the Witt group of the function field of X.
(2) The element αm−1 is not torsion in W(X), that is for n ∈ Z, n · αm−1 = 0 ⇒ n = 0.
(3) We have αm = 0.

Let Y := P1×P1×P1×P1×X. Then there is an element β ∈ W(Y ) which goes to zero in the
Witt group of the function field of Y , such that βm+1 = 0 and such that βm is not torsion; in
particular βm 6= 0.

Proof. Apply four times the above Proposition. We have

W(P1 × P1 × P1 × P1 ×X) ' W(X)⊕Blabla⊕W−4(X)

where Blabla is a sum of copies of W−1(X), W−2(X), W−3(X), respectively 4, 6 and 4 times.
Observe that W−4(X) ∼= W(X) and thus we can define β := (α, 0, 1) where 0 ∈ Blabla and
1 ∈ W−4(X) ∼= W(X) is the unit element. Using (1) and (2) of the above Proposition, we see
immediately by induction on j ∈ N that βj = (αj , 0, j · αj−1). Therefore βm+1 = 0 whereas
βm = (0, 0,m · αm−1). The result follows. Note that β goes to zero in the function field of Y
by (3) of the above Proposition. �

Corollary 5.3. The exponent [dim(X)
4 ] + 1 is the best general exponent which satisfies the

nilpotence assertion of Corollary 4.3.

Proof. Clearly, dim(P1×P1×P1×P1×X) = dim(X)+4. The result follows by induction on
the Krull dimension, using the above Lemma. It suffices to find a starting point, i.e. a regular
integral scheme X of Krull dimension 4, and an element α ∈ W(X) which goes to zero in the
Witt group of the function field but which is not torsion (i.e. m = 2 in the hypotheses of the
Lemma). Take for instance X = P1 × P1 × P1 × P1 × Spec(R). The above proof shows that
W(X) = Z[ε]/ε2 and that ε 7→ 0 in the Witt group of the function field of X. We choose of
course α = ε. �

Remark 5.4. We could have cooked up a more explicit example, without referring to the yet
unpublished [14], replacing some general facts by ad hoc arguments. Nevertheless, the proof
of Theorem 4.2, in which a new obstruction obviously pops up in every fourth dimension, is
probably enough to convince the reader that N = [dim(X)

4 ] + 1 is the best general exponent
which kills the kernel. Therefore, we prefer to give here some large class of examples, in the
reader’s obvious scientific interest.

Remark 5.5. In this paper, we have constructed two classes of examples of regular integral
schemes X of dimension 4 (and higher) with non-trivial kernel. The first is the punctured
spectrum of any 5-dimensional regular semi-local ring (see 3.4). The second is P1

κ×P1
κ×P1

κ×P1
κ

for any field κ of characteristic different from 2.

6. Nilpotence of shifted Witt groups.

We keep the abbreviated terminology of 2.5.

Proposition 6.1. Let X be a regular scheme containing 1
2 . Assume that X is of finite Krull

dimension. Consider the summand W′ := W1(X) ⊕W2(X) ⊕W3(X) in the total Witt group
Wtot := W(X) ⊕ W1(X) ⊕ W2(X) ⊕ W3(X), which is a Z/4-graded ring with either the left
or the right multiplication (see 2.11). Then the N ′-th power of W′ in Wtot is zero, where
N ′ = 4 · ([dim X

4 ] + 1) ≤ dim(X) + 4.
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Proof. Denote by J(X) =
⋂

x∈X Ker
(
W0(X) → W0(OX,x)

)
the ideal of locally trivial Witt

classes in W0(X). Denote by J ′(X) the ideal of Wtot generated by J(X). By Theorem 4.2, we
have J ′(X)N = 0, where N = [dim X

4 ] + 1, so it clearly suffices to prove that (W′)4 ⊂ J ′(X).
Let i1, i2, i3, i4 ∈ {1, 2, 3} and let αj ∈ Wij (X) for j = 1, . . . , 4. There is necessarily a non-

empty subset E ⊂ {1, . . . , 4} such that
∑

j∈E ij ≡ 0 mod 4. This can be checked by inspection.
To get our result it suffices to see that

∏
j∈E αj ∈ J(X).

This is immediate. The product belongs to W0(X) by choice of E. Using the naturality of
the product structure (see details in [8, Section 3.2]), it suffices to see that each αj goes to zero
in Wij (OX,x) for any x ∈ X. This holds because shifted Witt groups of local rings vanish :
Wn(OX,x) = 0 when n = 1, 2, 3, see [2, Theorem 5.6]. �
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