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Abstract. Given a group, we construct a “fundamental localizing invariant”

on its orbit category. We prove that any isomorphism conjecture valid for
this fundamental invariant implies the same isomorphism conjecture for all lo-

calizing invariants, like non-connective K-theory, Hochschild homology, cyclic

homology, and so on. Then, we discuss how to reduce such a fundamental
isomorphism conjecture to essentially K-theoretic ones. Finally, we develop

the analogue additive results.

Introduction

We warn the allergic reader that this article contains many conjectures and
even introduces a new one. However, it is shown that this single new conjecture
implies several old ones. The interest of this work does not come from technical
difficulties, although it involves rather sophisticated objects. Instead, we believe
that the organization and conceptual clarification that we propose can be valuable
to some readers. In particular, we hope to invite some mathematicians active in
the field of Isomorphism Conjectures to learn about non-commutative motives.

Our first goal is to replace a large collection of so-called isomorphism conjectures
by a single, deeper conjecture, that we call the Fundamental Isomorphism Conjec-
ture (or Mamma Conjecture). We explain how one arrives to this conjecture in
a natural way. A posteriori, it is easy to show that this single conjecture implies
all other isomorphism conjectures under consideration. The non-trivial point is to
discover such a fundamental conjecture.

Our second goal is to prove that the Mamma Conjecture can actually be trans-
lated into more standard ones, involving onlyK-theory, cum grano salis. Combining
the two results, we see that if a group G satisfies the latter class of K-theoretic
Isomorphism Conjectures then it satisfies all other isomorphisms conjectures.

We fix a “base” commutative ring R, which can be Z, Q or C for instance.
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1. The Mamma Conjecture

1.1. Assembly properties. Given a groupG, the Farrell-Jones Isomorphism Con-
jectures predict the value of algebraic K- and L-theory of the group ring RG in
terms of the values on the virtually cyclic subgroups of G. These conjectures imply
well-known conjectures due to Bass, Borel, Kaplansky, Novikov; see a survey in
Lück [12].

In [5], Davis and Lück proposed the following unified setting for stating such
isomorphism conjectures. Let F be a family of subgroups of G and E : Or(G)→ Spt
a functor from the orbit category of G (whose objects are indexed by subgroups
H < G and whose morphisms H → H ′ are maps of G-sets G/H → G/H ′) to the
category of spectra. The (E,F , G)-assembly map is the induced map of spectra

(1.1.1) hocolim
Or(G,F)

E −→ hocolim
Or(G)

E = E(G) ,

where Or(G,F) ⊂ Or(G) is the orbit category restricted on F , that is, the full sub-
category on those H ∈ F . We say that the functor E has the F-assembly property
for G when the map (1.1.1) is a weak equivalence of spectra, i.e. when it induces
an isomorphism on stable homotopy groups. There is an obvious gain in flexibil-
ity in this approach but it is equally obvious that considering arbitrary functors
E : Or(G) → Spt is way too general and does not isolate any particular prop-
erty which might justify the assembly property to hold for K-theory, for instance.
Remedying this drawback is also a motivation for the present work.

When we speak of the (E,F , G)-isomorphism conjecture, we refer to the ex-
pressed hope that the assembly property holds for a particular choice of E, F and G.
Davis and Lück proved (see also [6] for details on the proof) that the Farrell-Jones
Conjecture in K-theory for G is equivalent to the (K,VC, G)-isomorphism conjec-
ture, where K is non-connective K-theory and VC is the family of virtually cyclic
subgroups of G; and similarly for L-theory. The first step in their approach is the
construction of a functor to R-linear categories, via the category Grp of groupoids :

(1.1.2) Or(G)
?−→ Grp

R[−]−→ R-cat .

The first functor ? associates to H < G the transport groupoid G/H of the G-set
G/H and the second functor R[−] is R-linearization ; see details in [5].

1.1.3. Remark. From now on, we are going to drop the L-theoretic variant of the
game, to avoid dragging along dualities on the R-linear categories R[G/H]. Ac-
tually, in full generality, one should not only consider categories with duality but
probably more general enrichments, for instance to include topological K-theory of
the reduced C∗-algebra (aiming at the Baum-Connes Conjecture). Such variations
might well exist but are beyond the scope of the present short article.

However, besides the original Farrell-Jones K-theoretic Isomorphism Conjecture,
the literature contains many variations on the theme, replacing the K-theory func-
tor by other functors E, and the category of spectra by other model categoriesM.
It is actually immediate from Davis and Lück’s formalism that infinitely many
such conjectures can be made. Consider for instance the isomorphism conjecture
for homotopy K-theory (KH) [2, § 7], for Hochschild homology (HH) and cyclic
homology (HC) [13, § 1], or for topological Hochschild homology (THH) [11, § 6].
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This simple idea of letting the functor E : Or(G) →M float freely generates a
profusion of potential isomorphism conjectures :

(1.1.4)

Spt

Spt

Or(G)

K
22

KH 11

HH //
HC

--
THH

,,E... **

Ch(R)

Ch(R)

Spt

M
We just need M to be a (reasonable) Quillen model category [15], so that we
can speak of homotopy colimits. For instance, Ch(R) stands for the category of
complexes of R-modules. Each of these isomorphism conjectures has already been
proved for various classes of groups using a variety of different methods. See [12]
or [14] for a survey of such results.

1.2. Towards a fundamental invariant. Our goal in this article is not to prove
any of these conjectures for any particular group G. We are rather interested in the
general organization and deeper properties behind this somewhat exuberant herd
of conjectures. Are all these conjectures really that different? Or is there some
deeper fact which should explain all of them? Intuitively, we want to comb the
skein (1.1.4) from the left to isolate a fundamental functor Eloc

fund

(1.2.1)

Spt

Spt

Or(G)
Eloc

fund // Motlocdg

K
77

KH 33

HH //

HC
++

THH

''
E

...

##

Ch(R)

Ch(R)

Spt

M
Then, we want to see if this fundamental functor should have an assembly property
and whether that property would imply the same assembly property for the original
functors of (1.1.4) and for any new “similar” functor that might come up in the
future. As we shall see below, to construct this functor Eloc

fund and the model category
Motlocdg , we need the theory of non-commutative motives as initiated in [20]. We

shall then show that all the functors E of (1.1.4) factor via this Eloc
fund in such a way

that any assembly property of Eloc
fund implies the same property for E.

A first observation is that all the functors E : Or(G)→M which appear in our
original examples have in common that they actually factor, not only via R-linear
categories, but via their associated dg-category :

(1.2.2) Or(G)
?−→ Grp

R[−]−→ R-cat ⊂ dgcat .
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For non-connective K-theory, one can use Schlichting’s construction [16, § 6.4]; for
Hochschild and cyclic homology, see [7, § 5.3]; for topological Hochschild homology,
see [3, § 3] or [17, § 8.1]. Let us quickly recall basic facts about this category dgcat.

1.3. Recalling dg categories. See Keller [7] for an introduction and survey.
A differential graded (=dg) category, over our fixed base commutative ring R,
is a category enriched over chain complexes of R-modules (morphisms sets are
complexes) in such a way that composition fulfills the Leibniz rule : d(f ◦ g) =
d(f) ◦ g + (−1)deg(f)f ◦ d(g). Any R-linear category can be naturally considered
as a dg category with complexes of morphisms concentrated in degree zero. For
instance, R denotes the dg category with one object and R as endomorphism ring.
Let A be a small dg category. Recall from [7, § 3.1] that a right dg A-module (or
simply an A-module) is a dg functor Aop → Cdg(R), with values in the dg category
Cdg(R) of complexes of R-modules. We denote by C(A) the category of A-modules.
The derived category D(A) of A is the localization of C(A) with respect to quasi-
isomorphisms. Finally, a derived Morita equivalence between dg categories A and
B is a dg functor F : A → B which induces an equivalence on the derived categories
D(B)

∼→ D(A).

1.4. Localizing functors. Returning to our general discussion, an important gain
of introducing dg categories in (1.2.2) is that we now have a (cofibrantly generated)
Quillen model category structure on the category dgcat of small dg categories, by [19,
Thm. 5.3]. In other words, we can do homotopy theory of dg categories and speak
of homotopy colimits thereof. The weak equivalences are the derived Morita equiv-
alences. We could therefore already consider isomorphism conjectures for the basic
functor Or(G)→ dgcat of (1.2.2), à la Davis-Lück.

However this would be way too naive. Instead, let us return to the functors
E : Or(G)→M that we want to study in the first place, or by the above discussion,
let us consider the functors E : dgcat→M that we want to compose with the basic
functor (1.2.2). Another common property shared by our examples is that they are
localizing in the sense of [18, §10]. This means that the functor E : dgcat → M
preserves filtered homotopy colimits and final object and that E is such that every
(Drinfeld) short exact sequence of dg categories(

A
I
� B

P
� C

) E7−→
(
E(A)

E(I)−→ E(B)
E(P )−→ E(C) −→ E(A)[1]

)
is mapped to a distinguished triangle in the homotopy category Ho(M). Thanks to
the work of Waldhausen [22] and Schlichting [16], of Weibel [23], of Keller [8] and of
Blumberg-Mandell [3] (see also [17]), all the above classical theories are localizing
invariants. It will be convenient to have a short name for the induced functors on
the orbit category.

1.4.1. Definition. LetM be a stable model category and E : Or(G)→M a functor.
We say that E is a localizing invariant if it factors through Or(G) → dgcat as
in (1.2.2) followed by a localizing functor E : dgcat→M in the above sense.

Now comes an important step in our discussion. Namely, one of the main results
of [18] is the existence of a universal localizing functor on dg categories

U loc
dg : dgcat −→Motlocdg ,
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that is a localizing functor from dgcat to a stable model category Motlocdg through
which all other localizing functors will factor uniquely. Because of this universal
property, which is reminiscent of the theory of motives, the homotopy category
Ho(Motlocdg ) of this new model categoryMotlocdg is sometimes called the triangulated
category of non-commutative motives. To be precise, the uniqueness involves the
language of derivators, see [18, Thm. 10.5] but this is not absolutely essential for the
present article. Before stating that variant of universality, let us fix the notation :

1.4.2. Definition. Composing the basic functor of (1.2.2) with U loc
dg , we obtain what

we call the fundamental localizing invariant

Eloc
fund : Or(G)

?−→ Grp
R[−]−→ R-cat ⊂ dgcat

U loc
dg−→Motlocdg

on the orbit category of any group G.

1.4.3. Theorem. Let G be a group. For any localizing invariant E : Or(G) →M
on its orbit category (Definition 1.4.1), there exists a functor E : Ho(Motlocdg ) →
Ho(M) on homotopy categories, which has the following two properties :

(1) The following diagram commutes up to isomorphism

(1.4.4)

Or(G)
Eloc

fund //

E
$$

Motlocdg
// Ho(Motlocdg )

E

��
M // Ho(M) .

(2) The functor E preserves homotopy colimits.

Proof. By Definition 1.4.1 there exits a localizing functor E : dgcat →M making
the following diagram commute

(1.4.5)

Or(G)
? //

E
**

Grp
R[−] // R-cat ⊂ dgcat

E

��
M .

Since E is localizing, [18, Thm. 10.5] yields a well-defined homotopy colimit pre-
serving functor E : Ho(Motlocdg )→ Ho(M) making the following triangle commute

(1.4.6)

Ho(dgcat)

E

��

// Ho(Motlocdg )

Exx
Ho(M) .

Hence, by combining (1.4.5) with (1.4.6) and with the definition of Eloc
fund we obtain

the above commutative diagram (1.4.4). Item (2) is now clear. �

1.4.7. Remark. Although this plays no role for the sequel, it is legitimate to wonder
how unique the functor E of Theorem 1.4.3 is. We do not know of any uniqueness
result for two reasons. First, the functor E : dgcat → M in Definition 1.4.1 need
not be controlled by its value on the very special dg-categories R[G/H]. Secondly,
although [18, Thm. 10.5] does provide some uniqueness statement for the factor-
ization in (1.4.6), this uniqueness can only be expressed in terms of derivators.
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The notation E above explains the functors K, KH, HH, KC, and THH,
which appear in (1.2.1). It is quite remarkable that E now preserves homotopy
colimits (not only filtered ones) ! Hence E will preserve any assembly property
that Eloc

fund might enjoy. Indeed, we then obtain the main motivation for the Mamma
Conjecture :

1.4.8. Corollary. Let G be a group and F a family of subgroups. If the fundamental
additive functor Eloc

fund has the F-assembly property, then all localizing invariants
on Or(G) have the same F-assembly property.

Proof. The assumption is that the (Eloc
fund,F , G)-assembly map (1.1.1)

hocolim
Or(G,F)

Eloc
fund −→ Eloc

fund(G) ,

is a weak equivalence, i.e. an isomorphism in Ho(Motlocdg ). For every localizing

invariant E, consider E as in Theorem 1.4.3. Applying the functor E to the above
weak equivalence and using that E commutes with homotopy colimits gives precisely
the (E,F , G)-assembly property. �

The reader should now be very tempted to state the following :

1.4.9. Mamma Conjecture. Given a group G, the fundamental localizing invari-
ant Eloc

fund : Or(G)→Motlocdg has the VC-assembly property.

Corollary 1.4.8 says that the Mamma Conjecture implies all isomorphism con-
jectures for localizing invariants that can be found on the market. Note that our
choice of the family VC of virtually cyclic groups is merely borrowed from Farrell-
Jones and another family F might be preferable. In any case, the result is that once
this is achieved for some family F , then all localizing invariants will automatically
inherit the same F-assembly property.

The motivation for focusing on the fundamental localizing invariant Eloc
fund :

Or(G) → Motlocdg came from the common property shared by most invariants for
which isomorphism conjectures already exist, namely to be localizing. However,
these examples might in fact enjoy some other common property, stronger than
being localizing. If such a property is isolated in the future, one should construct
the corresponding fundamental invariant and modify (i.e. weaken) the Mamma
Conjecture accordingly.

2. Reducing the Mamma to K-theory

In this section, we give further justification why the Mamma Conjecture 1.4.9
could actually hold. In a nutshell, we shall reduce it to some sophisticated form of
K-theory.

2.1. More on non-commutative motives. The first approach to understanding
the special role K-theory plays in this story is by studying the stable model category
Motlocdg , in which our fundamental invariant Eloc

fund takes values (which models the

triangulated category of non-commutative motives). Recall from Kontsevich [9, 10]
that a dg category A is called smooth if it is perfect as a bimodule over itself and
proper if every morphism complex A(x, y) is a perfect complex of R-modules. In
order to simplify the exposition we shall denote by the same letterA a dg category in
dgcat and its image U loc

dg (A) in Motlocdg . A remarkable fact about non-commutative
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motives is that the mapping spectrum in Motlocdg is given by non-connective K-
theory, at least in the smooth case :

2.1.1. Theorem ([4, Thm. 8.2]). Given dg categories A and B, with A smooth and
proper, there is a canonical stable weak equivalence of spectra

(2.1.2) MapMotlocdg
(A,B) ∼= K(Aop ⊗L B) ,

where Aop stands for the opposite dg category and Aop ⊗L B for the derived tensor
product in the homotopy category Ho(dgcat).

2.2. Revisiting the Mamma. In order to rephrase the Mamma Conjecture 1.4.9
we now recall a “folklore” conjecture [21] in non-commutative algebraic geometry,
which is wide open and of independent interest.

2.2.1. Conjecture (non-commutative resolution of singularities). For a given
base ring R, the triangulated category Ho(Motlocdg ) is generated by the smooth and
proper dg categories.

Intuitively speaking, every dg category can be “resolved” in Ho(Motlocdg ) by
smooth and proper ones.

2.2.2. Theorem. Assume non-commutative resolution of singularities for R (2.2.1).
Let G be a group and F be a family of subgroups (for instance F = VC the virtually
cyclic subgroups). Then the following conditions are equivalent :

(1) The fundamental localizing functor Eloc
fund : Or(G) → Motlocdg has the F-

assembly property for G.

(2) Every localizing invariant E : Or(G) → M has the F-assembly property
for G.

(3) The localizing invariant K(A⊗L R[ ? ])) : Or(G)→ Spt has the F-assembly
property for G, for every smooth and proper dg category A.

Proof. The implication (1) ⇒ (2) is the content of Corollary 1.4.8. Implication
(2) ⇒ (3) is clear. In order to prove the implication (3) ⇒ (1) one needs to show
that the (Eloc

fund,F , G)-assembly map (1.1.1)

(2.2.3) hocolim
Or(G,F)

Eloc
fund −→ Eloc

fund(G)

is an isomorphism in Ho(Motlocdg ). Since by hypothesis the triangulated category

Ho(Motlocdg ) is generated by the smooth and proper dg categories A, it suffices

to show that the image of (2.2.3) under the functors MapMotlocdg
(A,−) is a weak

equivalence of spectra. As explained in [4, Remark 3.2], every smooth and proper dg
category A is compact in Ho(Motlocdg ). This allows us to commute MapMotlocdg

(A,−)

with the homotopy colimit. On the other hand, Equation (2.1.2) together with the
definition of Eloc

fund give us that MapMotlocdg
(A,Eloc

fund(−)) ∼= K(Aop ⊗L R[ ? ])) and we

are reduced to precisely the content of (3), since Aop is smooth and proper exactly
when A is. �

2.2.4. Remark. Assume 2.2.1. Then Theorem 2.2.2 shows that the Mamma Con-
jecture is equivalent to the functors K(A ⊗L R[ ? ]) : Or(G) → Spt having the
VC-assembly property, for every smooth and proper dg category A. Among the
latter is A = R, in which case the functor in question is the one K(R[ ? ]) used
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by Davis and Lück in the reformulation of the Farrell-Jones Conjecture. Hence all
isomorphism conjectures for localizing invariants boil down to versions of the K-
theoretic Farrell-Jones Isomorphism Conjecture with “coefficients” in smooth and
proper dg categories A.

2.3. Additive version. Recall from [18, §15] that the notion of localizing functor
admits an additive analogue. These are the functors E : dgcat→M that preserve
filtered homotopy colimits and the final object and that map split short exact
sequences(

A //
I
// B

vv

P
// // C

)zz E7−→
(
E(A)⊕ E(C) ∼→ E(B)

)
to direct sums in Ho(M). As explained in loc. cit. every localizing functor is
additive but the converse is not true. Connective K-theory (K) is an example of
an additive functor which is not localizing. We have also the analogue universal
additive functor

Uadd
dg : dgcat −→Motadddg

which induces the fundamental additive invariant Eadd
fund : Or(G) → Motadddg by

precomposition with (1.2.2) as before. Using the universal property of Uadd
dg we

obtain also the additive analogues of Theorem 1.4.3 and Corollary 1.4.8. It is then
tempting, although probably too optimistic, to state an additive stronger version
of the Mamma Conjecture (1.4.9); see Remark 2.3.3 below.

An interest of this additive approach, is that the category Ho(Motadddg ) is gen-
erated by a class of homotopically finitely presented objects coming from dgcat,
more precisely the so-called strictly finite dg cells. In heuristic terms, they are the
dg-category analogues of finite CW-complexes. More precisely, these are the dg cat-
egories obtained out of ∅ by finitely many push-outs along ∅ → R and along the
following dg-analogues S(n− 1)→ D(n) of the topological inclusions Sn−1 ↪→ Dn :

S(n− 1)
ι(n)

// D(n)

•

R

��

Sn−1

��

� // •

R

��

Dn

��

incl //

•

R

DD
� // •

R

DD

where

Sn−1 incl // Dn

0 //

��
0

��
0 //

��

R
id��

R
id //

��

R

��

(degree n−1)

0 // 0

See more in [18, §15] and [4, §2.1]. The additive analogue of Theorem 2.1.1 has
then the following cleaner form, without smoothness assumptions :

2.3.1. Theorem ([18, Thm. 15.10]). Given dg categories A and B, with A a strictly
finite dg cell, there is a canonical stable weak equivalence of spectra

MapMotadddg
(A,B) ∼= K(repdg(A,B)) ,

where repdg(A,B) stands for the internal-Hom of the homotopy category Ho(dgcat)
and K is connective K-theory.
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Theorem 2.2.2 has the following additive version, which does not depend on
resolution of singularities :

2.3.2. Theorem. Let G be a group and F be a family of subgroups. Then the
following conditions are equivalent :

(1) The fundamental additive functor Eadd
fund has the F-assembly property for G.

(2) Every additive invariant E has the F-assembly property for G.

(3) The additive invariant K(repdg(A, [ ? ])) : Or(G)→ Spt has the F-assembly
property for G, for every strictly finite dg cell A.

Proof. The proof is similar to the one of Theorem 2.2.2. In the proof of (1)⇒ (2)
use the additive analogue of Corollary 1.4.8 and in the proof of (3) ⇒ (1) use
Theorem 2.3.1 instead of Theorem 2.1.1 and the fact that by construction ofMotadddg

the strictly finite dg cells form a set of compact generators of the homotopy category
Ho(Motadddg ); see [18, §15]. �

2.3.3. Remark. The F-assembly property for Eadd
fund has few chances to hold for

random choices of G, F and R. For instance, if F = VC this property would imply
the (K,VC,G)-isomorphism conjecture for R = Z and this is known to fail; see [14,
Rem. 15]. However, if R is a regular ring (i.e. noetherian and of finite projective
dimension) in which the orders of all finite subgroups of G are invertible, then this
obstruction vanishes because the (K,VC,G)-isomorphism conjecture follows from
the Farrell-Jones Conjecture ; see [14, Prop. 70]. A large class of examples is given
by taking R = Q or C and G arbitrary. Another large class of examples is given by
taking R = Z and G torsion-free.

2.3.4. Remark. The additive case just discussed in § 2.3 was the original focus in
the longer preprint form of our article, see [1], before we improved the results by
considering localizing invariants.
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