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Abstract. Let k be a field of characteristic p. Let G be a finite group of order

divisible by p and P a p-Sylow subgroup of G. We describe the kernel of the
restriction homomorphism T (G) → T (P ), for T (−) the group of endotrivial

representations. Our description involves functions G→ k× that we call weak

P -homomorphisms. These are generalizations to possibly non-normal P ≤ G
of the classical homomorphisms G/P → k× appearing in the normal case.

1. Introduction

Let k be a field of characteristic p > 0, not necessarily algebraically closed. Let
G be a finite group of order divisible by p. Although we are chiefly interested in the
restriction to the p-Sylow subgroup, we can equally well describe the case of any
subgroup H ≤ G whose index [G : H] is invertible in k, i.e. such that H contains a
p-Sylow subgroup of G. Consider the kernel of restriction

T (G,H) := Ker
(

ResGH : T (G)−→T (H)
)
.

where we denote by T (G) = Tk(G) the abelian group of endotrivial kG-modules.
(See Remark 3.2.) Equivalently, T (G,H) is the group of stable isomorphism classes
of those kG-modules whose restriction to H is isomorphic to the trivial representa-
tion k, up to projective summands (for such modules are necessarily endotrivial).

Endotrivial modules M are important for various reasons, the most obvious one
being that, by definition, the functor M ⊗ − provides an auto-equivalence on the
stable category kG - stab = kG -mod

kG - proj . But there are further reasons to study them,

as well as the larger class of so-called endopermutation modules, for instance as
Green sources of simple modules. We refer the reader to Thévenaz [16] for a survey
and more motivation. Let us simply indicate that the study of such modules has
played a major role in the development of modular representation theory over the
last decades. To borrow Alperin’s words [1], a “triumph in finite group theory” has
been their complete classification over p-groups, by work of Carlson-Thévenaz [7, 8]
for endotrivial modules and Bouc [2] for endopermutation modules.

With this triumphant classification in mind, the natural question for a general
group G becomes to compare T (G) to T (P ) for a p-Sylow subgroup P ≤ G. This
explains the importance of the kernel T (G,P ) in general. An extensive literature
has recently flourished around this question, see for instance [3, 4, 5, 6, 11, 12, 13,
15], usually with the objective of describing T (G,P ) for specific classes of groups
in very explicit terms (e.g. by generators and relations).
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The goal of the present paper is to give a description of this kernel T (G,H), valid
for all G and H, in purely elementary terms, notably not using stable categories,
nor representations, but essentially only the action of G by conjugation on the
lattice of its p-subgroups.

In case the subgroup HCG is normal, it is well-known that T (G,H) amounts to
one-dimensional representations of the quotient G/H, that is, to group homomor-
phisms G → k× which are trivial on H. (Note that these coincide with all group
homomorphisms G → k× if H is the Sylow subgroup, since k has no nontrivial
pth root of unity.) Our description of T (G,H) for arbitrary, not necessarily normal
H ≤ G involves a generalization of these homomorphisms, that we call “weak H-
homomorphisms” from G to k× (Definition 2.2). These are functions u : G → k×
which are constant on left and right H-cosets, which are trivial on H, and al-
most behave like group homomorphisms but not entirely. In fact, the relation
u(g2 g1) = u(g2)u(g1) only holds for some pairs g1, g2 of elements of G. The deep
reason why some of those relations are “lost” is that the stable category of the cor-
responding subgroup H ∩Hg1 ∩Hg2g1 vanishes. This happens exactly when that
subgroup has order prime to the characteristic p. We come back to this phenomenon
in Remark 4.11.

We shall construct explicit isomorphisms, in both directions, between the kernel
T (G,H) and the group A(G,H) of weak H-homomorphisms G→ k×.

It is high time we should give some precise definitions.

Beyond this introduction, the paper is organized as follows. In Section 2, we
introduce weak H-homomorphisms and state the main theorems. These results
are proved in Section 4 after recalling some basic modular representation theory in
Section 3. The final Section 5 gives a couple of little corollaries of our description
of T (G,H), e.g. about the possible orders of elements in that finite abelian group.

2. Weak H-homomorphisms and T (G,H)

Fix H ≤ G a subgroup of index prime to p, for instance a p-Sylow subgroup.
The following simple definition will be important throughout the paper.

2.1. Definition. We say that an element g ∈ G is H-secant if the order |H ∩Hg| is
divisible by p, where of course Hg = g−1Hg is the conjugate of H. In case H ≤ G
is a p-Sylow, an element g ∈ G is H-secant if and only if H ∩Hg is non-trivial.

2.2. Definition. Define a weak H-homomorphism from G to k×, to be a function
u : G→ k× satisfying the following three properties :

(WH1) For every h ∈ H, we have u(h) = 1.

(WH2) For every non-H-secant g (i.e. |H ∩Hg| prime to p), we have u(g) = 1.

(WH3) For every g1, g2 ∈ G such that |H ∩Hg1 ∩Hg2g1 | is divisible by p, we have

u(g2g1) = u(g2) · u(g1) .

We define A(G,H) to be the abelian group of weak H-homomorphisms from G
to k×, under element-wise multiplication : (u · v)(g) = u(g) · v(g) for every g ∈ G.

2.3. Examples. Here are two extreme cases, where T (G,H) is already well-known.
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(1) Suppose that H C G is normal. Then every g ∈ G is H-secant and every pair
g1, g2 ∈ G satisfies (WH 3). Hence A(G,H) is the group Hom(G/H,k×) of
group homomorphisms from the quotient G/H to k×.

(2) Suppose that H ≤ G is “strongly p-embedded”, meaning that for every g ∈ G
not in H the subgroup H ∩Hg has order prime to p. Then A(G,H) = 1 since
(WH 1) and (WH 2) cover all possible g ∈ G and force u(g) = 1 everywhere.

Interestingly, the same group A(G,H) is isomorphic to T (G,H) in general, not
only in those special cases. Let us explain how weak H-homomorphisms naturally
appear in our problem. For this, it is convenient to use the following notation.

2.4. Remark. Let g ∈ G and let L and K be subgroups of G such that gL ≤ K. We
can combine twisting the action and restriction to a subgroup to obtain a g-twisted
restriction functor gResKL : kK - mod−→ kL - mod. It is defined by gResM = M as
a k-vector space but with L acting via ` ·m := (g`)m for all ` ∈ L. On morphisms,
gResKL (f) = f as usual. It induces a functor gResKL : kK - stab−→ kL - stab on
stable categories.

Here is a first relation between A(G,H) and endotrivial kG-modules.

2.5. Construction. Let M be an endotrivial kG-module such that ResGHM ' k
in the stable category kH - stab, i.e. the isomorphism class [M ]' belongs to our

kernel T (G,H). Choose an isomorphism ξ : k ∼→ ResGHM in kH - stab. Then, for
every H-secant element g ∈ G, consider the following subgroup of H

(2.6) H(g) := H ∩Hg,

whose order is divisible by p by the assumption that g is H-secant. Consider the two
restrictions of M to H(g), namely the plain one ResGH(g)M and the g-twisted one
gResGH(g)M as in Remark 2.4. Note that m 7→ gm gives an H(g)-linear isomorphism

ResGH(g)M
∼→ gResGH(g)M , simply denoted “ g· ”. Note also that g(H(g)) ≤ H and

that gResHH(g)k = ResHH(g) k = k. Note finally that the group of automorphisms

of k in kH(g) - stab is exactly k×, via multiplication. This is where we use the
assumption that g is H-secant. Otherwise the stable category kH(g) - stab would
be trivial. So, there exists a unique scalar, that we call u(g) ∈ k×, which makes
the following diagram commute in kH(g) - stab :

(2.7)

ResGH(g) M
g·
'

// gResGH(g)M

k

ResHH(g) ξ '

OO

∃ ! u(g)
//________ k .

gResHH(g)ξ'

OO

We shall see that the scalar u(g) does not depend on the choice of ξ, nor on the
isomorphism class of M . Extending u to non-H-secant g by setting u(g) = 1, we
shall see that u : G→ k× is a weak H-homomorphism in the sense of Definition 2.2.
We denote this weak H-homomorphism u by υ(M).

This construction actually gives us everything :

2.8. Theorem. Construction 2.5 induces a well-defined isomorphism

υ : Ker
(
T (G)→ T (H)

) ∼−→ A(G,H).
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The proof is given in Section 4. This first construction explains how weak H-
homomorphisms enter the picture. Let us now give the announced homomorphism
A(G,H)−→T (G) more concretely. That is, let us describe what is the endotrivial
module corresponding to a weak H-homomorphism. This will yield an inverse to υ.

For g ∈ G, we denote by [g] the class gH of g in the quotient G/H. We shall
see that every weak H-homomorphism u : G→ k× is constant on H-classes hence
u([g]) := u(g) is well-defined on G/H. See Remark 4.2 (2).

2.9. Theorem. Consider the kG-module k(G/H) with usual left G-action on its
k-basis G/H. Let u : G→ k× be a weak H-homomorphism (Definition 2.2). Define
a map eu : k(G/H)→ k(G/H), depending on u, by the formula

(2.10) eu
(
[g]
)

=
1

[G : H]

∑
d ∈ G/H

u(d)−1 · g · d

for every [g] ∈ G/H, extended k-linearly as always. Then we have :

(i) The homomorphism eu : k(G/H) → k(G/H) is well-defined and kG-linear.
Moreover, it is an idempotent eu ◦ eu = eu in the stable category kG - stab.

(ii) Since the category kG - stab is idempotent complete (Remark 3.1), there exists
a unique decomposition k(G/H) ∼= Mu ⊕Nu in kG - stab, such that eu is the
projection on Mu along Nu; in other words, eu becomes ( 1 0

0 0 ) on Mu ⊕Nu.

(iii) The object Mu is endotrivial and its restriction to H is trivial.

(iv) The construction u 7→ [Mu]' described above yields a well-defined group ho-
momorphism A(G,H)−→T (G) which gives an isomorphism

α : A(G,H)
∼−→ Ker

(
T (G)→ T (H)

)
,

inverse to the isomorphism υ of Theorem 2.8.

This Theorem is proven simultaneously with Theorem 2.8, in Section 4.

2.11. Remark. We can try to reduce the amount of information involved in describ-
ing a weak H-homomorphism u : G→ k×. Here is an alternate formulation which
might be interesting for subgroups H ≤ G with small double quotient H\G/H .
First note that g ∈ G being H-secant is a well-defined property of the class of
g in G/H or even in H\G/H . Of course, we call such classes H-secant as well.
We already mentioned that u ∈ A(G,H) is constant on left and right H-cosets
(see Remark 4.2). It follows that we could describe our weak H-homomorphisms
u ∈ A(G,H) as functions u : H\G/H −→ k× such that u(H) = 1, u(c) = 1 if c is
not H-secant and u(c3) = u(c2) · u(c1) each time c1, c2 and c3 are the classes of
some elements g1, g2 and g2g1 for which H ∩Hg1 ∩Hg2g1 has order divisible by p.
The latter condition, however, seems to depend on the choice of gi ∈ ci for i = 1, 2.
This is why we prefer formulation (WH 3), to avoid confusion.

3. Basics

We recall some standard facts about modular representation theory of finite
groups and fix some notation. In this section, H ≤ G can be any subgroup, not
necessarily of index prime to p.

We denote by kG - mod the category of finitely generated left kG-modules and
by kG - stab = kG - mod /kG - proj the stable category obtained as the additive
quotient of the Frobenius abelian category kG - mod by its subcategory of projective
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(=injective) modules. See Happel [10] for details. It is a triangulated category but,
sadly enough, we shall not use this fact in this paper. The usual tensor product
of representations, M ⊗N = M ⊗k N with diagonal G-action, passes to the stable
category kG - stab.

3.1. Remark. An additive category is idempotent complete (a. k. a. karoubian or
pseudo-abelian) if every idempotent endomorphism e = e2 : A → A yields a de-
composition A = im(e) ⊕ ker(e), that is, a decomposition under which e becomes
( 1 0
0 0 ). Such decomposition is unique up to unique isomorphism.

The stable category kG - stab is idempotent complete. This fact is folklore,
e.g. since kG - stab coincides with the thick subcategory of compact objects in the
big stable category kG - Stab of all, not necessarily finitely generated, kG-modules
modulo projectives and since kG - Stab has infinite coproducts hence is idempotent
complete (use [14, Prop. 1.6.8]).

Alternatively, one can sketch a direct proof as follows. Let M be a finitely
generated kG-module that we can assume without projective summand. The latter
assumption implies that any endomorphism of M which vanishes in kG - stab is
nilpotent (using nilpotence of the Jacobson radical). Hence, if e : M → M is an
endomorphism in kG - mod such that e2 = e in kG - stab, then h = e2−e is nilpotent
in kG - mod. The usual lifting of idempotents modulo nilpotents yields a correction
ẽ of e such that ẽ2 = ẽ in kG - mod already, with the same ẽ = e in kG - stab. (By
induction, reduce to the case h2 = 0 and verify that ẽ = e+h− 2 eh will do in that
case; note that eh = he.) Then we have M = im(ẽ)⊕ ker(ẽ) in kG - mod, inducing
the wanted decomposition in kG - stab.

3.2. Remark. Recall that a kG-module M is endotrivial if M is ⊗-invertible M ⊗
M∗ ' 1 in the stable category kG - stab, or, in eponymic terms, if its module of
endomorphisms is the trivial kG-module, up to projective : Endk(M) ' k⊕ (proj).
Being endotrivial can be tested on the elementary abelian p-subgroups of G by
Chouinard’s Theorem [9]. In particular, it suffices that ResGP M be endotrivial on
the p-Sylow P ≤ G or any subgroup in between P ≤ H ≤ G. (See also Remark 3.4.)

3.3. Notation. For a subgroup H ≤ G, we denote the class gH ∈ G/H by [g]H or
just [g] when H is obvious from the context. Here, k(G/H) will always be a left
kG-module via g · [x] = [gx]. We have the usual restriction-induction adjunction

ResGH : kG - stab� kH - stab : IndGH = kG⊗kH −

whose unit ηM : M → kG⊗kH M is given by m 7→
∑

[g]∈G/H g ⊗ g−1m.

3.4. Remark. Assume that a subgroup H ≤ G has index [G :H] prime to p. Then

the above unit η : Id → IndGH ResGH has a retraction π : IndGH ResGH → Id, namely
πM : kG ⊗kH M → M defined by g ⊗m 7→ 1

[G:H] gm. It follows that the functor

ResGH : kG - stab→ kH - stab is faithful. Indeed, if Res(f) = 0 then f = π ◦ η ◦ f =
π ◦ Ind Res(f) ◦ η = 0 by naturality of η. (Of course, Res is usually not full.) Then

ResGH : kG - stab → kH - stab detects vanishing of objects. Applying this property
with the cone (cokernel) of the obvious morphism k → Endk(M) ∼= M ⊗M∗, we

see that if ResGH(M) is ⊗-invertible then so is M . Hence the functor ResGH detects
endotriviality, as already mentioned. More generally, applying faithfulness to the
cone of any morphism in kG - stab shows that ResGH detects isomorphisms.



6 PAUL BALMER

3.5. Remark (Mackey formulas). Let K,L ≤ H be two subgroups of the same
group H. We shall use a couple of Mackey bijections between some left K-sets and
some Mackey isomorphisms between left kK-modules. We therefore recall them
together beforehand. Let T ⊂ H be a set of representatives of K\H/L. For every
t ∈ T , consider the morphism of left H-sets

mackt : H/ tL−→H/L defined by mackt
(
[h ]tL

)
= [ht ]L .

One instance of the Mackey formula tells us that the map obtained by restricting
these maps to the subsets K/(K∩tL) of H/ tL and taking their coproduct over t ∈ T
yields a bijection of left K-sets :

(3.6) mack :
∐
t∈T

K/(K ∩ tL)
∼−→ H/L , [k]K∩tL 7−→ mackt([k]) = [kt]L .

Similarly, for every kL-module N , there is a Mackey isomorphism of kK-modules,⊕
t∈T

IndKK∩tL
t−1

ResLK∩tLN
∼−→ ResHK IndHL (N), still denoted mack and given by

(3.7)
mack :

⊕
t∈T

kK ⊗k(K∩tL) N
' // kH ⊗kL N

x⊗ y � // xt⊗ y .

Recall from Remark 2.4 that by definition of the twisted restriction t−1

ResLK∩tLN ,

each subgroup K∩tL acts on the corresponding factor N appearing on the left-hand
side of (3.7) via k · n = kt n, observing that kt ∈ L for every k ∈ K ∩ tL.

Let H be a finite group H, let X be a left H-set and let x ∈ X. Then we denote
by Hx =

{
h ∈ H

∣∣hx = x
}

the stabilizer of x in H. The following result will be
essential for our computations in stable categories.

3.8. Lemma. Let H be a finite group and let X,Y be two finite left H-sets. Let
f : kX → kY be a kH-linear homomorphism. It is given by scalars ax,y ∈ k indexed
by x ∈ X and y ∈ Y such that f(x) =

∑
y∈Y ax,y y for every x ∈ X.

If ax,y = 0 for every x ∈ X and y ∈ Y such that p divides |Hx ∩ Hy| then the
morphism f is zero in kH - stab, i.e. it factors via a projective kH-module.

Proof. The kH-linearity of f gives us for every h ∈ H, x ∈ X and y ∈ Y that

(3.9) ahx,hy = ax,y .

Now, consider the diagonal action of H on X × Y and note that the property that
|Hx∩Hy| is prime to p is constant on the H-orbit of (x, y) ∈ X×Y . Let S ⊂ X×Y
be a set of representatives of only those H-orbits in X × Y on which |Hx ∩Hy| is

prime to p. Consider the free kH-module IndH1 ResH1 (kY ) = kH ⊗k kY (that is
with H-action only on the left factor) and the morphisms f1 and f2 as follows :

x ∈ X_

��

kX
f

''PPPPPPPPPPPPPP

f1
��

∑
h∈H

∑
(x0,y0)∈S
s.t. x=hx0

|Hx0
∩Hy0 |−1 ax0,y0 · h⊗ y0 kH ⊗k kY

f2
// kY

h⊗ y � // h y .



REPRESENTATIONS WITH TRIVIAL RESTRICTION TO THE SYLOW 7

The kH-linearity of f2 is immediate and that of f1 is easy by a standard change of
variables on the summation index h ∈ H. It now suffices to check that f2 ◦ f1 = f .
Let x ∈ X and let bx,y ∈ k for all y ∈ Y be such that f2 ◦ f1(x) =

∑
y∈Y bx,y y. By

the above construction, we have

bx,y =
∑
h ∈ H

∑
(x0, y0) ∈ S

x = hx0 and y = h y0

|Hx0
∩Hy0 |−1 ax0,y0 .

We want to prove that bx,y = ax,y for all y ∈ Y . If p divides |Hx ∩Hy|, there is no
(x0, y0) ∈ S with (x, y) = (hx0 , h y0) by choice of S, hence the above summation
is empty in that case and we get bx,y = 0 which coincides with ax,y by hypothesis.
Now, suppose that |Hx ∩ Hy| is prime to p, then the index (x0, y0) ∈ S of the
above sum is unique. However, there are many h ∈ H with the property that
(hx0, h y0) = (x, y), namely there are |Hx0 ∩Hy0 | of them. In that case, we obtain
bx,y = ax0,y0 but the latter is also equal to ax,y by (3.9) since (x, y) = (hx0, hy0). �

4. Proof of the Theorems

As in Section 2, H ≤ G is a subgroup of index prime to p. Let us denote this
index by n := [G :H] for short. So, 1

n exists in our field k. Recall that g ∈ G is
H-secant if p divides the order of H(g) := H ∩Hg.

It might be reassuring to start with the following.

4.1. Example. Let u ≡ 1 be the trivial weak H-homomorphism from G to k×.
Then, under the identification k(G/H) ∼= IndGH ResGH(k) = kG ⊗kH k, given by
[g] 7→ g ⊗ 1, the endomorphism eu of k(G/H), see (2.10), coincides with the idem-
potent η k ◦ πk of Ind Res(k), see Remark 3.4. Indeed, for every g ∈ G, we have
e1([g]) = 1

n

∑
d∈G/H gd = 1

n

∑
d′∈G/H d

′ = η k( 1
n ) = η k(πk([g])). So this idempo-

tent corresponds to the trivial module k appearing as a direct summands of k(G/H)
via η k.

4.2. Remarks. Let u : G → k× be a weak H-homomorphism (Definition 2.2). We
shall repeatedly use the following facts, often without mention.

(1) We have u(g−1) = u(g)−1 for every g ∈ G. Indeed, by (WH 2), we can assume
that g, or equivalently g−1, is H-secant. Then 1 = u(1) = u(g−1)u(g) follows
by (WH 1) and (WH 3) since p divides |H ∩Hg ∩H1|.

(2) For every g ∈ G and h ∈ H, we have u(hg) = u(g) = u(gh). To see this, note
that g, hg and gh are simultaneously H-secant. By (WH 2), we can assume
that they are all H-secant. In that case, the groups H ∩Hg ∩Hhg = H ∩Hg

and H∩Hh∩Hgh = H∩Hgh have order divisible by p, and the relations follow
from (WH 3) and the fact that u(h) = 1 by (WH 1).

4.3. Proposition. Let u : G → k× be a weak H-homomorphism (Definition 2.2).
Then the endomorphism eu : k(G/H) → k(G/H) given in (2.10) is well-defined
and kG-linear.

Proof. Let g ∈ G and consider the well-defined element

eu(g) =
1

n

∑
d∈G/H

u(d)−1 · g · d
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in k(G/H), as in (2.10). We want to show that eu(g) = eu(gh) for every h ∈ H :

eu(gh) =
1

n

∑
d∈G/H

u(d)−1 g h d =
1

n

∑
d′ ∈G/H

u(d′)−1 g d′ = eu(g)

using the change of variables d′ = h d on G/H which preserves the value of the scalar
u(d′) = u(hd) = u(d) by Remark 4.2 (2). Hence, eu(g) only depends on [g]H ∈
G/H, which means that eu is well-defined. It is clearly kG-linear by definition of
the action of G on G/H, which appears on the left of g (and of course commutes
with the scalar u(d)−1 ∈ k). �

4.4. Main Lemma. Let u ∈ A(G,H) and u : ResGH(k(G/H)) → k its k-linear
extension, i.e. mapping every basis element c ∈ G/H to u(c). It is kH-linear.

Consider the kH-linear homomorphism w : k→ ResGH(k(G/H)) given by

(4.5) w(1) =
1

n

∑
d∈G/H

u(d)−1 · d .

Then we have u ◦ w = idk and w ◦ u = ResGH(eu) in kH - stab.

Proof. It is easy to verify that both u and w are indeed kH-linear (see Remark 4.2 (2)
if necessary). Let us also observe right away that u ◦ w = idk :

u(w(1)) =
1

n

∑
d∈G/H

u(d)−1 · u(d) =
|G/H|
n

= 1 .

So, let us prove that w ◦ u = eu in kH - stab. We are going to use Lemma 3.8 for
the left H-set X = Y = G/H = ResGH(G/H) and the morphism f = w ◦ u − eu :
kX → kY , which we claim is zero in kH - stab. For every x ∈ G/H, we have

w ◦ u (x) =
1

n

∑
y∈Y

u(x)u(y)−1 · y .

On the other hand, let us choose g1 ∈ G such that x = [g−11 ]H . Then we have

eu(x) =
1

n

∑
d∈G/H

u(d)−1 · g−11 · d =
1

n

∑
y∈Y

u(g1 y)−1 · y

using the change of variables d = g1 y on Y = G/H. By Lemma 3.8, in the above
expressions for w◦u(x) and eu(x), it suffices to identify the coefficients of only those
y ∈ Y such that p divides |Hx ∩Hy|. But here the stabilizers are Hx = H ∩ xH and
Hy = H ∩ yH. So we can assume that y ∈ Y is such that p divides |H ∩ xH ∩ yH|.
Choose g2 ∈ G be such that [g−12 ]H = g1 y. Note that then [(g2g1)−1]H = y. Since
p divides |H ∩ xH ∩ yH| = |H ∩Hg1 ∩Hg2g1 |, property (WH 3) of u together with
Remark 4.2 give us

u(y)−1 = u(g2g1) = u(g2)u(g1) = u(g1y)−1u(x)−1

hence the wanted u(x)u(y)−1 = u(g1 y)−1. �

4.6. Proposition. For every weak H-homomorphism u : G → k×, we have an
idempotent eu ◦ eu = eu on the object k(G/H) of kG - stab. Moreover, the cor-
responding direct summand Mu of k(G/H) restricts to k on kH - stab, that is

ResGH(Mu) ' k. Finally Mu is an endotrivial kG-module.
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Proof. Since the functor ResGH : kG - stab → kH - stab is faithful (Remark 3.4), it
suffices to verify (Res(eu))2 = Res(eu) in kH - stab, where it follows directly from
our Main Lemma 4.4 since Res(eu) = w ◦ u and u ◦ w = idk in kH - stab :

k � �

w
//u◦w=id 66 k(G/H)

u
xxxx

w◦u=eubb

The direct summand of the object ResGH(k(G/H)) = k(G/H) of kH - stab corre-
sponding to the idempotent w ◦ u is simply k. This proves the second claim (see

Remark 3.1). Finally, ResGH being faithful, it detects endotriviality by Remark 3.4
(or Chouinard’s Theorem [9]). So, Mu is an endotrivial kG-module. �

4.7. Remark. Here is another approach to the idempotent eu. By (WH 2), the value
u(g) is only interesting when g ∈ G is H-secant. Similarly, the only g1, g2 satisfying
the hypothesis of (WH 3) must be H-secant, and so must be g2g1 (easy exercise).
Continuing in this vein, we can use Lemma 3.8 and Remark 3.4 to show that the
endomorphism eu of k(G/H) is equal in kG - stab to

[g]H 7→
1

[G : H]

∑
d ∈ G/H
H-secant

u(d)−1 · g · d .

This formula makes it apparent that only the values u(d) forH-secant d are relevant.

We now turn to the other side of the game, namely the construction of the
homomorphism υ : T (G,H)→ A(G,H).

4.8. Remark. For g ∈ G and subgroups K,L ≤ G such that gL ≤ K, recall the
twisted restriction gResKL : kK - stab→ kL - stab as in Remark 2.4. When g1L ≤ K
and g2K ≤ H then g2g1L ≤ H and it is easy to check that we have an equality of
functors g2g1ResHL = g1ResKL ◦

g2ResHK . (Watch the order of the gi!) The latter
equality will often be used tacitly in the sequel.

Recall Construction 2.5, which associates a function u : G → k× to every kG-
module M coming with an isomorphism ξ : k ∼→ ResGH M in kH - stab. For
convenience, we repeat diagram (2.7) whose commutativity defines u(g) for every
H-secant g ∈ G (recall that H(g) stands for H ∩Hg) :

(4.9)

ResGH(g) M
g·
'

// gResGH(g)M

k

ResHH(g) ξ '

OO

u(g)
// k

gResHH(g)ξ'

OO

For non-H-secant g ∈ G, we defined u(g) = 1. Note however that (4.9) also trivially
commutes in that case since kH(g) - stab = 0 for non-H-secant g.

4.10. Lemma. The scalar u(g) as in (4.9) does not depend on the choice of the
isomorphism ξ. Moreover, u : G→ k× is a weak H-homomorphism.

Proof. For the first part, we can assume that g is H-secant, for otherwise u(g) = 1

anyway. Let ξ′ : k ∼→ ResGH(M) be another isomorphism and u′(g) the associated



10 PAUL BALMER

scalar, i.e. u′(g) =
(
gRes(ξ′)

)−1 ◦ (g·) ◦ Res(ξ′). Then ξ−1ξ′ : k ∼→ k is an auto-
morphism of k in kH - stab, hence it is given by an invertible scalar v ∈ k×. So, we
have ξ′ = v · ξ = ξ · v. Hence v and v−1 cancel out in u′(g) giving u′(g) = u(g).

Let us now check that u is a weak H-homomorphism as in Definition 2.2. To
check (WH 1), it suffices to use that ξ is H-linear and that k has trivial action.
Indeed, for every h ∈ H (necessarily H-secant) we have a commutative square

ResGH(h) M
h·
'

// HResGH(h)M

k

ResHH(h) ξ '

OO

h·
=id

// k .

hResHH(h)ξ'

OO

This proves u(h) = 1. Property (WH 2) holds by construction. Let us ver-
ify (WH 3). Suppose that g1 and g2 are such that the subgroup L := H∩Hg1∩Hg2g1

has order divisible by p. This means that kL - stab is not the zero category and en-
domorphisms of k in that category identify with k (under multiplication, as usual).
Consider the following commutative diagram in kL - stab :

ResGL M
g1·
'

//
gf ed

(g2g1)·
'

��
g1ResGLM

g2·
'

// g2g1ResGLM

k

ResHL ξ '

OO

u(g1)

' //`a bc
u(g2g1)

'

OOk

g1ResHL ξ '

OO

u(g2)

' // k .

g2g1ResHL ξ'

OO

The left-hand central square commutes by (4.9) for g1, restricted to L. The right-

hand one commutes by (4.9) for g2 after applying g1Res
H(g2)
L to it, using that

g1L ≤ H ∩ Hg2 = H(g2) and the relation g2g1ResHL = g1Res
H(g2)
L ◦ g2ResHH(g2)

already seen in Remark 4.8. The outside square commutes by (4.9) again but now
for g2 g1. Hence the lower “triangle” gives us u(g2g1) = u(g2)u(g1) as wanted. �

4.11. Remark. In the above proof, it is essential that L = H∩Hg1∩Hg2g1 has order
divisible by p to deduce from the relation u(g2g1) = u(g2)u(g1) in EndkL - stab(k)
that the same relation holds in k. When L has order prime to p this stable endo-
morphism ring is trivial and k → EndkL - stab(k) is not injective. This is why the
“homomorphism property of u”, u(g2g1) = u(g2)u(g1), does not hold for general g1
and g2 and why we are left with weak homomorphisms as in Definition 2.2 (WH 3).

4.12. Proposition. The assignment M 7→ u as in Construction 2.5 yields a well-
defined group homomorphism υ : T (G,H)−→A(G,H).

Proof. Suppose that M ′ is isomorphic to M in kG - stab and let u = υ(M) and
u′ = υ(M ′). For g non-H-secant, we have u(g) = 1 = u′(g) by definition. So, let
g ∈ G be H-secant. There exists a kG-linear morphism f : M →M ′ such that f is
an isomorphism in kG - stab, hence also in kH - stab after restriction. We can then
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create the following commutative cube in kH(g) - stab :

ResGH(g) M
g·
'

//

Res(f)=f

'

((PPPPPPPPPPPP
gResGH(g)M

gRes(f)=f
'

((QQQQQQQQQQQQ

ResGH(g) M
′ g·

'
// gResGH(g)M

′

k

ResHH(g) ξ '

OO

u(g) //

SSSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSSS k

gResHH(g)ξ
'

OO

SSSSSSSSSSSSSSSSSS

SSSSSSSSSSSSSSSSSS

k

ResHH(g) ξ
′'

OO

u′(g)

// k

gResHH(g)ξ
′'

OO

whose back and front squares are (4.9) for M and M ′ respectively. To com-

pute u′(g), we choose ξ′ : k ∼→ ResGH M ′ in kH - stab to be Res(f) ◦ ξ, which
is allowed by Lemma 4.10. This makes the side squares commute. The top square
commutes by kG-linearity of f . Hence the bottom square commutes, which shows
that u is independent of the isomorphism class of M in kG - stab.

Finally, for i = 1, 2, let Mi be a kG-module, let ξi : k ∼→ ResGH Mi be an
isomorphism in kH - stab and let ui := υ(Mi). To compute υ(M1⊗M2), we can use

the isomorphism ξ1⊗ξ2 : k ∼→ ResGH(M1⊗M2) in kH - stab. Again, we can assume
that g ∈ G is H-secant. Tensoring the two commutative squares (4.9) defining
u1(g) and u2(g), we get the following commutative diagram in kH(g) - stab :

ResGH(g) M1 ⊗M2
(g·)⊗(g·)
'

// gResGH(g)M1 ⊗M2

k

ResHH(g) ξ1⊗ξ2 '

OO

u1(g)·u2(g)
// k .

gResHH(g)ξ1⊗ξ2'

OO

Now observe that the multiplication g· on the kG-module M1 ⊗M2 → M1 ⊗M2

is precisely given by m1 ⊗ m2 7→ (gm1) ⊗ (gm2). So, it coincides with the top
morphism in the above square. Hence u1(g) ·u2(g) must be equal to υ(M1⊗M2) (g)
by (4.9) again, but this time applied to M1 ⊗M2. �

We now need a small result, which palliates the lack of multiplicativity of weak
H-homomorphisms.

4.13. Lemma. Let u : G→ k× be a weak H-homomorphism. Let g ∈ G be H-secant
and let s ∈ G. Let us abbreviate H(g, s) := H ∩Hg ∩ sH. Then, in k

[H(g) : H(g, s)] · u(gs) = [H(g) : H(g, s)] · u(g) · u(s) .

Proof. The result is trivial if p divides the number [H(g) : H(g, s)] which appears
on both sides. So, we can assume that p does not divide that index. But since
g is H-secant, p divides |H(g)|. These two facts force p to divide |H(g, s)| =

|H ∩Hg ∩Hs−1 | = |Hs ∩Hgs ∩H|. Hence, by (WH 3), for g2 = g and g1 = s, we
have u(gs) = u(g) · u(s) and the result also holds in that case. �

4.14. Proposition. Let u : G → k× be a weak H-homomorphism and Mu the
associated endotrivial kG-module, as in Proposition 4.6. Then υ(Mu) = u.
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Proof. By construction of Mu , there exist a kG-module Nu and a kG-linear homo-
morphism f : Mu ⊕Nu → k(G/H) which is an isomorphism in kG - stab and such
that the idempotent eu on k(G/H) becomes ( 1 0

0 0 ) on Mu ⊕Nu, again in kG - stab.
After restriction to H, we also know that the idempotent eu corresponds to the
direct summand k embedding in Res(k(G/H)) via w : k → k(G/H), as in (4.5).
Since such a decomposition is unique (Remark 3.1), we can choose an isomorphism

ξ : k ∼→ ResGH(Mu) in kH - stab such that the following diagram commutes :

k
ξ
'

//

w
��

ResGH(Mu)
�� 1

0


��

ResGH(k(G/H)) ResGH(Mu)⊕ ResGH(Nu)
Res f

'
oo

in kH - stab. For every H-secant g ∈ G, consider the following commutative dia-
gram in kH(g) - stab :

ResGH(g) k(G/H)
g·
'

// gResGH(g) k(G/H)

ResGH(g) (Mu ⊕Nu)
g·
'

//

Res f '

OO

gResGH(g) (Mu ⊕Nu)

gResf '

OO

ResGH(g) Mu
g·
'

//

( 1
0 )

OO

gResGH(g)Mu

( 1
0 )

OO

k

ResHH(g) ξ

OO

ResHH(g) w

;;

(υ(Mu))(g)
// k

gResHH(g)ξ

OO

gResHH(g)w

cc

where the unit (υ(Mu))(g) at the bottom is the one of Construction 2.5 associated
to Mu, which makes the lower square commute. The middle and upper squares
commute by kG-linearity of the decomposition k(G/H) ' Mu ⊕ Nu. Finally, the
two lateral pieces commute by the above discussion. By Lemma 4.4, the morphism
w on the very right is retracted by u : k(G/H) → k. So, in order to check that
υ(Mu)(g) is indeed our u(g), it suffices to establish the following equality in k :

gResHH(g)(u) ◦ (g·) ◦ ResHH(g)(w)(1) = u(g).

Unfolding the definition of w from (4.5), the above left-hand side becomes

u
(
g · w(1)) =

1

n

∑
d∈G/H

u(d)−1u(g d) .

Let us use a Mackey formula. Let S ⊂ G be a set of representatives of H(g)\G/H
and recall the Mackey bijection (3.6) of left H(g)-sets

(4.15)
∐
s∈S

H(g)/H(g, s)
∼→ G/H
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given by [x]H(g,s) 7→ [xs]H where H(g, s) := H(g) ∩ sH = H ∩Hg ∩ sH. Using this
change of variables d = [xs]H in the above sum, we get

u
(
g · w(1)) =

1

n

∑
s∈S

∑
[x]∈H(g)/H(g,s)

u(s)−1 · u(gxs) since x ∈ H

=
1

n

∑
s∈S

u(s)−1 ·
∑

[x]∈H(g)/H(g,s)

u(gs) for gxs = gxgs and gx ∈ H

=
1

n

∑
s∈S

u(s)−1 · [H(g) : H(g, s)] · u(gs)

=
1

n

∑
s∈S

[H(g) : H(g, s)] · u(g) by Lemma 4.13

=
1

n
· |G/H| · u(g) = u(g) .

The penultimate equality uses again the same Mackey bijection (4.15). �

4.16. Proposition. Let M be an endotrivial kG-module in T (G,H). Suppose that
υ(M) = 1 in A(G,H). Then M ' k in kG - stab.

Proof. Let ξ : k→ ResGHM be a kH-linear homomorphism which is an isomorphism
in kH - stab. The assumption about υ(M) = 1 implies that for every H-secant
element g ∈ G, the following diagram commutes in kH(g) - stab :

(4.17)

ResGH(g) M
g·
'

// gResGH(g)M

k
ResHH(g) ξ

'
ddHHHHHHHHH gResHH(g)ξ

'
::uuuuuuuuu

On the other hand, if g is not H-secant, the same diagram trivially commutes in
kH(g) - stab = 0. Therefore, diagram (4.17) commutes in kH(g) - stab for all g ∈ G.

Let us now define a kG-linear homomorphism ξ̂ : k→M by the composition

k η k
//

GF ED
ξ̂ := πM ◦ IndGH(ξ) ◦ η k

��
IndGH k

IndGH(ξ)

' // IndGH ResGHM πM
// M

where η : Id → Ind Res is the unit of the adjunction and π : Ind Res → Id is

the retraction of η described in Remark 3.4. We claim that ξ̂ is an isomorphism

in kG - stab. By Remark 3.4, it suffices to see that its restriction ResGH(ξ̂) is an

isomorphism in kH - stab. We claim more precisely that ResGH(ξ̂) = ξ in kH - stab.
This is not a mere property of the adjunction but will require (4.17) above. Applying

ResGH to the last diagram, we get the upper part of the following commutative
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diagram in kH - stab :

k
Res ηk

//
GF ED

Res ξ̂

��

η′
&&

ResGH IndGH k
Res Ind(ξ)

' // ResGH IndGH ResGHM ResπM

// ResM

⊕
t∈T

IndHH∩tH k

'mack

OO

⊕t Ind t
−1

Res(ξ)
'

//
⊕
t∈T

IndHH∩tH
t−1

ResGH∩tHM

'mack

OO

in which the lower part is constructed as follows. The vertical isomorphisms

mack :
⊕
t∈T

IndHH∩tH
t−1

ResHH∩tH −→ResGH IndGH are Mackey isomorphisms (3.7), for

any choice of a set T ⊂ G of representatives of H\G/H . Explicitly, the component
mack : kH ⊗k(H∩tH) N → kG⊗kH N is given by mack(x⊗ y) = (xt)⊗ y. They are

applied to the kH-modules N = k and N = ResGHM respectively. Finally, η′ : k→
⊕t∈T IndHH∩tH k = ⊕t∈T kH⊗k(H∩tH)k is defined by 1 7→

∑
t∈T

∑
x∈H/(H∩tH) x⊗1,

that is η′ = mack−1 ◦Res(η k). Hence the left-hand triangle commutes.
In each term of the bottom morphism, we can use (4.17) and replace every

t−1

Res(ξ) by (t−1·) ◦ Res(ξ), since that relation holds in k(H ∩ tH) - stab and can

then be induced to H. Therefore, in kH - stab, the morphism Res(ξ̂) is equal to

Res(πM ) ◦mack ◦
(
⊕t Ind((t−1·) ◦ Res(ξ))

)
◦ η′.

We claim that the latter composition is simply ξ in kH - mod already. We compute
the image of 1 ∈ k under this morphism and get in M the equalities

Res(πM ) ◦mack ◦
(
⊕t Ind((t−1·) ◦ Res(ξ))

)
◦ η′(1) =

=
1

n

∑
t∈T

∑
[x]∈H/(H∩tH)

xt · t−1 · ξ(1) unfolding the definitions

=
1

n

∑
t∈T

∑
[x]∈H/(H∩tH)

ξ(x · 1) by H-linearity of ξ

=
1

n

∑
t∈T

∑
[x]∈H/(H∩tH)

ξ(1) for the module k is trivial

=
1

n

(∑
t∈T
|H/(H ∩ tH)|

)
· ξ(1) =

|G/H|
n

ξ(1) = ξ(1).

The penultimate equality uses again the same Mackey bijection (3.6). �

Everything is now in place to wrap it up :

Proof of Theorems 2.8 and 2.9. We have the well-defined maps α : A(G,H) →
T (G,P ) of Proposition 4.6 and υ : T (G,P )→ A(G,H) of Proposition 4.12, where
we also saw that υ is a group homomorphism. Proposition 4.14 tells us that υ ◦ α
is the identity, hence υ is surjective. Proposition 4.16 shows that υ is injective. �

4.18. Remark. It follows that α is a group homomorphism, which was not obvious
from its definition.

We also have naturality with respect to restriction to subgroups :
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4.19. Proposition. Let H ≤ G′ ≤ G be an intermediate subgroup. Then every weak
H-homomorphism from G to k× restricts to a weak H-homomorphism from G′

to k×. The induced homomorphism A(G,H) → A(G′, H) is compatible with the

restriction ResGG′ : T (G,H)→ T (G′, H), via the isomorphisms υ and α.

Proof. The properties that p divides |H ∩Hg| or |H ∩Hg1 ∩Hg2g1 | are unchanged
if we consider elements g, g1, g2 ∈ G′ as elements of G. Consequently the restriction
of u : G→ k× to G′ will satisfy conditions (WH 1-3) for G′. So, ResGG′ : A(G,H)→
A(G′, H) is well-defined. It is easy to check that the following diagram commutes

T (G,H)
υ //

ResG
G′

��

A(G,H)

ResG
G′

��
T (G′, H)

υ // A(G′, H)

since we can use the same isomorphism ξ : k ∼→ ResGH(M) = ResG
′

H (M ′) in

kH - stab, for M and for M ′ := ResGG′(M). It follows that α = υ−1 is also compat-
ible with restriction, although this was maybe less obvious a priori. �

Let us finish with the two extreme cases of Example 2.3.

4.20. Example. Suppose thatHCG is a normal subgroup. Then every element g ∈ G
is H-secant and we observed in Example 2.3 (1) that A(G,H) ∼= Hom(G/H,k×).
Given ρ ∈ Hom(G/H,k×), let us write kρ for the one-dimensional representation
g · x = ρ([g])x of G. It clearly belongs to T (G,H). The associated weak H-
homomorphism u = υ(kρ) of Construction (2.5) is characterized by Diagram (2.7)
for M = k and ξ = id, from which it follows that u(g) = ρ(g). In other words,
υ(kρ) = ρ, as one would of course expect. It also follows that α(ρ) = kρ, i.e. Mρ is
isomorphic to kρ in the stable category kG - stab. This last fact is less evident but
can also be checked directly from the definition of Mρ with the idempotent eρ.

4.21. Example. Suppose that H ≤ G is strongly p-embedded, as in Example 2.3 (2),
where we saw that A(G,H) = 1. Then T (G,H) = 1. This is a well-known fact,
which trivially follows from the underlying property that the restriction functor
ResGH : kG - stab

∼→ kH - stab is an equivalence of tensor categories in that case.

5. Some Corollaries

The following corollary is known in case Op(G) 6= 1, by [13, Lemma 2.6].

5.1. Corollary. Let H ≤ G be a subgroup of index prime to p. Suppose that H
contains some subgroup K CG, normal in G and of order divisible by p. Then the
kernel Ker

(
T (G) → T (H)

)
consists only of one-dimensional representations, i.e.

it is isomorphic to
{
ρ ∈ Homgps(G,k×)

∣∣ ρ(H) = 1
}

.

Proof. For all g1, g2 ∈ G, the subgroup H ∩Hg1 ∩Hg2g1 contains K, hence (WH 3)
holds. So every weak H-homomorphism u : G→ k× is a group homomorphism. �

5.2. Remark. It is well-known that the abelian group T (G,H) is finite. Indeed,
every M ∈ T (G,H) appears as a direct summand of k(G/H) (see Theorem 2.9)
and finiteness follows by the Krull-Schmidt Theorem. This gives an upper bound
|T (G,H)| ≤ [G : H]. So, T (G,H) is a torsion abelian group and we can discuss the
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order of its elements. The following observation can be deduced from combining [13,
Lemma 2.6] and [4, Prop. 2.6]. Our proof is direct.

5.3. Corollary. Let H ≤ G be a subgroup of index prime to p. Then there is no p-
torsion in Ker

(
T (G)→ T (H)

)
. That is, if M is a kG-module such that M⊗p ' k

in kG - stab and ResGH(M) ' k in kH - stab then M ' k in kG - stab already.

Proof. Let u : G → k× be a weak H-homomorphism such that up = 1. Since the
field k has characteristic p, the relation u(g)p = 1 forces u(g) = 1 for all g ∈ G. �

5.4. Remark. Actually, the orders of elements of T (G,H) are related to the coeffi-
cient field k. So, let us write Tk(G,H) and Ak(G,H) when we want to emphasize
the choice of k. As in Proposition 4.19, we can show that υ : Tk(G,H)→ Ak(G,H)
and α : Ak(G,H)→ Tk(G,H) are natural in k.

Interestingly, for a p-group P , the group Tk(P ) almost never depends on the
field k, except sometimes in characteristic 2, with quaternion groups. See [16, § 2].
As we shall now see, the kernel Tk(G,P ) does depend on k, although in a nice way.

5.5. Corollary. Let H ≤ G be a subgroup of index prime to p.

(a) For every field extension k′/k, the homomorphism Tk(G,H) → Tk′(G,H) is
injective. Moreover, an element M ∈ Tk′(G,H) of order d belongs to the im-
age of this homomorphism (i.e. is defined over k) if and only if k admits a
primitive d th root of unity.

(b) Let k′/k be a field extension and suppose that for every d ≤ [G : H], every d th

root of unity in k′ already belongs to k, e.g. if k and k′ are both algebraically
closed. Then Tk(G,H) = Tk′(G,H).

(c) Let q be a power of p and let k be a field containing the finite field Fq. An
element M ∈ Tk(G,H) of order d is defined over Fq if and only d divides q− 1.

Proof. All these properties are easy to verify for Ak(G,H), hence can be transported
to Tk(G,H). Indeed, a weak H-homomorphism u ∈ Ak(G,H) has order d if and
only if every u(g) is a d th root of unity and some u(g) is a primitive one. Details
are easily left to the reader. �

5.6. Example. Let H ≤ G be a subgroup of odd index and F2 the field with two
elements. Then restriction TF2(G)→ TF2(H) is injective. Indeed (F2)× = 1.

Acknowledgments : I am thankful to Nadia Mazza, Serge Bouc, Jon Carlson
and Jacques Thévenaz for numerous discussions, big or small, around the theme of
this paper and to the referee for elegantly revamping Lemma 3.8 and the proof of
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[5] J. F. Carlson, N. Mazza, and J. Thévenaz. Endotrivial modules for p-solvable groups. Trans.

Amer. Math. Soc., 363(9):4979–4996, 2011.
[6] J. F. Carlson and D. K. Nakano. Endotrivial modules for finite group schemes. J. Reine

Angew. Math., 653:149–178, 2011.



REPRESENTATIONS WITH TRIVIAL RESTRICTION TO THE SYLOW 17
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