
A GUIDE TO TENSOR-TRIANGULAR CLASSIFICATION

PAUL BALMER

Abstract. This is a chapter of the Handbook of Homotopy Theory, that

surveys the classifications of thick tensor-ideals.

1. Introduction

Stable homotopy theory shines across pure mathematics, from topology to anal-
ysis, from algebra to geometry. While its liturgy invokes Quillen model structures
and ∞-categories, profane users around the world often speak the vernacular of
triangulated categories, as we shall do in this chapter.

Perhaps the first salient fact about stable homotopy categories is that in almost
all cases they turn out to be wild categories – beyond the trivial examples of course.
Dade famously began his paper [Dad78] with the admonition “There are just too
many modules over p-groups!” and this truth resonates in all other fields as well: no
hope to classify topological spaces up to stable homotopy equivalence; no more hope
with complexes of sheaves, nor with equivariant C∗-algebras, nor with motives, etc,
etc. One might dream that things improve with ‘small’ objects (compact, rigid,
or else) but the problem persists even there: Stable homotopy theory is just too
complicated!

Faced with the complexity of stable homotopy categories, we are led to the
following paradigm shift. A classification up to isomorphism makes sense in any
category, i.e. as soon as we can speak of isomorphism. But stable homotopy cat-
egories are more than mere categories: They carry additional structures, starting
with the triangulation. In the case of a tensor -triangulated category (tt-category
for short), as we consider in this chapter, we have two basic tools at hand: triangles
and tensor. Instead of ignoring these additional structures, we should include them
in the concept of

tt-classification

which is our nickname for classification up to the tensor-triangular structure.
More precisely, we want to decide when two objects X and Y can be obtained

from one another by using tensor with anything, direct sums, summands, cones,
suspension, etc. In mathematical terms, we ask when X and Y generate the same
thick triangulated tensor-ideals. Heuristically, if you can build Y out of X by
using the tt-structure then X contains at least as much information as Y . If you
can go back and forth between X and Y , then they contain the same amount of
information.
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The remarkable gain is that the tt-classification of an essentially small (rigid)
tensor-triangulated category can always be achieved by means of a geometric object,
more precisely a spectral topological space, called its tensor-triangular spectrum. (1)
Let us highlight this starting point:

Fundamental fact: Although almost every symmetric monoidal stable homotopy
category K is ‘wild’ as a category, we always have a tt-classification of its objects,
via a topological space, Spc(K), called the spectrum of K. (2)

This chapter is dedicated to a survey of tt-classifications across different exam-
ples, as far as they are known to the author at this point in time.

The original idea of classifying objects up to the ambient structure was born
in topology, around Ravenel’s conjectures [Rav84] and the ‘chromatic’ theorems of
Devinatz-Hopkins-Smith [DHS88, HS98]; this relied on Morava’s work, among many
other contributions. The ground-breaking insight of transposing from topology to
other fields began with Hopkins [Hop87]. It is arguably Thomason [Tho97] who first
understood how essential the tensor was in the global story. We recall in Remark 4.6
why such a geometric classification does not exist for mere triangulated categories,
i.e. without the tensor.

The tt-spectrum was introduced in [Bal05] and is reviewed in Section 2. The
survey begins in Section 3, with the initial example of topological stable homotopy
theory. Section 4 touches commutative algebra and algebraic geometry. Section 5 is
dedicated to stable module categories in modular representation theory and beyond.
Section 6 discusses equivariant stable homotopy theory and Kasparov’s equivariant
KK-theory. Section 7 pertains to motives and A1-homotopy theory.

Everywhere, we have tried to give some idea of the actual tt-categories which
come into play. When the amount of specialized definitions appears too high for
this chapter, we simply point to the bibliographical references.

Finally, let us say a word about the bigger picture. In commutative algebra,
the Zariski spectrum is not meant to be explicitly computed for every single com-
mutative ring in the universe; instead, it serves as a stepping stone towards the
geometric reasonings of algebraic geometry. In the same spirit, the tt-spectrum
opens up a world of mathematical investigation, called tensor-triangular geometry,
which reaches far beyond classical algebraic geometry into the broad kingdom of
stable homotopy theory. The short final Section 8 points to further reading in that
direction.

Acknowledgements: I would like to thank Tobias Barthel, Ivo Dell’Ambrogio,
Martin Gallauer, Beren Sanders and Greg Stevenson for their help in assembling this
survey. I apologize to anyone whose tt-geometric results are not mentioned here:
For the sake of pithiness, I chose to restrict myself to the topic of tt-classification.

2. The tt-spectrum and the classification of tt-ideals

2.1. Definition. A tt-category, short for tensor-triangulated category, is a triangu-
lated category K together with a symmetric monoidal structure

⊗ : K×K−→K

1 Our use of the word ‘spectrum’ comes from commutative algebra, as in the ‘Zariski spectrum’,

and should not be confused with the suspension-inverting ‘spectra’ of topology.
2 Spc(K) is a space in the universe containing the ‘set’ of isomorphism classes of K.
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which is exact in each variable. See details in [HPS97, App. A] or [Nee01, KN02].
The ⊗-unit is denoted 1.

2.2. Assumption. Unless otherwise stated, we always assume that K is essentially
small, i.e. has a set of isomorphism classes of objects. Subcategories J ⊆ K are
always assumed full and replete (i.e. closed under isomorphisms).

2.3. Definition. A triangulated subcategory J ⊆ K is a non-empty subcategory
such that whenever X → Y → Z → ΣX is an exact triangle in K and two out
of X, Y and Z belong to J then so does the third. A thick subcategory J ⊆ K

is a triangulated subcategory closed under direct summands : if X ⊕ Y ∈ J then
X,Y ∈ J. A tt-ideal J ⊆ K, short for thick tensor-ideal, is a thick subcategory
closed under tensoring with any object : K ⊗ J ⊆ J. A tt-ideal J ⊆ K is called
radical if X⊗n ∈ J for n ≥ 2 forces X ∈ J.

2.4. Remark. When every object of K is rigid (i.e. admits a dual, a. k. a. strongly
dualizable [HPS97, § 2.1]), then we say that K is rigid and we can show that every
tt-ideal J is automatically radical. See [Bal07, Prop. 2.4]. So, for simplicity, we
assume that every tt-category K that we discuss below is either rigid or that the
phrase ‘tt-ideal’ means ‘radical tt-ideal’.

2.5. Notation. For a class E ⊆ K of objects, the tt-ideal generated by E is 〈E〉 =⋂
J⊇E J, where J runs through the tt-ideals containing E.

2.6. Definition. A prime P ⊂ K is a proper tt-ideal such that X ⊗ Y ∈ P forces
X ∈ P or Y ∈ P. We denote the set of prime tt-ideals by

Spc(K) =
{
P ⊂ K

∣∣P is prime
}

and call it the spectrum of K. The support of an object X ∈ K is the subset

supp(X) =
{
P ∈ Spc(K)

∣∣X /∈ P
}
.

The topology of Spc(K) is defined to have {supp(X)}X∈K as basis of closed subsets.
Explicitly, for each set of objects E ⊆ K the subset U(E) =

{
P ∈ Spc(K)

∣∣E ∩ P 6=
∅
}

is an open of Spc(K), and all open subsets are of this form, for some E.

2.7. Remark. The above construction is introduced in [Bal05], where the pair
(Spc(K), supp) is characterized by a universal property : It is the final support
data. See [Bal05, Thm. 3.2]. We shall not make this explicit but intuitively it
means that the space Spc(K) is the best possible one carrying closed supports for
objects of K with the following rules for all X,Y, Z in K :

(1) supp(0) is empty and supp(1) is the whole space;
(2) supp(X ⊕ Y ) = supp(X) ∪ supp(Y );
(3) supp(ΣX) = supp(X);
(4) supp(Z) ⊆ supp(X) ∪ supp(Y ) for each exact triangle X→Y →Z →ΣX;
(5) supp(X ⊗ Y ) = supp(X) ∩ supp(Y ).

2.8. Example. Dually to the Zariski topology, in the tt-spectrum Spc(K) the closure

of a point P ∈ Spc(K) consists of all the primes contained in it: {P} =
{
Q ∈

Spc(K)
∣∣Q ⊆ P

}
. See [Bal05, Prop. 2.9].

2.9. Remark. The tt-spectrum Spc(K) is always a spectral space in the sense of
Hochster [Hoc69] : it is quasi-compact, it admits a basis of quasi-compact open
subsets, and each of its non-empty irreducible closed subsets has a unique generic
point. See [Bal05, § 2].
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2.10. Remark. The construction K 7→ Spc(K) is a contravariant functor. Every
exact ⊗-functor F : K → K′ between tt-categories induces a continuous (spec-
tral) map ϕ = Spc(F ) : Spc(K′) → Spc(K) defined by Q 7→ F−1(Q). It satisfies
ϕ−1(supp(X)) = supp(F (X)) for all X ∈ K. See [Bal05, § 3].

To express tt-classification via the spectrum, we need some preparation.

2.11. Definition. To every subset V ⊆ Spc(K) we can associate a tt-ideal

KV =
{
X ∈ K

∣∣ supp(X) ⊆ V
}

of K. (In fact, this tt-ideal is always radical. See Remark 2.4.)

2.12. Definition. A subset V ⊆ Spc(K) is called a Thomason subset if it is the
union of the complements of a collection of quasi-compact open subsets: V = ∪αVα
where each Vα is closed with quasi-compact complement. In the terminology of
Hochster [Hoc69], these are the dual-open subsets.

2.13. Example. If the space Spc(K) is topologically noetherian (i.e. all open subsets
are quasi-compact), then V being Thomason is just being closed under specializa-

tion (x ∈ V ⇒ {x} ⊆ V ), i.e. being a union of closed subsets.

2.14. Theorem (Classification of tt-ideals, [Bal05, Thm. 4.10]). The assignment
V 7→ KV of Definition 2.11 defines an order-preserving bijection between the Thoma-
son subsets V ⊆ Spc(K) and the (radical) tt-ideals J ⊆ K of K, whose inverse is
given by J 7→ supp(J) := ∪X∈J supp(X) =

{
P
∣∣ J 6⊆ P

}
.

Specifically for the tt-classification of objects X,Y ∈ K (see Remark 2.4) :

2.15. Corollary. Two objects X,Y ∈ K generate the same tt-ideals 〈X〉 = 〈Y 〉 if
and only if they have the same support supp(X) = supp(Y ). More precisely, Y
belongs to 〈X〉 if and only if supp(Y ) ⊆ supp(X).

The following converse to Theorem 2.14 holds. See [Bal05] for details.

2.16. Theorem (Balmer/Buan-Krause-Solberg). Suppose that a spectral space S
carries a support data σ(X) ⊆ S for X ∈ K in the sense of [Bal05] and suppose
that the assignment S ⊇ V 7→

{
X ∈ K

∣∣σ(X) ⊆ V
}

induces a bijection between
Thomason subsets V of S and (radical) tt-ideals of K. Then the canonical map
S → Spc(K) of Remark 2.7 is a homeomorphism.

This result was established in [Bal05] under the additional assumption that S
be noetherian. It was proved in the above maximal generality in [BKS07]. (See
Remark 2.9.)

2.17. Remark. Theorems 2.14 and 2.16 allow for a compact reformulation of tt-
classifications, including the ones anterior to [Bal05]. Thus most classifications for
the tt-categories K discussed in Sections 3-7 are phrased in the simple form of a
description of Spc(K). The tt-classification is then always the same, in terms of
subsets of Spc(K), as in Theorems 2.14 and Corollary 2.15, and we shall not repeat
these corollaries.

On the other hand, approaching tt-classification via Spc(K) buys us some flexibil-
ity, for partial results about Spc(K) can be interesting while a ‘partial classification’
is an odd concept. For instance, one can know Spc(K) as a set in some examples,
with partial information on the topology. Or one can describe Spc(K) = U∪Z with
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a complete description of the closed subset Z and its open complement U without
knowing exactly how they attach. And so on.

In recent years, the geometric study of the tt-spectrum per se has led to new
computations of Spc(K), from which the tt-classification can be deduced a posteri-
ori. This will be illustrated in the later sections.

2.18. Remark. Some of the above results connect to lattice theory, see [BKS07,
KP17]. It is a non-trivial property of a lattice, like that of tt-ideals in K, to be
spatial, i.e. in bijection with the open subsets of a topological space. In fact, without
the tensor this fails in general (Remark 4.6).

The tt-classification of Theorem 2.14 tacitly assumes that K consists of ‘small
enough’ objects. Assumption 2.2 and Remark 2.4 belong to this logic too. Another
indication of the smallness of K is that we do not mention infinite coproducts
in K, and we only discuss thick subcategories, not localizing ones (i.e. those closed
under arbitrary coproducts). When dealing with a ‘big’ tt-category T, the natural
candidate for a ‘small’ K is the subcategory of rigid objects in T, which may or
may not coincide with compact ones.

There are also ‘big’ subcategories of ‘big’ tt-categories worth investigating, most
famously smashing subcategories. It is an open problem whether the lattice of
smashing ⊗-ideals is spatial or not. We prove in [BKS17] that it is a frame, thus it
is at least ‘spatial’ in the quirky sense of pointless topology.

The connection between thick subcategories of compact objects and smashing
subcategories is a topic in its own right, often dubbed the Telescope Conjecture.
We shall not attempt to discuss it systematically here but will mention it in a
few examples. See Krause [Kra00] for a beautiful abstract answer via ideals of
morphisms.

3. Topology

As already said, tt-classification (or at least ‘t-classification’) was born in topol-
ogy, more precisely in chromatic homotopy theory, see [BB19]. The tt-category we
consider here is the topological stable homotopy category SH, i.e. the homotopy cat-
egory of topological spectra, and more specifically its subcategory SHc of compact
objects. See for instance [Rav92]. In other words, SHc is the Spanier-Whitehead
stable homotopy category of finite pointed CW-complexes.

The first operation one can do on SH is to p-localize it at a prime p, i.e. invert
multiplication by every prime different from p. On compacts, this gives us SHc

(p).

Both SHc and SHc
(p) are essentially small rigid tt-categories.

3.1. Remark. Something special happens in SHc and therefore in SHc
(p) as well:

The unit 1 = S0, a. k. a. the sphere spectrum, generates the category as a thick
triangulated subcategory. Consequently, every thick subcategory is automatically
a tt-ideal. In such situations, the tensor is not essential in the tt-classification and
we are equivalently classifying thick subcategories.

3.2. Remark. A critical ingredient in chromatic theory is the countable family of
so-called Morava K-theories, which are homology theories Kp,n, for n ≥ 1, defined
on SHc

(p) and taking values in graded modules over the ‘graded field’ Fp[vn, v−1
n ],

with vn in degree 2(pn − 1). See [Rav92, § 1.5].



6 PAUL BALMER

3.3. Theorem (Hopkins-Smith [HS98]). The spectrum of the classical stable homo-
topy category SHc is the following topological space :

P2,∞ P3,∞ · · · Pp,∞ · · ·

Spc(SHc) =
...

...
...

P2,n+1 P3,n+1 · · · Pp,n+1 · · ·

P2,n P3,n · · · Pp,n · · ·
...

...
...

P2,2 P3,2 · · · Pp,2 · · ·

P0,1

in which every line indicates that the higher point belongs to the closure of the lower
one (Example 2.8). More precisely:

(a) The tt-prime P0,1 is the kernel of rationalization SHc → SHc
Q
∼= Db(Q), that is,

the subcategory of torsion spectra. It is the dense point of Spc(SHc).
(b) For each prime number p, the tt-prime Pp,∞ is the kernel of localization SHc →

SHc
(p). These Pp,∞ are exactly the closed points of Spc(SHc).

(c) For each prime number p and each integer 2 ≤ n <∞, the tt-prime Pp,n is the

kernel of the composite SHc → SHc
(p) → Fp[v

±1
n−1] – grmod of localization at p

and (n− 1)st Morava K-theory Kp,n−1 (Remark 3.2).
(d) The support of an object X is either empty when X = 0, or the whole of Spc(SHc)

when X is non-torsion, or a finite union of ‘columns’

{Pp,mp
} =

{
Pp,n

∣∣mp ≤ n ≤ ∞
}

for integers 2 ≤ mp <∞ varying with the primes p.
(e) A closed subset is either empty, or the whole Spc(SHc), or a finite union of

closed points {Pp,∞} and of columns {Pp,mp
} with mp ≥ 2 as in (d).

(f) A Thomason subset of Spc(SHc) is either empty, or the whole Spc(SHc), or an

arbitrary union of columns {Pp,mp} with mp ≥ 2 as in (d).

The above Theorem 3.3 is not the way the chromatic filtration is expressed in
the original literature; see the translation in [Bal10a, § 9].

3.4. Example. An object X ∈ SHc has support contained in the p-th column,
supp(X) ⊆ {Pp,2}, if and only if it is ‘p-primary torsion’, i.e. it satisfies p` ·X = 0
for some ` ≥ 1.

3.5. Example. The support of the tt-ideal J = P0,1 of torsion spectra is exactly
the Thomason subset Spc(SHc) \ {P0,1} and is therefore the disjoint union of all

columns tp{Pp,2}. This reflects the fact that a torsion object in SHc is the direct
sum of p-primary torsion objects as in Example 3.4.

3.6. Remark. The fact that the closed point {Pp,∞} cannot be the support of an
object reflects the fact that an object in SHc

(p) which is killed by all Morava K-

theories Kp,n for n ≥ 1 must be zero. It also shows that Spc(K) is not noetherian,
already in this initial case of K = SHc (see Example 2.13).
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3.7. Remark. In this setting, the Telescope Conjecture is open (again). See [Kra00]
and further references therein.

4. Commutative algebra and algebraic geometry

As already indicated, Hopkins [Hop87] initiated the transposition of the chro-
matic classification from topology to algebra. The correct statement for noetherian
rings was proved by Neeman [Nee92] and the perfect version for general schemes,
not necessarily noetherian, is due to Thomason in his last published paper [Tho97].
In terms of tt-spectra it becomes the following very beautiful result.

4.1. Theorem (Thomason [Tho97]). Let X be a scheme which is quasi-compact

and quasi-separated. Then the spectrum of the derived category Dperf(X ) of perfect
complexes (with ⊗ = L⊗OX ) is isomorphic to the underlying space |X | itself, via
the homeomorphism

|X |
∼= // Spc(Dperf(X ))

x � // P(x)

where, for each point x of X , the tt-prime P(x) =
{
Y ∈ Dperf(X )

∣∣Yx ∼= 0
}

is the

kernel of localization Dperf(X )→ Dperf(OX ,x) at x.

4.2. Remark. Equivalently, P(x) can be described as the kernel of the residue functor

Dperf(X )→ Db(κ(x)) to the residue field κ(x) of X at x.

4.3. Remark. Recall that a scheme X is quasi-compact and quasi-separated if the
underlying space |X | admits a basis of quasi-compact open subsets (including |X |
itself). This purely topological condition is equivalent to |X | being spectral. Hence
this condition is the maximal generality in which the above result can hold in view
of Remark 2.9. Noetherian schemes and affine schemes are quasi-compact and
quasi-separated.

The affine case vindicates our use of the word ‘spectrum’ (3):

4.4. Corollary. Let A be a commutative ring. Then the tt-spectrum of the homo-
topy category Kb(A – proj) ∼= Dperf(A) of bounded complexes of finitely generated
projective A-modules is homeomorphic to the Zariski spectrum of A

Spec(A)
∼→ Spc(Kb(A – proj)) .

4.5. Remark. An error in [Hop87], corrected in [Nee92], was not to assume A noe-
therian. However we see that Thomason’s Corollary 4.4 does not assume A noe-
therian. The point is that the tt-classification (Theorem 2.14) which is equivalent
to Corollary 4.4 involves actual Thomason subsets not mere specialization-closed
subsets, whereas [Hop87] and [Nee92] are phrased in terms of specialization-closed
subsets. The assumption that A is noetherian is only useful to replace ‘Thomason’
by ‘specialization-closed’ (Example 2.13).

4.6. Remark. As we saw in the topological example of Section 3, when the unit 1
generates the tt-category K as a thick subcategory we do not really need the tensor.
This is also the case for K = Kb(A – proj) for instance.

3 If this creates confusion with Example 2.8, note that the map of Corollary 4.4, p 7→ P(p) =

Ker(Dperf(A)→ Dperf(Ap)), reverses inclusions: p ⊆ q⇒ P(p) ⊇ P(q).
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But in general the tensor is essential for classification by means of subsets
of Spc(K). Indeed, the lattice of thick subcategories of a triangulated category
K cannot be classified in terms of the lattice of subsets of pretty much anything
because it may not satisfy distributivity : J1 ∧ (J2 ∨ J3) = (J1 ∧ J2) ∨ (J1 ∧ J3).

Already for K = Dperf(X ) over the projective line X = P1
k distributivity fails with

Ji the thick subcategory generated by O(i). See [BKS17, Rem. 5.10].

4.7. Remark. An application of Theorem 4.1 is the reconstruction of every quasi-
compact and quasi-separated scheme X from the data of the tensor -triangulated
category Dperf(X ). Indeed, one can equip the tt-spectrum Spc(K) with a sheaf

of commutative rings, which in the case of K = Dperf(X ) recovers the structure
sheaf OX . See details in [Bal05, § 6]. By contrast, Mukai [Muk81] proved earlier
that such a reconstruction is impossible from the triangulated structure alone.

4.8. Remark. The above K = Dperf(R) are the compact and rigid objects in the big
derived category T = D(R). The Telescope Conjecture holds when R is noetherian
by Neeman [Nee92] but fails in general by Keller [Kel94].

4.9. Remark. Other tt-categories can be associated to schemes, or commutative
rings, for instance right-bounded derived categories. For first results in this direc-
tion, see work of Matsui and Takahashi [MT17, Mat18].

One can generalize Theorem 4.1 almost verbatim to reasonable stacks:

4.10. Theorem (Hall [Hal16, Thm. 1.2]). Let X be a quasi-compact algebraic stack
with quasi-finite separated diagonal, whose stabilizer groups at geometric points are
finite linearly reductive group schemes (X is ‘tame’). Then Spc(Dperf(X )) ∼= |X |.

We refer to [Hal16] for terminology. Note earlier work of Krishna [Kri09] in
characteristic 0, and of Dubey-Mallick [DM12] for finite groups acting on smooth
schemes in characteristic prime to the order of the groups.

One can also consider the graded version of Corollary 4.4:

4.11. Theorem (Dell’Ambrogio-Stevenson [DS14, Thm. 4.7]). Let A be a graded-
commutative ring (graded over any abelian group), then there is a canonical iso-

morphism Spc(Dperf(A)) ∼= Spech(A), between the tt-spectrum of Dperf(A) and the
spectrum of homogeneous prime ideals of A.

Let us mention a variation relating to singularities.

4.12. Theorem (Stevenson [Ste14, Thm. 7.7]). Let X be a noetherian separated
scheme with only hypersurface singularities. Then there is an order-preserving bi-
jection between the specialization-closed subsets of the singular locus of X and the
thick Dperf(X )-submodules of the singularity category Db(cohX )/Dperf(X ).

Here the singularity category is not itself a tt-category but a triangulated cate-
gory with an action by the tt-category Dperf(X ). As such, this result is an applica-
tion of Stevenson’s relative tt-geometry [Ste13]. Another application of Stevenson’s
theory is the tt-classification for derived categories of matrix factorizations in Hi-
rano [Hir19], which extends earlier result of Takahashi [Tak10].
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5. Modular representation theory and related topics

5.1. Point. Let G be a finite group and let k be a field. Maschke’s Theorem says that
the order of G is invertible in k if and only if kG is semisimple. In that case, all kG-
modules are projective. Modular representation theory refers to the non-semisimple
situation. Then the stable module category is the additive quotient [Hap88]

kG – stmod =
kG – mod

kG – proj

which precisely measures how far kG is from being semisimple. It is a tt-category
whose objects are all finitely generated kG-modules and whose groups of morphisms
HomkG – stmod(X,Y ) are given by the quotient of the abelian group of kG-linear
maps HomkG(X,Y ) modulo the subgroup of those maps factoring via a projective
module. Tensor is over k with diagonal G-action: g ·(x⊗y) = (gx)⊗(gy) in X⊗kY .
The ⊗-unit is 1 = k with trivial G-action.

5.2. Point. We can also consider the derived category Db(kG – mod), with the ‘same’

tensor. Every non-zero tt-ideal J ⊆ Db(kG – mod) contains Dperf(kG) because

kG ⊗ − ∼= IndG1 ResG1 and Db(k – mod) = Dperf(k) is semisimple. Hence the tt-

classification of Db(kG – mod) and of its Verdier quotient by Dperf(kG) are very
close. (The former has just one more tt-ideal: zero.) By Rickard [Ric89], that
quotient is equivalent to the stable module category:

Db(kG – mod)

Dperf(kG)
∼= kG – stmod .

5.3. Theorem (Benson-Carlson-Rickard [BCR97]). There is a homeomorphism be-
tween the spectrum of the stable module category and the so-called projective support
variety

Spc(kG – stmod) ∼= Proj(H•(G, k))

which can be extended (by adding one closed point) to a homeomorphism

Spc(Db(kG – mod)) ∼= Spech(H•(G, k)).

Explicitly, to every homogeneous prime p• ⊂ H•(G, k) corresponds the tt-prime

P(p•) =
{
X
∣∣ there is a homogeneous ζ /∈ p• such that ζ ·X = 0

}
.

Again, the above does not appear verbatim in the source. See details in [Bal05]
or [Bal10a, Prop. 8.5]. A more recent proof can be found in [CI15].

5.4. Remark. The reader interested in the related derived category of cochains
on the classifying space BG is referred to [BIK11] for finite groups and to the
comprehensive recent work [BCHV19] for p-local compact groups; see comments
and references therein about earlier work by Benson-Greenlees.

5.5. Point. For finite group schemes G, the following generalization of Theorem 5.3
would follow from claims made in [FP07] but a flaw was found in [FP07, Thm. 5.3],
which was eventually fixed in the recent [BIKP18]; see in particular [BIKP18,
Rem. 5.4 and Thm. 10.3].

5.6. Theorem (Benson-Friedlander-Iyengar-Krause-Pevtsova). For a finite group
scheme G over k, there is a homeomorphism Spc(kG – stmod) ∼= Proj(H•(G, k)).
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5.7. Remark. Stable module categories of finite group schemes over a field are very
‘noetherian’ and several other results are known about the ‘big’ stable module cate-
gory as well, like the Telescope Conjecture. See details in [BIKP18]. The technique
of stratification has led to the tt-classification (of small and large subcategories) in
several ‘noetherian enough’ derived settings. See the survey in [BIK12] and further
references in [BIKP18].

5.8. Point. Extending beyond field coefficients to other rings R, we can consider
the relative stable module category RG – strel, obtained from the Frobenius exact
structure on the exact category of finitely generated RG-modules with R-split ex-
act sequences. Already in small Krull dimension, interesting phenomena can be
observed, as in the following result.

5.9. Theorem (Baland-Chirvasitu-Stevenson [BCS19, Thm. 1.1]). Let S be a dis-
crete valuation ring having residue field k and uniformizing parameter t and let
Rn = S/tn. Let G be a finite group. Then the tt-spectrum of the relative stable
module category

Spc(RnG – strel) ∼= tni=1 Spc(kG – stmod),

is a coproduct of n copies of the projective support variety of Theorem 5.3.

On the topic of singularity categories, let us mention [Xu14] and its recent gen-
eralization (recall that a category is EI if any endomorphism is invertible):

5.10. Theorem (Wang [Wan19, Thm. 5.2]). Let C be a finite EI category, projective

over a field k and Dsing(kC) = Db(kC – mod)/Db(kC – proj) its singularity category.
Then there is a homeomorphism

Spc(Dsing(kC)) ∼= tx∈C Spc(kGx – stmod),

where Gx = AutC(x).

5.11. Point. Antieau-Stevenson [AS16] consider further derived categories of rep-
resentations of small categories over commutative noetherian rings. They obtain
several interesting classifications, including for localizing subcategories, and in par-
ticular for simply laced Dynkin quivers. See also the earlier [LS13].

5.12. Point. Let us now turn our attention to stable module categories related to Lie
algebras. Boe-Kujawa-Nakano [BKN17b] prove several results about classical Lie
superalgebras. In particular for the general linear Lie superalgebra g = gl(m|n) =
g0̄ ⊕ g1̄ and K = F the stable category of the category F of finite dimensional g-
modules which admit a compatible action by G0̄ and are completely reducible as
G0̄-modules (where LieG0̄ = g0̄). They prove in [BKN17b, Thm. 5.2.2] that the
spectrum Spc(F) is homeomorphic to the N -homogenous spectrum N−Proj(S•(f1̄))
where f is the detecting subalgebra of g and N = NormG0̄

(f1̄).

The same authors more recently considered quantum groups:

5.13. Theorem (Boe-Kujawa-Nakano [BKN17a, Thm. 7.6.1]). Let G be a complex
simple algebraic group over C with g = LieG. Assume that ζ is a primitive `th root
of unity where ` is greater than the Coxeter number for g. Then the tt-spectrum of
the stable module category for the quantum group Uζ(g) is

Spc(Uζ(g) – stmod) ∼= G− Proj(C[N ])

where N is the nullcone, i.e. the set of nilpotent elements of g.
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5.14. Example. Another example where Spc(A – stmod) is isomorphic to the va-
riety Proj(H•(A, k)) is the algebra A = k[X1, . . . , Xn]/(X`

1, . . . , X
`
n) o (Z/`Z)×n

which appears in Pevtsova-Witherspoon [PW15, Thm. 1.2].

6. Equivariant stable homotopy and KK-theory

6.1. Point. Let G be a compact Lie group, e.g. a finite group, and let SH(G)
be the equivariant stable homotopy category of genuine G-spectra. The tensor-
triangulated category of compact (rigid) objects in SH(G) is denoted SH(G)c. In
general, the spectrum of SH(G)c is not quite known but significant progress occurred
in recent years. It relies in an essential way on the non-equivariant case G = 1 of
Section 3.

6.2. Point. For every chromatic tt-prime Pp,n ∈ Spc(SHc) in the stable homotopy
category SHc (Theorem 3.3) and every closed subgroup H ≤ G, let

P(H, p, n) = (ΦH)−1(Pp,n)

be its preimage under geometric H-fixed points ΦH : SH(G)c → SHc, which is a
tt-functor. This ‘equivariant’ tt-prime P(H, p, n) is the image of the chromatic Pp,n
under Spc(ΦH) : Spc(SHc)→ Spc(SH(G)c) as in Remark 2.10.

It is convenient to use the convention that Pp,1 means P0,1 for all p. And simi-
larly, to read P(H, p, 1) as P(H, 0, 1).

Let us first discuss the case where G is a finite group. Varying the subgroup H ≤
G, the maps Spc(ΦH) cover Spc(SH(G)c) – a fact that is also true for general
compact Lie groups, see Theorem 6.9.

6.3. Theorem (Balmer-Sanders [BS17]). Let G be a finite group. Then every tt-
prime in SH(G)c is of the form P(H, p, n) for a unique subgroup H ≤ G up to
conjugation and a unique chromatic tt-prime Pp,n ∈ Spc(SHc). Understanding
inclusions between tt-primes completely describes the topology on Spc(SH(G)c).

If KCH is a normal subgroup of index p > 0, then P(K, p, n+1) ⊂ P(H, p, n) for
every n ≥ 1. There is no inclusion P(K, q, n) ⊆ P(H, p,m) unless the corresponding
chromatic tt-primes are included Pq,n ⊆ Pp,m (which forces n ≥ m, and p = q if
m > 1) and K is conjugate to a q-subnormal subgroup of H (see 6.5).

6.4. Point. For finite groups of square-free order, like G = Cp for instance, the above
result completely describes Spc(SH(G)c), with its topology, and thus gives the tt-
classification. This result was a first major example where Spc(K) was determined
first and the tt-classification deduced as a corollary.

6.5. Point. For other groups, the question is to decide when P(K, p, n) ⊂ P(H, p,m),
in terms of n − m, for K ≤ H a p-subnormal subgroup of H (i.e. one such that
there exists a tower of normal subgroups of index p from K to H). Theorem 6.3
implies that this inclusion holds when n−m ≥ logp([H : K]).

The case of abelian groups (and a little more) was recently tackled in [BHN+19],
showing that the above logp([H : K]) is not the sharpest bound.

6.6. Theorem (Barthel-Hausmann-Naumann-Nikolaus-Noel-Stapleton). Let G be
a finite abelian group, let K ≤ H ≤ G be subgroups, let p be a prime and let 1 ≤
n < ∞ be an integer. Then the minimal i such that P(K, p, n) ⊆ P(H, p, n − i) is
i = rkp(H/K) the p-rank of the quotient.
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See [BHN+19, Cor. 1.3]. The precise topology of Spc(SH(G)c) for general finite
groups remains an open problem.

6.7. Point. Let us now consider the case of an arbitrary compact Lie group G but
after rationalization SH(G)cQ. Of course, tensoring with Q hides the ‘chromatic
direction’ but this is an essential step in understanding the ‘equivariant direction’,
by which we mean the role played by the subgroups of G.

A closed subgroup K ≤ H is cotoral if K is normal and H/K is a torus. Every
closed subgroup H ≤ G defines a tt-prime PH in the spectrum Spc(SH(G)cQ),

namely PH := Ker(ΦH) the kernel of geometric H-fixed points, i.e. the image of

the unique prime (0) under the map Spc(Db(Q))→ Spc(SH(G)c) associated to the

tt-functor ΦH : SH(G)cQ → SHc
Q
∼= Db(Q).

6.8. Theorem (Greenlees [Gre19, Thm. 1.3]). Let G be a compact Lie group. Ev-
ery tt-prime of the rational equivariant stable homotopy category SH(G)cQ is equal

to PH = Ker(ΦH) for a closed subgroup H ≤ G, unique up to conjugation. Fur-
thermore, specialization of tt-primes corresponds to cotoral inclusions: We have
PK ⊆ PH if and only if K is conjugate to a cotoral subgroup of H. The topology
on Spc(SH(G)cQ) corresponds to the f -topology of [Gre98].

Recently there has been further progress for arbitrary compact Lie group:

6.9. Theorem (Barthel-Greenlees-Hausmann [BGH18]). Let G be a compact Lie
group. Then every tt-prime of SH(G)c is of the form P(H, p, n) as in 6.2. Moreover,
the topology is completely understood in terms of inclusions of tt-primes.

Barthel-Greenlees-Hausmann more precisely track the inclusion of primes, in
terms of functions on the compact and totally-disconnected Hausdorff orbit space
Sub(G)/G of G acting by conjugation on its closed subgroups. Furthermore, they
give a complete description of the topology in the case of an abelian compact Lie
group, extending Theorem 6.6; see [BGH18, Thm. 1.4].

* * *

6.10. Point. The closest to analysis that tt-geometry has gone so far is in the theory
of C∗-algebras, via Kasparov’s KK-theory. Although this is not strictly speaking
equivariant homotopy theory, we include it in this section as KK-theory belongs
to the broad topic of noncommutative topology.

One begins with the ‘cellular’ subcategory, a. k. a. the ‘bootstrap’ category.

6.11. Theorem (Dell’Ambrogio [Del10, § 6]). Let G be a finite group and KG be
the thick subcategory of the G-equivariant Kasparov category KKG generated by
the unit. Then the comparison map ρ : Spc(KG) → Spec(R(G)) to the spectrum
of the complex representation ring R(G), as in Definition 8.2, is surjective and
admits a continuous section. In the non-equivariant case, the above map induces a
homeomorphism between the tt-spectrum of the so-called ‘bootstrap category’ K1 =
Boot and Spec(Z).

6.12. Point. Dell’Ambrogio conjectures that ρ : Spc(KG)→ Spec(R(G)) is a home-
omorphism for all finite groups. The tt-classification for larger KK-categories, or
for infinite groups, is another interesting open problem.
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7. Motives and A1-homotopy

7.1. Point. We consider here two classes of ‘motivic’ tensor-triangulated categories:
First, we have the derived category of motives DM(F ;R), over a base field F
and with coefficients in a ring R, as first introduced by Voevodsky [Voe00]; see

also [Ayo14, CD09]. Secondly, we have SHA1

(F ) the stable A1-homotopy category
over the base F introduced by Morel and Voevodsky [MV99, Voe98, Mor06]. (Other
base schemes can be considered.)

7.2. Point. Let us begin with DM(F ;R). Like in KK-theory (see 6.10), one can first
consider the ‘cellular’ tt-subcategory of (mixed) Tate motives DTM(F ;R) generated
as a localizing subcategory by the invertible Tate objects R(i) for i ∈ Z. Its
subcategory of compact objects is the rigid tt-category DTM(F ;R)c we shall discuss
now.

7.3. Point. Peter [Pet13] established the tt-bridgehead into motivic territory, when
he proved that the spectrum Spc(DTM(F ; Q)c) = ∗ reduces to a point, for F a field
satisfying the Beilinson-Soulé vanishing conjecture and a less standard restriction
on rational motivic cohomology, namely Hi

mot(F ; Q(j)) = 0 for j ≥ i ≥ 2. For
instance, this applies to F = Q̄. In fact, Spc(DTM(F ; Q)c) = ∗ would follow from
Spc(DM(F ; Q)c) = ∗, a conjecture which is supported by:

7.4. Theorem (Kelly [Kel16, Thm. 36]). Let F be a finite field such that every con-
nected smooth projective variety X over F satisfies the Beilinson-Parshin conjecture
and agreement of rational and numerical equivalence. Then Spc(DM(F ; Q)c) = ∗
is a point.

The above are rational results. Our understanding of the integral picture recently
evolved thanks to the following breakthrough.

7.5. Theorem (Gallauer [Gal19, Thm. 8.6]). Let F be an algebraically closed field
of characteristic zero ( 4) whose rational motivic cohomology Hi

mot(F ; Q(j)) van-
ishes for i ≤ 0 < j (Beilinson-Soulé) and for j ≥ i ≥ 2. Then the spectrum
of DTM(F ; Z)c is the following :

P2,mot P3,mot · · · Pp,mot · · ·

P2,et P3,et · · · Pp,et · · ·

P0

where P0 = Ker(DTM(F ; Z)c → DTM(F ; Q)c) consists of the torsion objects and,
for every prime number p, the tt-primes Pp,mot and Pp,et are the kernels of motivic
and étale cohomology with Z/p coefficients, respectively.

7.6. Example. Peter’s conditions 7.3 on rational motivic cohomology are satisfied
for F = Q̄ for instance. This also provides an example for Theorem 7.5. Indeed,
Gallauer’s result uses Peter’s theorem rationally.

7.7. Remark. Gallauer [Gal19] proves more general results about the derived cat-
egory DTM(F ; Z/p)c of Tate motives with Z/p coefficients without any condition
about rational motivic cohomology. The latter theorem follows from the study of
the derived categories of filtered modules in [GAdS18].

4 In positive characteristic `, replace the coefficients Z by Z[1/`] and only allow p 6= `.
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7.8. Point. In the case of Theorem 7.4, because −1 is a sum of squares in F , the
rational derived category of motives coincides with the rational stable A1-homotopy

category DM(F ; Q) ∼= SHA1

(F ; Q). Let us now mention some integral informa-

tion about SHA1

(F ). The first partial results about its spectrum were obtained
in [Bal10a, § 10]. The most advanced information is currently:

7.9. Theorem (Heller-Ormsby [HO18, Thm. 1.1]). Let F be a field of characteristic
different from 2. Then the comparison map (Definition 8.2) to the homogeneous
spectrum of Milnor-Witt K-theory is surjective:

Spc(SHA1

(F )c)� Spech(KMW
∗ (F )).

The exact computation of the tt-spectrum of SH(F )c is a major open challenge,
which involves understanding the fibers of the above map.

7.10. Remark. Partial results have also been obtained by Dell’Ambrogio and Tabu-
ada [DT12] for non-commutative (dg-)motives.

8. Pointers to tt-geometry

8.1. Point. A snapshot of tensor-triangular geometry as of the year 2010 can be
found in [Bal10b]. For a more recent survey, see [Ste18]. Beyond those references,
let us simply highlight some aspects close to the author’s own research.

A very useful basic tool introduced in [Bal10a] is the following comparison map
between tt-spectra and Zariski spectra of suitable graded rings:

8.2. Definition. Let u ∈ K be a⊗-invertible object and R•K,u = ⊕n∈Z HomK(1, u⊗n)
the associated graded-commutative graded ring. Then

P 7→
{
f ∈ R•K,u

∣∣ cone(f) /∈ P
}

defines a continuous map ρ• : Spc(K) → Spech(R•K,u). Without grading, one can

similarly define ρ : Spc(K)→ Spec(EndK(1)).

8.3. Point. Dell’Ambrogio-Stanley [DS16] give a class of cellular tt-categories for
which ρ• is a homeomorphism, namely when the ring R•K,1 is concentrated in even
degrees and is ‘regular’ in a weak sense, which includes noetherian.

8.4. Point. The comparison map was generalized in two directions. First by Dell’
Ambrogio-Stevenson [DS14], by allowing grading by a collection of invertible ob-
jects instead of a single one. Secondly, higher comparison maps were defined by
Sanders [San13] in order to refine the analysis of the fibers of ‘lower’ comparison
maps, through an inductive process.

8.5. Point. The above comparison map is still very much concerned with the com-
putation of Spc(K). Moving away from this preoccupation, some first ‘geometric’
results were established in [Bal07], like the decomposition of an object associated to
a decomposition of its support, and applications to filtrations of K by (co)dimension
of support. These ideas naturally led to tensor-triangular Chow groups in [Bal13]
and further improvements by Klein [Kle16] and Belmans-Klein [BK17], using the
already mentioned relative tt-geometry of [Ste13].
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8.6. Point. In recent years, a great deal of progress followed from the development
of the idea of separable extensions of tt-categories. The ubiquity of this notion
through stable homotopy theory, in connection with equivariant ideas, can be seen
in [BDS15]. As a slogan, this theory extends tt-geometry from the Zariski setting
to the étale setting. Implications for the spectrum are discussed in [Bal16].

8.7. Point. Another area of tt-geometry which seems promising is the theory of
homological residue field, which aims at abstractly understanding the various ‘fields’
which appear in examples: MoravaK-theories, ordinary residue fields, π-points, etc.
The reader can enter this ongoing project via [BKS19, Bal20].
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