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Abstract. We establish Green equivalences for all Mackey 2-
functors, without assuming Krull-Schmidt. By running through
the examples of Mackey 2-functors, we recover all variants of the
Green equivalence and Green correspondence known in represen-
tation theory and obtain new ones in several other contexts. Such
applications include equivariant stable homotopy theory in topol-
ogy and equivariant sheaves in geometry.
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1. Introduction

The Green correspondence [Gre59, Gre64] is one of the fundamental and most
useful results in modular representation theory of finite groups. In its simplest
form, it says that if k is a field of characteristic p and if D ≤ H ≤ G are finite
groups such that D is a p-group and H contains the normalizer NG(D) of D, then
the induction and restriction functors yield a bijection between the isomorphism
classes of indecomposable k-linear representations of G with vertex D and the
isomorphism classes of indecomposable representations of H with same vertex D.
The vertex of a representation M is the smallest subgroup D such that M is a
retract of a representation induced from D. The Green correspondence reduces
many questions to ‘p-local’ representation theory, cf. [Alp80].
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Green [Gre72] later showed that his correspondence follows easily by tracking
indecomposable objects through what is now called the Green equivalence

(1.1) IndGH :
mod(kH;D)

mod(kH;X)

∼−→ mod(kG;D)

mod(kG;X)

an equivalence of categories between additive subquotients of the module categories;
see Recollection 2.7. Here mod(kG;D) ⊆ mod(kG) is the full subcategory of all
retracts of finitely-generated kG-modules induced up from D, and similarly for
mod(kG;X) by allowing induction from all subgroups in the family

(1.2) X = X(G,H,D) := {D ∩ gD | g ∈ GrH}

(where of course gD = gDg−1). Although Green’s proof still used the Krull-Schmidt
property of the categories of finite-dimensional modules, the statement of the Green
equivalence (1.1) makes sense more generally, e.g. for infinite-dimensional represen-
tations. Indeed, the result was eventually extended to that case in [BW01]. The
recent preprint [CWZ20] further extends the Green equivalence and correspondence
to various derived categories of chain complexes of representations.

∗ ∗ ∗
In this paper we show that, in fact, the Green equivalence is not specific to k-

linear representation theory. It is a general fact about ‘equivariant mathematics’,
a necessary consequence of nothing more than having induction and restriction
satisfying some basic adjunction and Mackey-style relations, as commonly found
throughout mathematics. Let us explain this idea.

Fix a finite group G. To obtain a Green equivalence, we only need a Mackey
2-functor for G in the sense of [BD20]. This algebraic gadget consists of an ad-
ditive category M(H) for each subgroup H ≤ G, together with ‘induction’ and

‘restriction’ functors IndHK : M(K)�M(H) : ResHK for all K ≤ H ≤ G, as well as
conjugation functors and conjugation natural isomorphisms; this structure satisfies
natural relations, most notably induction and restriction are adjoint on both sides
and satisfy a suitably categorified version of the Mackey formula; see Section 3 for
details. None of those very general relations are mysterious and they have been in
common use long before they were given the name ‘Mackey 2-functor’ in [BD20].

For any such Mackey 2-functorM and for any subgroups K ≤ H we may define

M(H;K) := add(IndHK(M(K))) ⊆M(H) ,

the category of K-objects in M(H), namely the full subcategory of M(H) con-

taining all retracts of images of the induction functor IndHK (cf. Definition 5.1).
Similarly for X-objects: M(H;X) = add

(
∪K∈XM(H;K)

)
. Our general Green

equivalence looks as follows:

1.3. Theorem (Theorem 5.17). For any Mackey 2-functor M for G (Recollec-

tion 3.12) and any subgroups D ≤ H ≤ G, induction IndGH yields an equivalence(
M(H;D)

M(H;X)

)\
∼−→
(
M(G;D)

M(G;X)

)\
between the idempotent-completions of the additive quotient categories of D-objects
in M(H) and M(G), by those of X-objects where X = {D ∩ gD | g ∈ GrH}.
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We remind the reader of idempotent-completion in Definition 2.3. Another for-
mulation of the above is to say that induction IndGH yields a fully-faithful functor

(1.4)
M(H;D)

M(H;X)
↪→ M(G;D)

M(G;X)

and every object in the right-hand category is a retract of an object on the left. In
other words, it is an equivalence-up-to-retracts (Definition 2.5).

As said, our theory does not assume Krull-Schmidt. Note that the price we pay
to extend Green beyond Krull-Schmidt is very mild: We only need idempotent-
completion. Furthermore, for triangulated categories with coproducts, we can get
rid of the idempotent-completion altogether and (1.4) is already an equivalence on
the nose (see Proposition 5.12). This applies to the first examples we list below.

There is another case where all quotients in sight are idempotent-complete
and (1.4) is an equivalence. It is when the categories M(H) do satisfy Krull-
Schmidt. In that setting, we can speak of vertices as in representation theory (see
Remark 6.16) and we obtain a generalized Green correspondence:

1.5. Theorem (Corollary 6.14, Proposition 6.17 and Corollary 6.19). If M is a
Mackey 2-functor for G taking values in Krull-Schmidt categories, the functors
IndGH and ResGH yield a bijection “à la Green” between isomorphism classes of
those indecomposable objects in M(H;D), respectively in M(G;D), whose vertex
is not G-subconjugate to a subgroup in X. The bijection is vertex-preserving, and
if NG(D) ≤ H, it restricts on both sides to indecomposable objects with vertex D.

∗ ∗ ∗
By specializing the above results to the multitude of readily available Mackey

2-functors M, we obtain Green equivalences to every equivariant heart’s delight.
For instance, in topology, we may consider equivariant stable homotopy theory:

1.6. Corollary (Apply Theorem 1.3 to Example 7.5). For each subgroup H ≤ G,
consider M(H) := SH(H) = Ho(SpH) the stable homotopy category of genuine H-

spectra. Then for D ≤ H ≤ G, the functor IndGH = G+ ∧H − yields an equivalence

SH(H;D)

SH(H;X)

∼−→ SH(G;D)

SH(G;X)
,

between additive quotient categories of D-objects, as above.

In noncommutative geometry, we may consider equivariant KK-theory:

1.7. Corollary (Apply Theorem 1.3 to Example 7.6). For each H ≤ G, consider

M(H) := KK(H) := KKH the Kasparov category of separable complex H-C*-

algebras. Then for D ≤ H ≤ G, the functor IndGH = C(G,−)H yields an equivalence

KK(H;D)

KK(H;X)

∼−→ KK(G;D)

KK(G;X)

between additive quotient categories of D-objects, as above.

In algebraic geometry, we may consider equivariant sheaves over varieties. In
this setting we can even find Mackey 2-functors satisfying Krull-Schmidt:

1.8. Corollary (Apply Theorems 1.3 and 1.5 to Example 7.7). Let X be a regular
and proper (e.g. smooth projective) algebraic variety over a field k, equipped with
an algebraic action of G. For each subgroup H ≤ G consider M(H) := Db(X//H),
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the bounded derived category of coherent H-equivariant sheaves on X. Then for
D ≤ H ≤ G, the induction functor IndGH yields an equivalence

Db(X//H;D)

Db(X//H;X)

∼−→ Db(X//G;D)

Db(X//G;X)

of k-linear categories. If NG(D) ≤ H, the above yields a bijection{
indecomposable objects in

Db(X//H) with vertex D

}
∼←→
{

indecomposable objects in

Db(X//G) with vertex D

}
of isomorphism classes of indecomposable complexes of equivariant sheaves.

As in representation theory, which is the special case X = Spec(k) of the above,
the bijection in Corollary 1.8 is non-trivial only when the field k has positive char-
acteristic p and D is a p-group.

We trust the reader gets the idea from the above sample: Such applications
are limitless. We also easily recover all versions of the correspondence known in
representation theory; see Example 7.1 and the following remarks. In particular,
we obtain the Green equivalence for derived categories of (unbounded) chain com-
plexes, and the Green correspondence for indecomposable complexes.

1.9. Remark. The theory of Mackey 2-functors, as developed in [BD20] and used in
this article, is formulated in terms of finite groupoids, rather then just finite groups.
This is not a gratuitous generalization but is done out of convenience, for instance
because groupoids allow us to formulate canonical Mackey formulas, without having
to choose any coset representatives. This uses the notion of Mackey square and is
briefly recalled in Section 3. In the present article, we also use Mackey squares
to give a unified and conceptual treatment of the somewhat mysterious classes of
subgroups traditionally denoted X,Y and the like, that typically come up in the
proof of the Green correspondence; see Section 4.

1.10. Remark. At least two works, [AK94] and [CWZ20], prove their representation-
theoretic versions of the Green correspondence by way of some abstract results on
adjoint functors, which do not even mention finite groups. Of course, these are not
recovered by our equivariant methods. However [AK94] is rather complicated and
hard to relate to the examples. Although a significant improvement over [AK94],
the recent [CWZ20, § 6] still involves a big diagram of categories and a list of
several technical conditions, which are not trivial to understand intuitively. On the
other hand, it is very simple to derive new Green equivalences with our approach,
because it is easy to produce new examples of Mackey 2-functors. Moreover, every
reader can remember the concept of “additive categoriesM(G) depending on finite
groups G, with induction, restriction and a Mackey formula”.

1.11. Remark. As alluded to above, the quotient categories appearing in the Green
correspondence (1.1) sometimes have more structure than just the additive one.
Notably, they are often subcategories of triangulated categories, with somewhat
exotic triangulations; see [Bel00, Section 7]. See also Proposition 5.12. The reader
interested in further details is referred to Zimmermann [Zim20].

The organization of the paper should be clear from the above introduction and
the table of contents.
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2. Additive preliminaries

We recall a few basics and fix some terminology mostly about additive categories.

2.1. Notation. The symbol ' denotes isomorphisms. We reserve ∼= for natural and
canonical isomorphisms.

2.2. Notation. We will write x ≤ y to express the fact that an object x is a retract of
an object y, meaning that there are maps α : x→ y and β : y → x such that βα =
idx. In an additive category that is idempotent-complete (i.e. every idempotent
endomorphism e = e2 : y → y yields a splitting y ' Im(e)⊕Ker(e)), an object x is
a retract of y if and only if it is a direct summand: y ' x⊕ x′ for some object x′.

2.3. Definition. The idempotent-completion C\ (a. k. a. Karoubi envelope) is the uni-
versal idempotent-complete category receiving C. It can be explicitly constructed as
pairs (x, e) where x ∈ Obj(C) and e = e2 : x→ x is an idempotent, with morphisms
f : (x, e) → (x′, e′) given by f : x → x′ in C such that e′fe = f . The fully-faithful
embedding C ↪→ C\ maps x to (x, idx).

2.4. Example. The idempotent-completion of the category of free modules is the
category of projective modules.

2.5. Definition. A functor F : C → D is surjective-up-to-retracts if every object
of D is a retract of F (x) for some object x of C. If moreover F is fully faithful, we
say that F is an equivalence-up-to-retracts. The latter is equivalent to the induced
functor F \ : C\ → D\ on idempotent-completions being an equivalence.

2.6. Notation. If E ⊆ A is a collection of objects in an additive category, add(E)
will denote the smallest full subcategory of A containing E and closed under taking
finite directs sums and retracts. If A is idempotent-complete then so is add(E).

2.7. Recollection. Let B ⊆ A be a full additive subcategory of an additive cate-
gory A. The additive quotient A�A/B is the universal additive functor mapping B
to zero. It is realized by keeping the same objects as A and taking the following
quotients of abelian groups as hom groups:

A/B(x, y) =
A(x, y){

α : x→ y
∣∣∣ ∃ x

α //
""

y

z

<< with z ∈ B

}
Composition is well-defined on representatives: [β] ◦ [α] = [βα]. Note that this
construction does not change if B is replaced by add(B), so we can as well assume B
closed under retracts in A.

2.8. Remark. An object x ∈ A is a retract of y ∈ A in the quotient A/B if and only
if x is a retract of y⊕z in A for some z ∈ B. Indeed, let α ∈ A(x, y) and β ∈ A(y, x)
be such that [βα] = idx in A/B. This means there exists z ∈ B and a factorization
idx − βα = δγ for γ ∈ A(x, z) and δ ∈ A(z, x). But then the composite

x
(αγ )
// y ⊕ z

( β δ ) // x

is the identity of x. The converse is obvious since z ∼= 0 in A/B for all z ∈ B.

Let us say a word about situations where those quotients are idempotent-complete.
Recall first the following very convenient fact:
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2.9. Proposition (Böckstedt-Neeman [BN93, Proposition 3.2]). Let T be a trian-
gulated category admitting countable coproducts. Then T is idempotent-complete.

It therefore becomes interesting to know when quotients admit a triangulation.

2.10. Proposition (Beligiannis [Bel00, Section 7] or [BS20]). Let R : T → S be an
exact functor of triangulated categories admitting a two-sided adjoint I : S → T .
Then the additive quotient T / add(I(S)) admits a triangulated structure.

2.11. Remark. Two comments are in order. First, the above quotient is not a
Verdier quotient. Second, the canonical functor T � T / add(I(S)) is usually not
exact; it does not even commute with suspension in general. So the triangulated
structure on T / add(I(S)) is somewhat exotic. But the beauty of Proposition 2.9
is that there is no assumption made on the triangulated structure: any one will do.

3. Mackey squares and Mackey 2-functors

3.1. Remark. As indicated in the Introduction, instead of finite groups we use finite
groupoids, i.e. finite categories in which every morphism is an isomorphism. Every
finite group G is seen as a finite groupoid G with one object and, up to equivalence,
a finite groupoid is simply a disconnected union of groups. We denote by gpd the
2-category of finite groupoids, functors (1-morphisms) and natural transformations
(2-morphisms). We often speak of morphisms of groupoids u : H → G instead
of functors, because there are many other functors around and also to evoke the
special case of group homomorphisms. We write H�G to indicate faithfulness.

The us recall the (iso)comma construction in gpd, which is a 2-categorical vari-
ation on the concept of pullback.

3.2. Recollection. Let i : H → G and u : K → G be two morphisms of finite group-
oids with same target. The isocomma groupoid H �

G
K, also denoted (i/u)

(3.3)

H �
G
K

pr1

zz
pr2

$$
H

i $$

∼

⇓

γH,K
K

uzz
G

is defined by letting the objects of H �
G
K consist of triples (x, y, g) where x and

y are objects of H and K respectively and g : i(x)
∼→ u(y) is an isomorphism

in G; morphisms (x, y, g) → (x′, y′, g′) consist of pairs (h, k) where h : x → x′ and
k : y → y′ are morphisms in H and K such that g′i(h) = u(k)g. This groupoid
H �

G
K comes equipped with two morphisms pr1 and pr2 as in (3.3), namely the

obvious projections onto the H- and K-parts. Finally the 2-cell γH,K : i ◦ pr1
∼⇒

u ◦ pr2 is given by (γH,K)(x,y,g) = g. This construction enjoys a universal property,
see [BD20, § 2.1]. In particular, any 2-cell

(3.4)

L
v

~~
j

  
H

i   

∼

⇓

γ
K

u~~
G
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induces a functor 〈v, j, γ〉 : L → H �
G
K, mapping z ∈ L to (v(z), j(z), γz). When

this functor L → H �
G
K is an equivalence the square (3.4) is called a Mackey

square; such squares enjoy a (weaker) universal property, see [BD20] for details.

3.5. Remark. Instead of the 2-categorical notation (i/u) adopted in [BD20], we
systematically write H �

G
K in this paper to avoid conflict with additive quotients.

Writing H �
G
K requires the morphisms i and u to be unambiguous from context.

3.6. Example. We have canonical equivalences H ∼= H �
G
G and H ∼= G �

G
H given

respectively by 〈IdH , i, idi〉 and 〈i, IdH , idi〉.

3.7. Example ([BD20, Remark 2.2.7]). Here is the link with the ‘usual’ Mackey
double-coset formula. Let H,K ≤ G be subgroups of a finite group, considered as
one-object groupoids. Even in that case, H �

G
K is usually not connected, i.e. it

does not boil down to a single group. In fact, H �
G
K has one connected component

for each class in H\G/K. The choice of a representative in each such coset (i.e.
one object in each component) yields a non-canonical equivalence∐

[g]∈H\G/K

H ∩ gK ∼−→ H �
G
K

that can be used to turn our canonical Mackey formulas for groupoids into the more
traditional but non-canonical Mackey double-coset formulas for groups.

3.8. Lemma. The isocomma construction commutes with coproducts, in the sense
that for any H,K,L� G there are canonical isomorphisms of groupoids

(H �
G

(K tL)) ∼= (H �
G
K)t (H �

G
L) and ((K tL) �

G
H) ∼= (K �

G
H)t (L �

G
H)

which are compatible with the projections and the 2-cells.

Proof. Easy exercise. �

3.9. Lemma. In a configuration of square 2-cells as follows

|| ""

|| ""

∼

⇓

σ

||

""

∼

⇓

γ

||

if both γ and the composite square are Mackey squares, then so is σ.

Proof. Straightforward from the universal property of a Mackey square; see [BD20,
Definition 2.1.1 and § 2.2]. �

3.10. Notation. Given two isocomma squares

E �
G
F

pr1

{{
pr2

##
E

u $$

∼

⇓

γ
F

vzz
G

and

E′ �
G′F

′

pr1

zz
pr2

$$
E′

u′ %%

∼

⇓

γ′
F ′

v′yy
G′



8 PAUL BALMER AND IVO DELL’AMBROGIO

as well as morphisms i : G→ G′, k : E → E′ and ` : F → F ′ making the diagram

E u
''

k
��

Fv
ww

`
��

G

i
��

E′

u′
''

F ′

v′
ww

G′

(strictly) commute, we will write

(k �i`) : (E �
G
F )−→(E′ �

G′F
′)

for the canonical morphism with components 〈k pr1, `pr2, iγ〉. Explicitly, this func-
tor k �

i
` maps (x, y, g) to (k(x), `(y), i(g)). If the functor i happens to be the

identity i = IdG, we will write k �
G
`, and similarly with k and `.

∗ ∗ ∗

3.11. Notation. It is convenient to consider other 2-categories of groupoids, like
gpdf the subcategory of gpd in which we only take faithful morphisms H�G.
More interesting is the 2-category gpdf/G0

of [BD20, Definition B.0.6] consisting of

groupoids (G, iG) together with a chosen faithful embedding iG : G�G0 into a
fixed ‘ambient’ groupoid G0. This allows us to treat in the same breath the ‘global’
theory for the 2-category G = gpd (or G = gpdf) and the ‘G0-local’ theory for a
given G0 by using G = gpdf/G0

. In glorious generality, G could be any 2-category as

in [BD20, Hypothesis 5.1.1] but the reader can keep one of the above in mind:

G = gpdf or G = gpdf/G0
.

3.12. Recollection. Let G be our 2-category of finite groupoids of interest, as above.
A Mackey 2-functor M : Gop → ADD is a strict 2-functor taking values in additive
categories and additive functors satisfying the following four axioms:

(Mack 1) Additivity: M(G1 tG2) =M(G1)⊕M(G2).

(Mack 2) Existence of adjoints: For every faithful i : H�G, the restriction functor
i∗ =M(i) : M(G)→M(H) admits a left adjoint i! and a right adjoint i∗.

(Mack 3) For every Mackey square (3.4), the mates of the 2-cell γ∗ with respect to
the adjunctions of (Mack 2) give Base-Change isomorphisms

j! ◦ v∗
∼⇒ u∗ ◦ i! and u∗ ◦ i∗

∼⇒ j∗ ◦ v∗ .

(Mack 4) Ambidexterity: Induction and coinduction coincide: i! ' i∗.
If G0 is a fixed finite group, a Mackey 2-functor for G0 is one where G = gpdf/G0

.

3.13. Remark. The reader will find a detailed discussion of these axioms, and their
beautification, in [BD20, Remark 1.1.10, § 1.2 and Chapter 3]. In particular, if there
exists any isomorphism i! ' i∗ as in (Mack 4), then a certain canonical and well-
behaved natural transformation Θi : i! ⇒ i∗ is also invertible and lets us combine
i! and i∗ into a single functor, in the following denoted by i∗, adjoint to i∗ on both
sides and satisfying further extra properties [BD20, Theorem 1.2.1].

3.14. Remark. One virtue of Mackey 2-functors is the profusion of examples ex-
tending beyond representation theory; see [BD20, Chapter 4] or Section 7.
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4. The operator ∂ on groupoids

Let us fix a faithful morphism between two finite groupoids

H
i
� G.

The construction ∂i(−,−) introduced in this section measures the difference be-
tween isocommas −�

H
− and −�

G
−. See Recollection 3.2 and Notation 3.10.

4.1. Proposition. Let E
ιE
� H and F

ιF
� H be faithful and consider the isocommas

(4.2)

E �
H
F

pr1

{{
pr2

##
E

ιE $$

∼

⇓

κE,F
F

ιFzz
H

and

E �
G
F

pr1

{{
pr2

##
E

iιE $$

∼

⇓

γE,F
F.

iιFzz
G

Then the functor (E �
i
F ) : (E �

H
F )→ (E �

G
F ) is fully-faithful.

Proof. The functor E �
i
F maps an object (x, y, h) to (x, y, i(h)), for all x ∈ Obj(E),

y ∈ Obj(F ) and h : ιE(x)
∼→ ιF (y) in H, and it is the identity on morphisms. More

precisely, morphisms (x, y, h) → (x′, y′, h′) in E �
H
F and morphisms (x, y, i(h)) →

(x′, y′, i(h′)) in E �
G
F both consist of pairs of morphisms (e ∈ E(x, x′), f ∈ F (y, y′))

such that, respectively, h′ιE(e) = ιF (f)h or i(h′)iιE(e) = iιF (f)i(h). But these two
conditions are equivalent since i : H�G is faithful. �

4.3. Remark. In fact, the image of E �
H
F in E �

G
F is even replete, i.e. closed under

isomorphisms. So it is exactly a union of connected components of E �
G
F .

4.4. Notation. Let E,F�H as above. By Proposition 4.1, the groupoid E �
H
F is

equivalent to a union of connected components of E �
G
F . We denote by

∂i(E,F )

the full subgroupoid of E �
G
F consisting of the union of the connected components

which do not meet the image of E �
H
F . By construction, we thus have

(4.5) (E �
G
F ) ∼= (E �

H
F ) t ∂i(E,F ).

Of course, the groupoid ∂i(E,F ) not only depends on i : H�G and on E and F
but really depends on the embeddings ιE : E�H and ιF : F�H.

4.6. Remark. The two projections pr1 : (E �
G
F ) → E and pr2 : (E �

G
F ) → F and

the 2-cell γE,F : iιE pr1 ⇒ iιF pr2 of (4.2) restrict to ∂i(E,F )

∂i(E,F )
pr1

zz
pr2

$$∼

⇓

γE,F
E

iιE %%

F

iιFyy
G

and we keep the same notation for these restrictions when no confusion ensues.

4.7. Examples. In our application, we shall be given three groupoids D
j
� H

i
� G.

In that setting, there will be three pairs (E,F ) to which we need to apply the
∂i(E,F ) construction, namely (D,D), (H,D) and (H,H).
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(1) Taking E = F = D
j
� H, we have a decomposition

(D �
G
D) ∼= (D �

H
D) t ∂i(D,D).

The groupoid ∂i(D,D) will play an important role in the Green equivalence.

(2) Taking E = H itself and F = D�H, we have a decomposition

(H �
G
D) ∼= (H �

H
D) t ∂i(H,D) ∼= D t ∂i(H,D),

using the equivalence D
∼→ (H �

H
D) of Example 3.6.

(3) Taking E = F = H
id
� H, we have as a special case of (2) a decomposition

(H �
G
H) ∼= (H �

H
H) t ∂i(H,H) ∼= H t ∂i(H,H).

4.8. Remark. The reader can keep the following special case in mind throughout

the article. Suppose that D
j
� H

i
� G are subgroup inclusions for some good

old finite groups G, H and D. Then the three ∂-constructions of Examples 4.7 are
equivalent to the following coproducts of finite groups (cf. Example 3.7):∐
[g]∈D\G/D

g/∈H

D∩ gD ' ∂i(D,D),
∐

[g]∈H\G/D
g/∈H

H∩ gD ' ∂i(H,D),
∐

[g]∈H\G/H
g/∈H

H∩ gH ' ∂i(H,H).

In the representation-theoretic literature, the first two coproducts correspond to
two collections of subgroups typically denoted X and Y respectively; see (1.2). We
shall sometimes write U := {H ∩ gH | g ∈ GrH} for the third one.

Sooner or later we are going to apply the constructions ∂i(E,F ) to morphisms
E,F�H which are themselves obtained as isocommas or as ∂i(E

′, F ′) for other
E′, F ′�H. Since there are more than one faithful functor out of such more com-
plicated objects into H, we need to specify which one we use.

4.9. Convention. In all cases, we tacitly embed E �
G
F into H via the first projection

(E �
G
F )

pr1
� E�H and similarly for the subgroupoid ∂i(E,F ) of E �

G
F .

4.10. Proposition (Diagonality). Let E
k
� E′

ιE′
� H with ιE = ιE′k and let

F
`
� F ′

ιF ′
� H with ιF = ιF ′`. Consider the groupoids ∂i(E,F ) and ∂i(E

′, F ′) and
the associated decompositions as in (4.5)

(E �
G
F ) ∼= (E �

H
F ) t ∂i(E,F ) and (E′ �

G
F ′) ∼= (E′ �

H
F ′) t ∂i(E′, F ′).

Then the canonical functor k �
G
` : (E �

G
F )→ (E′ �

G
F ′) induced by k : E → E′ and

` : F → F ′ is ‘diagonal’, i.e. it respects the above decompositions:

E �
G
F ∼=

k �
G
`

��

E �
H
F t

k �
H
`

��

∂i(E,F )

∃ ! ∂i(k,`)
��

E′ �
G
F ′ ∼= E′ �

H
F ′ t ∂i(E

′, F ′)

hence defines a unique functor ∂i(k, `) : ∂i(E,F )� ∂i(E
′, F ′), which is faithful.

Proof. The functor k �
G
` : (E �

G
F ) → (E′ �

G
F ′) simply maps objects (x, y, g) to

(k(x), `(y), g). Similarly for k �
H
` : (E �

H
F ) → (E′ �

H
F ′). Hence the following
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square commutes (on the nose), as can be readily checked:

E �
G
F

k �
G
`
��

E �
H
F? _oo

k �
H
`

��
E′ �

G
F ′ E′ �

H
F ′? _oo

Here the horizontal inclusions are the fully-faithful functors of Proposition 4.1. To
show that k �

G
` also preserves the ‘complements’, i.e. maps ∂i(E,F ) into ∂i(E

′, F ′),
it suffices to show that if the image under k �

G
` of an object (x, y, g) of E �

G
F is

isomorphic to the image of an object of E′ �
H
F ′ inside E′ �

G
F ′ then the given

object (x, y, g) is already equal to the image of an object of E �
H
F . So suppose

that we have (x′, y′, h′) in E′ �
H
F ′ and an isomorphism (e′, f ′) : (k(x), `(y), g)

∼→
(x′, y′, i(h′)) in E′ �

G
F ′ given by e′ : k(x)

∼→ x′ in E′ and f ′ : `(y)
∼→ y′ in F , such

that the following square commutes in G:

iιE′k(x)

iιE′ (e
′)
��

g // iιF ′`(y)

iιF ′ (f
′)

��
iιE′(x

′)
i(h′)

// iιF ′(y′).

Let then h := ιF ′(f
′)−1 ◦ h′ ◦ ιE′(e′) : ιE(x) = ιE′k(x)

∼→ ιF ′`(y) = ιF (y) in H and
note that i(h) = g by the above square. Then the object (x, y, h) of E �

H
F maps

to our (x, y, g) in E �
G
F , as claimed. This proves that k �

G
` is indeed ‘diagonal’.

Finally, ∂i(k, `) is faithful because so is k �
G
`, by faithfulness of k and `. �

4.11. Notation. As usual we simply write ∂i(k, F ) for ∂i(k, IdF ) : ∂i(E,F ) →
∂i(E

′, F ) and ∂i(E, `) for ∂i(IdE , `) : ∂i(E,F )→ ∂i(E,F
′).

4.12. Example. Applying the above in Example 4.7 we get faithful functors

∂i(j,D) : ∂i(D,D)� ∂i(H,D) and ∂i(H, j) : ∂i(H,D)� ∂i(H,H) .

For subgroup inclusions D
j
� H

i
� G as in Remark 4.8, these simply correspond

to inclusions X ⊆ Y ⊆ U, where for every collection S of subgroups of G we denote
by S its closure under taking subgroups: S =

{
K ≤ G

∣∣∃L ∈ S s.t. K ≤ L
}

.

The next statement encapsulates the situation needed in the Green equivalence.

4.13. Lemma. Let j1 : D1�H and j2 : D2�H. Then we have Mackey squares

(4.14)

(D1 �HD2) t ∂i(D1, D2)
pr1 t∂i(D1,j2)

uu
pr2 t∂i(j1,D2)
))∼⇒D1 t ∂i(D1, H)

j1t∂i(j1,H) ))
(Id , pr1)

vv

D2 t ∂i(H,D2)

j2t∂i(H,j2)uu
(Id , pr2)

''D1

j1 ((

H t ∂i(H,H)
(Id , pr1)

tt

(Id , pr2)

**∼⇒

D2

j2ww
H

i **

H

ittG

where the top square is a coproduct of two Mackey squares. In particular, we have
an equivalence (D1 �H∂i(H,D2)) ∼= ∂i(D1, D2).
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Proof. Taking the isocommas ofD1�H�G againstD2�H�G inG, we obtain
(using Notation 3.10) the following diagram, where each square is a Mackey square
by repeated applications of Lemma 3.9:

D1 �GD2pr1

��

j1 �GD2

''
D1 �G j2
ww

pr2

��

D1 �GH

pr1xx
j1 �GH

''

H �
G
D2

H �
G
j2

ww pr2 &&
D1

j1 ''

H �
G
H

pr1

ww
pr2

''∼⇒

D2

j2ww
H

i ''

H

iww
G

By unpacking the decompositions (4.5) for all four isocommas and using diago-
nality as in Proposition 4.10, we obtain the diagram of Mackey squares in (4.14).
Patching together the two upper-left Mackey squares, we see that the top groupoid
(D1 �HD2) t ∂i(D1, D2) is equivalent to the isocomma (D1 �H (D2 t ∂i(H,D2))) ∼=
(D1 �HD2) t (D1 �H∂i(H,D2)), where the last isomorphism is by Lemma 3.8.

We still want to verify that this equivalence

(4.15) (D1 �HD2) t ∂i(D1, D2) ∼= (D1 �HD2) t (D1 �H∂i(H,D2))

is diagonal, so as to deduce the claimed equivalence ∂i(D1, D2) ∼= (D1 �H∂i(H,D2))
between the right summands. These being finite groupoids, it suffices to show that
the equivalence (4.15) restricts to an equivalence on the left summands. Indeed, by
construction, (4.15) makes the following diagram commute

(D1 �HD2) t ∂i(D1, D2) '
(4.15) //

'
〈(pr1,pr1),...〉 ))

(D1 �HD2) t (D1 �H∂i(H,D2))

'
〈(pr1,pr1),...〉tt

(D1 �H (D2 t ∂i(H,D2)))

where the left equivalence is the canonical comparison of Mackey squares (whose
first component (pr1,pr1) is computed by the top-left composite in (4.14)) and the
right equivalence is as in (the proof of) Lemma 3.8. We deduce from this triangle
that (4.15) restricts to the identity of D1 �HD2. �

We shall need one more, slightly tricky, observation.

4.16. Lemma. Let D
j
� H

i
� G. Then the functor pr1 : (H �

G
∂i(D,D))�H

factors via pr1 : ∂i(H,D)�H.

Proof. We need to construct u : (H �
G
∂i(D,D))→ ∂i(H,D) such that pr1 ◦u = pr1.

As in (4.5), there is a decomposition of the isocomma (H �
G
∂i(D,D)) over G as the

disjoint union of the ‘same’ isocomma over H, that is (H �
H
∂i(D,D)) ∼= ∂i(D,D),

with the rest, that is called ∂i(H, ∂i(D,D)) by definition:

(4.17) (H �
G
∂i(D,D)) ∼= ∂i(D,D) t ∂i(H, ∂i(D,D)).

The morphism u is given by two different formulas on those two components.
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On the first component, ∂i(D,D), define u := ∂i(j,D) : ∂i(D,D)→ ∂i(H,D) and
note that pr1 ◦u = j pr1. The latter is also the restriction of pr1 : (H �

G
∂i(D,D))→

H to that component ∂i(D,D), as the following diagram is easily seen to commute

∂i(D,D)
〈j pr1,Id,idj pr1

〉

'
//

pr1

��

H �
H
∂i(D,D) �

� H �i∂i(D,D)

as in Prop. 4.1
// H �

G
∂i(D,D)

pr1

��
D

j // H

(The top fully-faithful functor is the explicit way ∂i(D,D) is equivalent to the
component H �

H
∂i(D,D) of H �

G
∂i(D,D).)

On the other component ∂i(H, ∂i(D,D)) in (4.17), we can use the functoriality
of ∂i(H,−) to define u := ∂i(H,pr1) : ∂i(H, ∂i(D,D)) → ∂i(H,D) for the mor-
phism pr1 : ∂i(D,D) → D. Note that we are allowed to do this, i.e. to apply

Proposition 4.10 with F�F ′�H being ∂i(D,D)
pr1
� D

j
� H as this composite is

the (tacit) morphism ∂i(D,D)�H; see Convention 4.9. (This would be inaccurate
with pr2!) By the construction of ∂i(H,pr1) as a diagonal component of H �

i
pr1,

we have pr1 ◦∂i(H,pr1) = pr1 as wanted. �

5. The Green equivalence

We fix for the section a Mackey 2-functor M : Gop → ADD (Recollection 3.12).
Recall from Notation 3.11 that G typically denotes either the 2-category of finite
groupoids G = gpdf with faithful morphisms or the 2-category G = gpdf/G0

of

groupoids embedded in a given ambient groupoid G0.

5.1. Definition. Let j : D�H be faithful in G. We call an object m ∈ M(H)
a D-object (or j-object), if m is a retract of some object of the form j∗(n) with
n ∈M(D). We denote the full subcategory of D-objects in M(H) by

M(H;D) =M(H; j) := add(j∗(M(D))) ⊆M(H)

An object of the form j∗(n) for some n ∈M(D) will be called a strict D-object.

5.2. Remark. Representation theorists call our D-objects relatively D-projective
(for having the left lifting property against j∗-split morphisms). We find this ter-
minology cumbersome and not so helpful in our broader context. In view of the
ambidextrous adjunction j∗ a j∗ a j∗, our D-objects are also the relatively D-
injective ones (with dual lifting property), or equivalently those m for which the
unit m→ j∗j

∗(m) (or the counit j∗j
∗(m)→ m) has a retraction (resp. a section).

5.3. Remark. Let us get a few elementary observations out of the way:

(1) The subcategory M(H; j) is independent of the isomorphism class of j, that

is, if j
∼⇒ j′ : D�H then M(H; j) =M(H; j′).

(2) If E�D�H then M(H;E) ⊆M(H;D).

Next we study the behavior of D-objects under induction and restriction.

5.4. Proposition. Let D
j
� H

i
� G. Then induction i∗ : M(H) → M(G) pre-

serves D-objects: i∗(M(H; j)) ⊆M(G; ij), that is, i∗(M(H;D)) ⊆M(G;D).

Proof. Direct from the definition. �
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5.5. Proposition. Let E
k
� G and H

i
� G. Then restriction i∗ : M(G)→M(H)

maps E-objects to H �
G
E-objects, where H �

G
E embeds into H via the first projec-

tion pr1 : (H �
G
E)�H. Namely, if we have the left-hand isocomma

H �
G
E

pr1

{{
pr2

##
H

i $$

∼

⇓
γ

E

kzz
G

then i∗(M(G;E)) ⊆M(H;H �
G
E)

or more precisely i∗(M(G; k)) ⊆M(H; pr1).

Proof. This follows immediately from the Mackey formula: i∗k∗ ∼= (pr1)∗ pr∗2. �

5.6. Remark. We are going to consider categories M(G;E) and M(H;E), with
respect to isocommas E = (H �

G
D) for D�G, or with respect to subgroupoids

of such isocommas like E = ∂i(H,D) or E = ∂i(D,D) as in Section 4. When the
chosen faithful morphism E�H is not specified, we always use the first projection
as in Convention 4.9. This is in line with Proposition 5.5.

The following will be a useful tool in the Green equivalence.

5.7. Lemma. Let j : D�H and k : E�H. Let α : x→ y be a morphism inM(H),
where x is a D-object. Suppose that α factors via an E-object, then α factors via a
D �

H
E-object.

Proof. One easily retracts to the case where x = j∗(w) is a strict D-object, for
w ∈ M(D), and where α factors via some strict E-object k∗(z), with z ∈ M(E).
Let us write the assumed factorization, say, α = γβ, in the top triangle below:

j∗(w)
α //

β

&&
j∗(β̃)

��

y

j∗j
∗k∗(z) ε

// k∗(z)

γ
<<

Using the adjunctionM(H)(j∗w, k∗z) 'M(D)(w, j∗k∗z), there exists a morphism

β̃ : w → j∗k∗z making the above left-hand triangle commute, where ε is the counit
of the j∗ a j∗ adjunction. By Mackey for the isocomma D �

H
E, this new object

j∗j
∗k∗(z) ' j∗pr1∗ pr∗2(z) = (j pr1)∗ pr∗2(z) is induced from pr∗2(z) ∈ M(D �

H
E)

along j pr1 : (D �
H
E)�H, hence is a D �

H
E-object, through which α factors. �

In particular, the D’s for which a fixed x ∈M(H) is a D-object are ‘filtering’:

5.8. Corollary. If x ∈M(H) is both a D-object and an E-object, then it is also a
D �

H
E-object (for either embedding of D �

H
E into H).

Proof. If x ∈ M(H;D) is also an E-object, then α = idx factors through an E-
object, hence through a D �

H
E-object by Lemma 5.7, hence x ∈M(H;D �

H
E). �

We shall now consider quotients M(H)
M(H;D) of M(H) by D-objects, as additive

categories. See Recollection 2.7 if necessary.



GREEN EQUIVALENCES IN EQUIVARIANT MATHEMATICS 15

5.9. Lemma. Let D
j
�H and E

k
�H and consider (D �

H
E)�H (either way).

Then we have the right-hand commutative diagram of inclusions below

D �
H
E

pr1

{{
pr2

##
D

j $$

∼⇒ E

kzz
H

 

M(H;D �
H
E)

lL
{{

s�

&&
M(H;D)

r�

##

M(H;E)
kK

xx
M(H)

Furthermore, the resulting canonical functor on the quotients

(5.10)
M(H;D)

M(H;D �
H
E)
−→ M(H)

M(H;E)

is fully faithful.

Proof. The diagram of inclusions is immediate fromM(H; j pr1) =M(H; k pr2) =:
M(H;D �

H
E). Since both the inclusion M(H;D) ↪→ M(H) and the projection

M(H)�M(H)/M(H;E) are full, the composite M(H;D) → M(H)/M(H;E)
is certainly full and so is the induced functor (5.10). We need to show that the
latter is faithful, which follows immediately from Lemma 5.7. �

5.11. Remark. In Lemma 5.9, we saw quotients M(H;D)/M(H;D′) appear for

the first time, with D′
k
� D

j
� H. Let us lift a possible ambiguity. By definition,

this quotient consists of D-objects in M(H), with maps modulo D′-objects. It is
however also the category of D-objects inM(H)/M(H;D′), forM(−)/M(−;D′),
that is, retracts of images of j∗ : M(D)/M(D;D′) → M(H)/M(H;D′), which is
well-defined by Proposition 5.4. Indeed, by Remark 2.8, if x ∈ M(H) is a retract
in the quotient M(H)/M(H;D′) of some j∗(y) for y ∈ M(D) then x is a retract
of j∗(y) ⊕ (jk)∗(z) in M(H) for some z ∈ M(D′), and therefore x is a retract of
j∗(y ⊕ k∗(z)) ∈ M(H;D). In other words, M(H;D)/M(H;D′) consists of the
retract-closure in M(H)/M(H;D′) of objects of the form j∗(y) for y ∈M(D).

With Proposition 2.9, we get an easy condition for idempotent-completeness.

5.12. Proposition. Let M : Gop → ADD be a Mackey 2-functor satisfying the
following hypothesis:

(t∆) For each H ∈ G, the category M(H) admits countable coproducts and a
triangulation such that i∗ : M(H)→M(K) is exact for every i : K�H.

Then for every triple D′�D�H, the additive quotient M(H;D)/M(H;D′) is
idempotent-complete.

Proof. As explained in Remark 5.11, M(H;D)/M(H;D′) is closed under retracts
in the ambient category M(H)/M(H;D′). So it suffices to prove that the latter
is idempotent-complete. We claim that it is triangulated and admits countable
coproducts, so the result follows from Proposition 2.9. To get the triangulation,
we can apply Proposition 2.10 with T =M(H) and S =M(D′) and the functors
R = `∗ and I = `∗ for ` : D′�H. For coproducts, since M(H) admits them, it
suffices to show that M(H;D′) is closed under arbitrary coproducts. This follows
from the fact that I = `∗ commutes with coproducts, like every left adjoint. �

Returning to the functor (5.10), we now deduce from Lemma 5.9 a statement
which has the flavor of a ‘Second Isomorphism Theorem’:
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5.13. Corollary. Let j : D�H and k : E�H and consider (j, k) : D tE�H as
well as the isocomma (D �

H
E)�H (either way). Then the canonical functor

(5.14)
M(H;D)

M(H;D �
H
E)
−→M(H;D t E)

M(H;E)

given by the identity on objects and morphisms, is fully-faithful and induces an
equivalence on idempotent-completions, i.e. it is an equivalence-up-to-retracts.

Proof. We have M(H;E) ⊆M(H;D t E) ⊆M(H). So, in the following commu-
tative diagram of canonical functors, the right-hand vertical functor is fully faithful

M(H;D)

M(H;D �
H
E)

(5.14) //

(5.10) ))

M(H;D t E)

M(H;E)
_�

��
M(H)

M(H;E)
.

As the diagonal functor (5.10) is fully faithful by Lemma 5.9, so is our horizontal
functor (5.14). Let now m ∈ M(H;D t E) and choose (x, y) ∈ M(D)⊕M(E) =
M(D t E) such that m ≤ j∗(x) ⊕ k∗(y). Since k∗(y) = 0 in the quotient mod-

uloM(H;E), we see that m is a retract of the strict D-object j∗(x) in M(H;DtE)
M(H;E) .

As j∗(x) ∈M(H;D), this shows that (5.14) is surjective-up-to-retracts. �

5.15. Example. When D
j
� H

i
� G we have seen in Example 4.7 (2) a decomposi-

tion to which we can apply Corollary 5.13, namely (H �
G
D) ∼= D t ∂i(H,D).

5.16. Proposition. Let D
j
� H

i
� G. The canonical functor (see Convention 4.9)

M(H;D)

M(H; ∂i(D,D))
−→ M(H;H �

G
D)

M(H; ∂i(H,D))

is an equivalence-up-to-retracts.

Proof. Use (H �
G
D) ∼= D t ∂i(H,D) by Example 4.7 (2) and apply Corollary 5.13

with E = ∂i(H,D). To apply Corollary 5.13, we need to compute (D �
H
E). But

Lemma 4.13 precisely gives us (D �
H
E) = (D �

H
∂i(H,D)) ∼= ∂i(D,D). �

5.17. Theorem (The Green equivalence). Let D
j
� H

i
� G be faithful morphisms

of groupoids in G and let M be a Mackey 2-functor. Then the induction functor
i∗ : M(H)→M(G) yields a well-defined equivalence of categories on the following
idempotent-completions (Definition 2.3) of additive quotients (Recollection 2.7)

(5.18) i∗ :

(
M(H;D)

M(H; ∂i(D,D))

)\
∼−→
(

M(G;D)

M(G; ∂i(D,D))

)\
.

Moreover, the restriction functor i∗ : M(G) → M(H) maps M(G; ∂i(D,D)) into
M(H; ∂i(H,D)) and defines an equivalence

(5.19) i∗ :

(
M(G;D)

M(G; ∂i(D,D))

)\
∼−→
(
M(H;H �

G
D)

M(H; ∂i(H,D))

)\
.

Finally, the composite of those two equivalences is isomorphic to the canonical

functor
( M(H;D)
M(H;∂i(D,D))

)\ ∼→ ( M(H;H �
G
D)

M(H;∂i(H,D))

)\
of Proposition 5.16.
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Proof. By Proposition 5.4, we know that i∗ : M(H)→M(G) restricts to a functor
M(H;E) → M(G;E) for all subgroupoids E�H that we care about, namely
D and ∂i(D,D). So the induction functor (5.18) is well-defined. With restriction
we need to be a little more careful. The general Proposition 5.5 only tells us
that i∗ : M(G) → M(H) restricts to M(G;D) → M(H;H �

G
D) and further to

M(G; ∂i(D,D))→M(H;H �
G
∂i(D,D)). So the ‘numerators’ in (5.19) are fine but

for the ‘denominators’ we still need to prove the inclusion M(H;H �
G
∂i(D,D)) ⊆

M(H, ∂i(H,D)). For this it suffices that the morphism H �
G
∂i(D,D)�H (given

by pr1) factors via pr1 : ∂i(H,D)�H. This is precisely the content of Lemma 4.16.
Therefore all functors in the following diagram are well-defined:

(5.20)

M(H;D)

M(H; ∂i(D,D))

i∗
��

(5.16)

\-∼=
%%

M(G;D)

M(G; ∂i(D,D))
i∗ // M(H;H �

G
D)

M(H; ∂i(H,D))

We first claim that this diagram commutes up to isomorphism. Indeed, recall
from [BD20, (Mack 9) in Theorem 1.2.1] that the unit η : IdM(H) ⇒ i∗i∗ : M(H)→
M(H) of the i∗ a i∗ adjunction is a naturally split monomorphism. More precisely,
if we decompose the self-isocomma H �

G
H as in Example 4.7 (3)

H t ∂i(H,H)
(IdH , p1)

yy
(IdH , p2)

%%∼

⇓

(idi , γ
′)

H

i %%

H

iyy
G

then ( η γ′! ) : IdM(H) ⊕ p1∗p∗2
∼⇒ i∗i∗. (We temporarily denote the projections re-

stricted to ∂i(H,H) by p1 and p2 to avoid confusion.) So the ‘difference’ between
i∗i∗ and IdM(H) is given by p1∗p

∗
2. When evaluating p1∗p

∗
2 at a strict D-object

in M(H), say, x = j∗(y) for some y ∈M(D), we need to use a diagram of Mackey
squares as in Lemma 4.13 (see the bottom-right of (4.14) for D2 = D):

(5.21)

D t ∂i(H,D)
j t ∂i(H,j)

ww
(IdD , pr2)

$$
H t ∂i(H,H)

(IdH , p1)

yy
(IdH , p2)

''∼

⇓

(idi , γ
′)

D

jzz
H

i %%

H

ivv
G

We can then compute

p1∗p
∗
2j∗(y) ' p1∗(∂i(H, j))∗ pr∗2(y) ' (p1 ◦ ∂i(H, j))∗ pr∗2(y).

Since p1 ◦ ∂i(H, j) = pr1 : ∂i(H,D)�H, we see that the above ‘difference’ ob-
ject p1∗p

∗
2j∗(y) between x = j∗(y) and i∗i∗(x) ' x ⊕ p1∗p∗2j∗(y) is actually zero

in the quotient by M(H, ∂i(H,D)). This proves that η induces an isomorphism

making (5.20) commute, Id
∼⇒ i∗i∗, as claimed.
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We then claim that i∗ in (5.20) is faithful. Let x, y ∈ M(G;D) be D-objects
over G and α : x→ y such that i∗(α) factors via a (strict) ∂i(H,D)-object inM(H).
We need to show that [α] = 0 inM(G)/M(G; ∂i(D,D)). Up to retraction, we can
assume that x and y are strict D-objects and in particular x = i∗(w) for a (strict)
D-object w ∈ M(H;D) over H. So we have α : x = i∗(w) → y. By adjunction,
there exits a map β : w → i∗(y) in M(H) adjoint to α, i.e. such that

(5.22) α = εy ◦ i∗(β) : x = i∗(w)
i∗(β)−−−→ i∗i

∗(y)
ε→ y

in M(G). The inverse formula for β is that β = i∗(α) ◦ ηw and in particular, since
i∗(α) is assumed to factor via a ∂i(H,D)-object then so does β. But β : w → i∗(y)
starts from a (strict) D-object. So by Lemma 5.7 for E = ∂i(H,D), we know that
β also factors via a D �

H
∂i(H,D)-object. By Lemma 4.13 (for D1 = D2 = D) we

know that D �
H
∂i(H,D) ∼= ∂i(D,D). So β factors over H via a strict ∂i(D,D)-

object, say (j pr1)∗(z) and therefore i∗(β) factors via (ij pr1)∗(z), which is now a
∂i(D,D)-object over G. Combining this with (5.22), we see that α factors via the
same object, that is, [α] = 0 in M(G)/M(G; ∂i(D,D)), as claimed.

Returning to (5.20), we now know that i∗◦i∗ is an equivalence-up-to-retracts and
that i∗ is faithful. From the former, it follows that i∗ is surjective-up-to-retracts and
that i∗ is full at least on images of i∗. But every object ofM(G;D)/M(G; ∂i(D,D))
is a retract of such an image under i∗ hence i∗ is indeed full. In short, i∗ is an
equivalence-up-to-retracts and therefore so is i∗. �

6. The Krull-Schmidt case

We now specialize the Green equivalence of Section 5 to the classical setting.

6.1. Hypotheses. In this section, M : Gop → ADD will be a Mackey 2-functor such
that each category M(G) is Krull-Schmidt (see Recollection 6.2).

In this situation it becomes possible to explicitly describe a quasi-inverse to
the Green equivalence in terms of the restriction functor; see Corollary 6.13. The
Green correspondence for indecomposable objects can then be deduced from it; see
Corollary 6.14. Specializing to groups as in Remark 4.8, we recover Green’s original
results [Gre72] and [Gre64] in modular representation theory; see Example 7.1.

We did not use Krull-Schmidt so far. Let us remind the reader.

6.2. Recollection. An additive category A is Krull-Schmidt if every object x ∈ A
admits a decomposition x ' x1⊕. . .⊕xr where all xi have local endomorphism rings.
(A nonzero ring is local if its non-invertible elements are closed under addition.)
An object with local endomorphism ring is indecomposable. Then A has the Krull-
Schmidt decomposition property : For two decompositions as above x1 ⊕ . . .⊕ xr '
x′1⊕ . . .⊕ x′s we have r = s and isomorphisms xi ' yσ(i) for a permutation σ ∈ Σr.
By [Kra15, Cor. 4.4], the category A is Krull-Schmidt if and only if it is idempotent-
complete and EndA(x) is semi-perfect for all x ∈ A. As finite-dimensional algebras
are semi-perfect, an idempotent-complete A is Krull-Schmidt if it is Hom-finite over
a field k (i.e. k-linear and dimk(Hom(x, y)) <∞ for all x, y ∈ A).

6.3. Remark. Let A be Krull-Schmidt and let B ⊆ A be a full additive subcategory
closed under retracts. Then B is clearly Krull-Schmidt. The quotient A/B is also
Krull-Schmidt. Indeed, the functor A → A/B sends finite direct sums to (possibly
shorter) finite direct sums; it also sends an object with local endomorphism ring in
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A either to zero or again to such an object of A/B, because EndA/B(x) is a quotient
ring of EndA(x). In particular, under Hypotheses 6.1, the categoriesM(G;D) and
M(G;D)/M(G;E) we considered in Section 5 are all Krull-Schmidt. Furthermore:

6.4. Lemma. Let B ⊆ A be an additive subcategory closed under retracts. The
quotient A → A/B gives a bijection between the isomorphism classes of indecom-
posable objects in A not belonging to B and those of A/B. Furthermore, if x has
no summand in B and is indecomposable in A/B then x is indecomposable in A.

Proof. By Remark 6.3, it suffices to show that indecomposables x, y ∈ Ar B that
become isomorphic in A/B are already isomorphic in A. Remark 2.8 implies that
x is a retract of y ⊕ b for some b ∈ B. As x 6∈ B, Krull-Schmidt forces x ' y. �

6.5. Notation. Let M : Gop → ADD as in Hypotheses 6.1. For every faithful mor-
phism k : E�H and every object m ∈M(H), we choose a decomposition

(6.6) ϕm : m
∼→ p′E(m)⊕ pE(m)

with pE(m) ∈ M(H;E) and with p′E(m) having no indecomposable summand
inM(H;E). This decomposition exists by simply regrouping indecomposable sum-
mands of m, depending on whether they belong to M(H;E). We call pE(m) the
E-part of m and p′E(m) the E-free part of m. For any map α : m→ n we write

(6.7) p′E(α) : p′E(m)→ p′E(n)

for the diagonal component of α on the E-free parts of its source and target.

6.8. Remark. Of course, the above choice (6.6) is non-canonical and (6.7) is not
functorial. However, we are going to see that this issue disappears on suitable
additive subquotients.

6.9. Proposition. Consider the canonical equivalence of Corollary 5.13

(6.10)
M(H;D)

M(H;D �
H
E)

∼−→ M(H;D t E)

M(H;E)

For j : D�H and k : E�H. Then the E-free part assignments m 7→ p′E(m) and
α 7→ p′E(α) of Notation 6.5 induce a well-defined quasi-inverse to (6.10)

(6.11) p′E :
M(H;D t E)

M(H;E)

∼−→ M(H;D)

M(H;D �
H
E)

.

Proof. Since Krull-Schmidt implies idempotent-complete, (6.10) follows from (5.14).
We claim that our chosen p′E as in Notation 6.5 yields a well-defined functor

(6.12) p′E : M(H;D t E)−→ M(H;D)

M(H;D �
H
E)

.

Let m ∈ M(H;D t E), say m ≤ j∗(v)⊕ k∗(w). For every indecomposable x ≤ m,
we must have x ≤ j∗(v) ∈ M(H;D) or x ≤ k∗(w) ∈ M(H;E). By definition of
the E-free part of m, we get p′E(m) ∈M(H;D). So (6.12) makes sense on objects
and we define it as α 7→ [p′E(α)] on maps. Identity maps are sent to identities. For

a composite m
α−→ n

β−→ q in M(H;D t E), we have a commutative diagram

m

ϕm '
��

α // n

ϕn '
��

β // q

ϕq '
��

p′E(m)⊕ pE(m)

(
p′E(α) a1
a2 a3

)
// p′E(n)⊕ pE(n)

(
p′E(β) b1
b2 b3

)
// p′E(q)⊕ pE(q)
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and therefore p′E(βα) = p′E(β)p′E(α) + b1a2. The ‘error’ b1a2 factors via pE(n) and
its source p′E(m) is a D-object by the above discussion. By Lemma 5.7, this error

b1a2 factors via a D �
H
E-object, hence disappears in M(H;D)

M(H;D �
H
E) . So (6.12) is a

well-defined functor. Lemma 5.7 also guarantees that the functor (6.12) descends
to a well-defined functor p′E as in (6.11). It is then easy to see that this p′E followed
by the canonical equivalence (6.10) is isomorphic to the identity. The isomorphism

is given by [ϕm] : m
∼→ p′E(m) ⊕ pE(m) ∼= p′E(m) where the latter projection is an

isomorphism modulo M(H;E) since pE(m) ∈ M(H;E). The naturality of this
transformation [ϕm] in m comes from the very definition of p′E(α). �

6.13. Corollary (The Green equivalence, Krull-Schmidt case). Let D
j
� H

i
� G

and let M be a Mackey 2-functor taking values in Krull-Schmidt categories. Then
i∗ : M(H)→M(G) induces a well-defined equivalence of the subquotient categories

i∗ :
M(H;D)

M(H; ∂i(D,D))

∼−→ M(G;D)

M(G; ∂i(D,D))

isomorphic to p′∂i(D,D) ◦ i∗, namely the ∂i(D,D)-free part (as in Notation 6.5) of

induction. Its quasi-inverse is given by the ∂i(H,D)-free part of restriction i∗

p′∂i(H,D) ◦ i
∗ :

M(G;D)

M(G; ∂i(D,D))

∼−→ M(H;D)

M(H; ∂i(D,D))
.

Proof. We have three equivalences, by (5.18), (5.19) and (6.11)

M(H;D)

M(H; ∂i(D,D))

i∗
∼=
// M(G;D)

M(G; ∂i(D,D))
i∗

∼=
// M(H;H �

G
D)

M(H; ∂i(H,D))

p′E
∼=
// M(H;D)

M(H; ∂i(D,D))

where the latter groupoid E is ∂i(H,D), using that H �
G
D ∼= D t ∂i(H,D) and

D �
H
∂i(H,D) ∼= ∂i(D,D) together with Proposition 6.9. That proposition also

guarantees that the composition of these three equivalences is isomorphic to the
identity. This shows that p′E◦i∗ is a quasi-inverse to i∗. Also the functor i∗ is clearly
isomorphic to p′∂i(D,D) ◦ i∗, since p∂i(D,D)(i∗(n)) ∼= 0 modulo M(G; ∂i(D,D)). �

We deduce the usual result for indecomposable objects ‘upstairs’.

6.14. Corollary (The Green correspondence). Let D
j
� H

i
� G be faithful func-

tors of finite groupoids, and let M be a Mackey 2-functor taking values in Krull-
Schmidt categories. Then there exists a bijection between the isomorphism classes
of indecomposable objects m ∈ M(G;D) not belonging to M(G; ∂i(D,D)) and
the isomorphism classes of indecomposable objects n ∈ M(H;D) not belonging
to M(H; ∂i(D,D)). It maps an indecomposable m ∈M(G;D) to the ∂i(H,D)-free
part p′∂i(H,D)(i

∗(m)) of its restriction and an idecomposable n to the ∂i(D,D)-free

part p′∂i(D,D)(i∗(n)) of its induction. Alternatively: m and n correspond to each

other if and only if either, and hence both, of the following two conditions hold:

m ≤ i∗(n) and n ≤ i∗(m) .

Proof. Chase indecomposable objects under the three bijections given by:

(1) Lemma 6.4 for A =M(H;D) and B =M(H; ∂i(D,D));
(2) The equivalence of (6.13);
(3) Lemma 6.4 for A =M(G;D) and B =M(G; ∂i(D,D)).

The final reformulation follows easily from Remark 2.8 and Lemma 6.4 again. �
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6.15. Remark. The original version of the Green equivalence in [Gre72, Theorem 4.1]
is for the Mackey 2-functor of modular representations (see Example 7.1 (a) below)
and is expressed in terms of finite groups D ≤ H ≤ G, as in Remark 4.8. It also
has the additional hypothesis that H contains the normalizer NG(D). The latter
guarantees that D ∩ gD � D as long as g /∈ H, so that (as soon as H � G) the
category M(H;D)/M(H; ∂i(D,D)) = M(H;D)/M(H;t[g],g 6∈HD ∩ gD) is non-
zero, and similarly for G, so that the Green equivalence is not an empty statement.

To conclude this section, still working under the Krull-Schmidt hypothesis, we
further refine the Green correspondence by introducing vertices of objects.

6.16. Remark (Vertices and sources). Just as in modular representation theory, we
can define the vertex and the source of an indecomposable object m ∈ M(G) for
any Krull-Schmidt Mackey 2-functorM. First, by the additivity ofM and the fact
that m is indecomposable, we may always arrange for G to be a group. Then we
may define a vertex of m to be a subgroup i : D ↪→ G such that m ∈M(G;D) and
which, among such subgroups of G, is minimal with respect to inclusion. A source
of m is then an indecomposable object s of M(G;D) such that m ≤ i∗(s). One
can prove, precisely as in the proof of [Alp80, Theorem 9.4], that every m admits a
vertex and a source, that any two vertices of m are G-conjugate subgroups, and that
any two sources of m (for the same vertex) are isomorphic. (In fact, if D1, D2 are
two vertices of m and s1 ∈M(D1) and s2 ∈M(D2) two sources, then there exists

an element g ∈ G such that gD1 = D2 and c∗g(s2) ' s1, where c∗g : M(S2)
∼→M(S1)

is the isomorphism of categories induced by conjugation cg : D1
∼→ D2, x 7→ gx.)

6.17. Proposition (Green correspondents have same vertex). Let D ≤ H ≤ G
be finite groups. If the indecomposable objects m ∈ M(G;D) rM(G; ∂i(D,D))
and n ∈ M(H;D) rM(H; ∂i(D,D)) are matched by the Green correspondence
of Corollary 6.14, then their vertices, defined as in Remark 6.15, are G-conjugate
(i.e. are ‘the same’). This vertex is necessarily (G-conjugate to) a subgroup P ≤ D
which is not G-subconjugate to any subgroup of the form D ∩ gD with g ∈ GrH.

Proof. Let i : H � G be the inclusion. We are in the situation of Remark 4.8,
where there is an equivalence ∂i(D,D) '

∐
[g]∈D\G/D, g/∈H D ∩ gD. Hence the

Green correspondence for D ≤ H ≤ G concerns only those indecomposable objects
in M(G) and M(H) which are not D ∩ gD-objects for any g ∈ GrH.

Let m ∈M(G) and n ∈M(H) be Green correspondents as in Corollary 6.14:

(6.18) m ≤ i∗(n) and n ≤ i∗(m).

Let P and Q be vertices of m and of n, respectively. In particular n is a Q-object,
hence so is the induced i∗(n) and therefore so is its retract m. By the uniqueness
of the vertex P of m, this implies that a conjugate of P is a subgroup of Q.

On the other hand, n is a retract of i∗(m) by (6.18). And m is a P -object (as P
is the vertex of m) hence its restriction i∗(m) is an H �

G
P -object by Proposition 5.5

(applied with E := P ). Because of the equivalence (H �
G
P ) '

∐
[g]∈H\G/P H ∩ gP ,

the indecomposable n is already anH∩gP -object for some g ∈ G. By the uniqueness
of the vertex Q, this shows that a conjugate of Q is a subgroup of P .

It follows that P and Q are conjugate subgroups of G. �

6.19. Corollary. Let D ≤ H ≤ G be finite groups such that NG(D) ≤ H. Then the
Green correspondence of Corollary 6.14 restricts to a bijection between indecompos-
ables in M(G) with vertex D and indecomposables in M(H) with vertex D.
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Proof. Since H ⊆ NG(D), for g ∈ G r H the subgroup D ∩ gD cannot contain a
conjugate of D because its order is strictly smaller. Hence D is an admissible vertex
to which we may restrict the Green correspondence as in Proposition 6.17. �

We conclude with a conceptual explanation for why all vertices arising in modular
representation theory are necessarily p-groups.

6.20. Remark. We say that a (non-necessarily Krull-Schmidt) Mackey 2-functorM
is cohomological1 if for every inclusion i : H ↪→ G of a subgroup, the composite

IdM(G)

rη
=⇒ i∗i

∗ `ε
=⇒ IdM(G)

of the unit of the ‘right’ adjunction i∗ a i∗ followed by the counit of the ‘left’
adjunction i∗ a i∗, is equal to the natural transformation [G : H] · id.

In that case, for every subgroup H ≤ G such that [G : H] is invertible in M(G)
(i.e. such that M(G) is a Z[ 1

[G:H] ]-linear category) each m ∈ M(G) is an H-

object. For instance, if M(G) is Z(p)-linear for some prime number p (e.g. Z/pZ-
linear), each object m ∈ M(G) is an H-object for H a p-Sylow subgroup of G. In
particular, in the Krull-Schmidt case, if m is indecomposable then its vertex (as in
Remark 6.16) is a p-subgroup of G.

In the extreme case where M is Q-linear and cohomological then M(G) =
M(G; 1) for all G, where 1 is the trivial group, and all vertices are trivial.

7. Examples in algebra, topology and geometry

Since Theorem 5.17 can be applied to any Mackey 2-functor M, we obtain a
Green equivalence theorem for each of the many examples of mentioned in [BD20,
Chapter 4]. As illustration, let us detail here a few of the most noteworthy ones,
pointing out the Krull-Schmidt cases in which the Green correspondence of Corol-
lary 6.14 also holds, and starting with the classical setting.

7.1. Example (Modular representation theory). Let k be a field of positive character-
istic p > 0. The typical ‘small’ Mackey 2-functors used in modular representation
theory over k are Hom-finite over k, idempotent-complete and therefore Krull-
Schmidt by Recollection 6.2. So we obtain for them both the Green equivalence
and the Green correspondence. These M are given as follows, for a group G:

(a) M(G) = mod(kG), the category of finite-dimensional k-linear representations
of G, i.e. finitely generated left kG-modules, and kG-linear maps.

(b) M(G) = stmod(kG) := mod(kG)
proj(kG) , the stable module category of kG.

(c) M(G) = Db(kG), the derived category of bounded complexes in mod(kG).

In each case, the induction and restriction adjunctions are given by the usual func-
tors; see [BD20, § 4.1-2] for more details. An easy direct calculation shows that
these Mackey 2-functors are cohomological as in Remark 6.20: Hence for them, the
vertex of any indecomposable object must be a p-group.

This recovers the standard formulation of the Green correspondence, cf. [Alp80].

7.2. Remark. Consider the classical situation of finite groups D ⊆ NG(D) ⊆ H ( G,
where in particular ∂i(D,D) 6= ∅. Recall that a modular representation is pro-
jective if and only if its vertex is the trivial group, hence we have proj(kG) ⊆

1We study cohomological Mackey 2-functors, in the above sense, in a separate article in prepa-
ration, where in particular we will justify the terminology ‘cohomological’.
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mod(G; ∂i(D,D)), and similarly for H. Thus the Green equivalence and correspon-
dence for the Mackey 2-functors (a) and (b) are identical. Those for (c), on the
other hand, are interesting in their own right since there are many indecomposable
complexes which are not merely (shifted) representations. Compare [CWZ20].

7.3. Remark. In Example 7.1 one may equally well take an arbitrary coefficient
ring k, at the risk of possibly losing the Krull-Schmidt property.

7.4. Remark. The Green equivalence can also be applied to the ‘big’ versions of the
Mackey 2-functors of Example 7.1:

(a) M(G) = Mod(kG), the category of all (also infinitely-dimensional) kG-modules.

(b) M(G) = StMod(kG) := Mod(kG)
Proj(kG) , the stable category of all kG-modules.

(c) M(G) = D(kG), the derived category of all (also unbounded) complexes.

Further variations are possible, for instance by considering the homotopy category,
or bounded chain complexes, etc., as long as they still form a Mackey 2-functor.

This recovers the main results of [BW01] and [CWZ20].

7.5. Example (Stable homotopy). As in [BD20, Example 4.3.8], we can consider
the Mackey 2-functor where M(G) = SH(G) is the stable homotopy category of
genuineG-equivariant spectra. Alternatively, as in [BD20, Example 4.1.6], there is a
Mackey 2-functor whereM(G) is the homotopy category of G-diagrams in spectra,
a.k.a. the ‘very näıve’ G-spectra. Neither of these examples is Krull-Schmidt, not
even if we restrict attention to compact objects (i.e. finite spectra); indeed the
‘plain’ category of finite spectra SH(1)c = Ho(Spf ) is not Krull-Schmidt by [Fre66,
Curiosity 6.3]. (Note that the categories of socalled ‘näıve’ equivariant spectra do
not form a Mackey 2-functor, as they do not satisfy ambidexterity (Mack 4).)

Proof of Corollary 1.6. Use Theorem 5.17 for the Mackey 2-functorM(−) = SH(−)
of Example 7.5 and use Proposition 5.12 to drop idempotent-completion. �

7.6. Example (Kasparov theory). As in [BD20, Example 4.3.9], there is a Mackey
2-functor whose valueM(G) = KK(G) is G-equivariant KK-theory, a.k.a. the Kas-
parov category of separable G-C*-algebras. Variations are possible: We may con-
sider equivariant E-theory instead (see [GHT00]), or the Mackey 2-functor formed
by the subcategories of G-cell algebras in the sense of [Del14], or the subcategories
of compact objects therein. We do not know if the latter example is Krull-Schmidt,
but in analogy to Example 7.5 we rather expect not.

Proof of Corollary 1.7. Use Theorem 5.17 for the Mackey 2-functorM(−) = KK(−)
of Example 7.6 and use Proposition 5.12 to drop idempotent-completion. �

We conclude with a family of geometric examples including Krull-Schmidt cases,
which provide us with novel instances of the Green correspondence:

7.7. Example (Equivariant sheaves). As in [BD20, Section 4.4], we may consider
Mackey 2-functors for a fixed group G0 arising from a category equipped with
a G0-action. For instance, we may look at the category of sheaves of modules
over a locally ringed space X equipped with an action of the group G0. This
yields a Mackey 2-functor M for G0 whose value at a subgroup G ≤ G0 is the
category M(G) = Mod(X//G) of G-equivariant sheaves of OX -modules. If X is a
noetherian scheme, we may also consider Mackey 2-functors with value at G the
category Qcoh(X//G) of quasi-coherent sheaves, or coh(X//G) of coherent sheaves,
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or their (bounded) derived categories D(Qcoh(X//G)) or Db(coh(X//G)). If X is a
regular and proper variety over a field k, then the latter Mackey 2-functor is also
Krull-Schmidt. Indeed, like coh(X), these categories are k-linear and idempotent-
complete, and are Hom-finite by [Ati56] or [BGI71, Corollaire 2.5].

As easily verified by an explicit computation, all of these examples are cohomo-
logical in the sense of Remark 6.20; in particular, the Green correspondence for the
latter example should be considered for char(k) = p > 0.

Proof of Corollary 1.8. Use Theorem 5.17 for the Mackey 2-functor of Example 7.7,
M(−) = Db(coh(X//−), and use Remark 6.3 to drop idempotent-completion. �

7.8. Remark. The Mackey 2-functors of Example 7.7 in the special case of X =
Spec(k) equipped with the trivial G0-action simply recover the ones of Example 7.1
(or more precisely their G0-local version, i.e. their restriction along the forgetful
2-functor gpdf/G0

→ gpd).
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