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Abstract. Working with tensor triangulated categories, we prove two the-

orems relative to supports and then discuss their incarnations in algebraic

geometry and in modular representation theory. First, we show that an in-
decomposable object has connected support. Then we consider the filtrations

by dimension or codimension of the support and prove that the associated

subquotients decompose as sums of local terms.

Introduction

We proved in [1] that schemes X in algebraic geometry and projective support
varieties VG(k) in modular representation theory both appear as the spectrum of
prime ideals, Spc(K), for suitable tensor triangulated categories K, namely and
respectively for K = Dperf(X), the derived category of perfect complexes over X,
and for K = stab(kG), the stable category of finitely generated kG-modules modulo
projectives. (This is recalled in Theorem 1.4 below.)

In this spectrum Spc(K), one can construct for every object a ∈ K a closed subset
supp(a) ⊂ Spc(K) called the support of a. This support provides a unified approach
to the homological support supph(E) ⊂ X of a perfect complex E ∈ Dperf(X) and
to the projective support variety VG(M) ⊂ VG(k) of a kG-module M ∈ stab(kG).

Since tensor triangulated categories also appear in topology, motivic theory,
KK-theory, and other areas, general results about spectrum and support have a
wide potential of application. This level of generality, that we dub tensor triangular
geometry, is the one of our main results. The first one is Theorem 2.11, which says :

Theorem. Let K be a strongly closed tensor triangulated category. Assume that K

is idempotent complete. Then, if the support of an object a ∈ K can be decomposed
as supp(a) = Y1 ∪ Y2 for disjoint closed subsets Y1, Y2 ⊂ Spc(K), with each open
complement Spc(K)rYi quasi-compact, then the object itself can be decomposed as
a direct sum a ' a1 ⊕ a2 with supp(ai) = Yi for i = 1, 2.

We call a tensor triangulated category K strongly closed when the symmetric
monoidal structure ⊗ : K×K−→K is closed, i.e. admits an internal hom functor
which is bi-exact, and when all objects are strongly dualizable (Def. 2.1). We explain
in Remark 2.2 how such categories proliferate in Nature. An additive category
K is idempotent complete if all its idempotents split (Rem. 2.10) and we show in
Example 2.13 that this hypothesis is necessary. In any case, we can embed any
triangulated category K into an idempotent complete one K ↪→ K̃, see [2].

The above result has the following avatars :
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Corollary. Let X be a quasi-compact and quasi-separated scheme (e.g. X noether-
ian) and let E ∈ Dperf(X) be a perfect complex on X. Let Y1 and Y2 be disjoint
closed subsets of X such that XrY1 and XrY2 are quasi-compact (automatic if X
is noetherian). Assume that the complex E is acyclic outside Y1 ∪ Y2. Then there
exist perfect complexes E1 and E2 over X such that E ' E1 ⊕E2 in Dperf(X) and
such that Ei is acyclic outside Yi for i = 1, 2.

Corollary. Let k be a field, G a finite group scheme and M an indecomposable
kG-module. Then its projective support variety VG(M) is connected.

For G a finite group, the latter is a celebrated theorem of J. F. Carlson. (Read at
least the title of [6] for k algebraically closed and see Benson [3, Part II, Thm. 5.12.1,
p. 194] in general.) See also later developments in Rickard [18], Krause [15] or
Chebolu [9].

In the next statement, for a closed subset Z ⊂ Spc(K) of the spectrum, dim(Z)
refers to its Krull dimension. This is a special case of our second main result,
Theorem 3.24, where we shall consider arbitrary dimension functions (Def. 3.1).

Theorem. Let K be a strongly closed tensor triangulated category such that Spc(K)
is noetherian. Let 0 = K(−1) ⊂ K(0) ⊂ · · · ⊂ K(p−1) ⊂ K(p) ⊂ · · · ⊂ K be the
filtration by dimension of the support, that is K(p) := {a ∈ K | dim(supp(a)) ≤ p}.
Then the associated quotients decompose as sums of local terms. More precisely,
consider the functor a 7→

{
q
P
(a)

}
P

induced by the localizations q
P

: K→ K/P

K(p)

/
K(p−1) −→

∐
P∈Spc(K)

dim {P} = p

(K/P)(0) .

Then this functor is fully faithful and has cofinal image, i.e. every object in the right-
hand category is a direct summand of an object coming from the left. Equivalently
this functor induces an equivalence after idempotent completion on both sides.

If one understands K/P as the “local category at the point P ∈ Spc(K)” then the
full subcategory (K/P)(0) ⊂ K/P consists of those objects which are supported on
the unique closed point of the spectrum of K/P. So, by analogy with commutative
algebra, one can think of (K/P)(0) as the “finite length” objects of tensor triangular
geometry. (See Def. 3.7.) As before, we have immediate applications :

Corollary. Let X be a noetherian scheme and let Dperf
(p) (X) be the full subcategory

of Dperf(X) of those perfect complexes E such that dimKrull(supph(E)) ≤ p. Then
localization at the points x ∈ X(p) (generic points of irreducible subschemes of X
of dimension p) induces the following equivalence of categories :

˜Dperf
(p) (X) / Dperf

(p−1)(X) ∼−→
∐

x ∈ X(p)

Kb
fin.lg.(OX,x – free)

between the idempotent completion of Dperf
(p) (X) / Dperf

(p−1)(X) and the right-hand co-

product, where we denote by Kb
fin.lg.(OX,x – free) the homotopy category of bounded

complexes of free OX,x-modules of finite rank with finite length homology.

This result is well-known for regular schemes, and is the keystone of several local-
global spectral sequences, like for instance the Brown-Gersten spectral sequences
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in algebraic K-theory and in Witt theory. Such a decomposition might be folklore
for non-regular schemes as well but does not seem to exist in the literature.

For the case of K = stab(kG), for G a finite group, the analogous filtration has
already been described in Carlson-Donovan-Wheeler [8], at least when the field k
is algebraically closed. Here, we obtain :

Corollary. Let k be a field, G a finite group scheme and stab(kG) the category of
kG-modules modulo projectives. Consider the projective support variety VG(k) =
Proj(H•(G, k)). For p ≥ 0 , consider stab(p)(kG) the full subcategory of stab(kG) of
those kG-modules M such that dimKrull(VG(M)) ≤ p. (This stab(p)(kG) is Mp+1

in the special case of [8].) Then we have a fully faithful functor
stab(p)(kG)

stab(p−1)(kG)
↪→

∐
x ∈ VG(k)(p)

stab(kG){
M ∈ stab(kG)

∣∣ x /∈ VG(M)
}

whose image lies inside the coproduct of “finite length” objects in each localization,
and it is cofinal therein. Saying that a kG-module M ∈ stab(kG) is of “finite
length” in the localization at a point x ∈ VG(k) is equivalent to : either M is zero
at x, that is x /∈ VG(M), or {x} is an irreducible component of the support VG(M).

See more in Section 4, where we explain the Corollaries presented in this In-
troduction. The organization of the paper should now be clear from the following
table of contents. Let us moreover mention that our second main result also applies
to the filtration by Krull codimension instead of dimension, see Theorem 3.26.
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1. Basic elements of tensor triangular geometry

We survey the main concepts and results of [1]. Standard notions about trian-
gulated categories can be found in Verdier [21] or Neeman [17].

Definition 1.1. A tensor triangulated category (K,⊗, 1) is a triangulated cate-
gory K with a symmetric monoidal structure ⊗ : K×K−→K, (a, b) 7→ a⊗ b such
that the functors a⊗− and −⊗b are exact for every a, b ∈ K. We have in particular
a⊗ b ∼= b⊗ a and 1⊗ a ∼= a for the unit 1 ∈ K.

A prime ideal P ( K is a proper subcategory such that (1)-(4) below hold true :
(1) P is a full triangulated subcategory, i.e. 0 ∈ P, a ∈ P ⇔ T (a) ∈ P and if

a→ b→ c→ T (a) is distinguished in K and a, b ∈ P then c ∈ P ;
(2) P is thick, i.e. if a⊕ b ∈ P then a, b ∈ P ;
(3) P is a ⊗-ideal, i.e. if a ∈ P then a⊗ b ∈ P for all b ∈ K ;
(4) P is prime, i.e. if a⊗ b ∈ P then a ∈ P or b ∈ P.
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Only (4) was introduced in [1]. Properties (1)-(3) are standard and we shall
actually say that a subcategory J ⊂ K satisfying (1), (2) and (3) is a thick ⊗-ideal.

We tacitly assume that K is essentially small, i.e. it has a set of isomorphism
classes of objects. The spectrum Spc(K) is the set of primes P ⊂ K. The support of
an object a ∈ K is defined as the subset supp(a) = {P ∈ Spc(K) | a /∈ P} ⊂ Spc(K).
The complements U(a) = {P ∈ Spc(K) | a ∈ P} of these supports form a basis
{U(a)}a∈K of the so-called Zariski topology on the spectrum.

Remark 1.2. Since a prime P ⊂ K is thick, we can construct the Verdier localization

q
P

: K−→K/P

i.e. the universal functor from K to a triangulated category which maps all objects
of P to zero. Equivalently, one can describe K/P as having the same objects as K

but morphisms being equivalence classes of fractions s← → with respect to those
morphisms s whose cone belongs to P. With this in mind, it is maybe more intuitive
to think of K/P as the “local category at a point of the spectrum” and to think
of P as those objects which vanish at that point. Since the support of an object is
the locus where the object does not vanish, this justifies the above definition of the
support, which also reads supp(a) = {P ∈ Spc(K) | q

P
(a) 6= 0}.

Proposition 1.3. Let K be a tensor triangulated category. Then we have
(i) supp(0) = ∅ and supp(1) = Spc(K).
(ii) supp(a⊕ b) = supp(a) ∪ supp(b).
(iii) supp(Ta) = supp(a) where T : K→ K is the suspension.
(iv) supp(a) ⊂ supp(b) ∪ supp(c) for any distinguished a→ b→ c→ T (a).
(v) supp(a⊗ b) = supp(a) ∩ supp(b).

(In fact, (Spc(K), supp) is universal for these properties, see [1, Thm. 3.2].)

Tensor triangular geometry contains for example classical algebraic geometry
and the theory of support varieties in modular representation theory. Indeed :

Theorem 1.4. We have homeomorphisms of underlying topological spaces :
(i) X

∼→ Spc(Dperf(X)) for every quasi-compact and quasi-separated scheme X.
(ii) VG(k) ∼→ Spc(stab(kG)) for every field k of characteristic p > 0 and every

finite group scheme G. Recall that VG(k)
def.
= Proj(H•(G, k)) where the

commutative graded ring H•(G, k) is defined to be ⊕i∈NHi(G, k) when p = 2
and ⊕i∈NH2i(G, k) when p > 2.

We can upgrade these homeomorphisms to scheme isomorphisms if we equip Spc(K)
with the sheaf of rings OK obtained locally from the endomorphisms of the unit.

As explained in [1], this result follows from suitable classification of thick ⊗-
ideals of Dperf(X) and of stab(kG). In fact, point (i) is only proved in [1] for X
topologically noetherian and the reader can restrict herself to such schemes if he
prefers. Buan, Krause and Solberg recently gave the above generalization in [5].

We established in [1], that Spc(K) allows a classification of thick ⊗-ideals for
general tensor triangulated categories K. This is the key ingredient in our proof of
Theorem 2.11. We need the following convenient notation.

Notation 1.5. Let Y ⊂ Spc(K). We denote by KY the full subcategory KY :=
{a ∈ K | supp(a) ⊂ Y } of those objects supported on Y .
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Remark 1.6. By Proposition 1.3 (v), such a subcategory KY is always radical, that
is, a⊗n ∈ KY ⇒ a ∈ KY . For K “strongly closed”, all thick ⊗-ideals are radical
(Prop. 2.4), so one can as well ignore this assumption in the following result.

Theorem 1.7 (Classification, Thm. 4.10 of [1]). There is a bijection{
Y ⊂ Spc(K) s.t. Y = ∪Yα for Yα closed

with Spc(K)rYα quasi-compact

}
∼−→

{
J ⊂ K radical thick ⊗-ideal

}
given by Y 7→ KY (see Notation 1.5), with inverse J 7→ supp(J) :=

⋃
a∈J

supp(a).

Remark 1.8. The above condition for Y ⊂ Spc(K) to be a union of closed subsets
Yα with quasi-compact complements was used by Thomason in [19] in the case
of schemes. Therefore, we shall refer to such subsets Y of Spc(K) as Thomason
subsets. They are specialization closed (y ∈ Y ⇒ {y} ∈ Y ). If moreover Spc(K) is
noetherian then conversely every specialization closed subset is a Thomason subset.

Results from [1] which we use only once in this paper will be quoted when needed.
On the other hand, we shall use several times, even tacitly, the following facts :

Proposition 1.9 ([1, Prop. 2.9]). The closure of a point P ∈ Spc(K) is {P} =
{Q ∈ Spc(K) | Q ⊂ P}.
Proposition 1.10 ([1, Prop. 2.18]). Let Z 6= ∅ be a non-empty irreducible closed
subset of Spc(K). Then there exists a unique point P ∈ Spc(K) such that {P} = Z.

Proposition 1.11 ([1, Prop. 3.11]). Let J ⊂ K be a thick ⊗-ideal and consider
q : K−→K/J the localization. Then the natural map Spc(q) : Spc(K/J)−→Spc(K)
is injective and gives a homeomorphism Spc(K/J) ∼−→ {P ∈ Spc(K) | P ⊃ J} with
inverse P 7→ P/J. Via this identification, we have supp(q(a)) = supp(a) ∩ {P ⊃ J}
for every object a ∈ K. Moreover, we have (K/J)

/
(P/J) = K/P.

Indeed the result about supp(q(a)) is a special case of the functoriality of Spc(−)
as explained in [1, Prop. 3.6]. This functoriality is also used in the next Proposition.
The fact that (K/J)

/
(P/J) = K/P is an easy exercise about localization.

Proposition 1.12 ([1, Prop. 3.13]). Let ι : K ↪→ K̃ be the idempotent completion
(Rem. 2.10). Then Spc(ι) : Spc(K̃) ∼→ Spc(K) is a homeomorphism with inverse
P 7→ P̃ ⊂ K̃. Via this identification, we have supp(a) = supp(ι(a)) for all a ∈ K.

We cannot express the local category K̃/P̃ in terms of K/P although the following
result describes a general relation between idempotent completion and localization.

Proposition 1.13. Let J ⊂ K be a thick subcategory of a triangulated category K.
Consider the Verdier localization functor q : K→ K/J and the idempotent comple-
tion functor ι : K→ K̃. Then we have a commutative diagram :

J // //

ι

��

K
q // //

ι

��

K/J

F
��

J̃ // //
K̃

q′
// // K̃/J̃

for a unique fully faithful functor F : K/J → K̃/J̃ which identifies K/J with a
cofinal subcategory of K̃/J̃.
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Proof. The functor F is induced by the universal property of the localization since
obviously q′ ◦ ι vanishes on J. Cofinality of F is obvious. Let us see that F is
faithful. It suffices to see that a morphism f : a → b in K such that q′(ι(f)) = 0
satisfies q(f) = 0. The former means that ι(f) factors via some object of J̃ in K̃

and this implies, J being cofinal in J̃, that ι(f) factors via some object of J in K̃,
and hence in K as well, since ι is fully faithful. Let us see that F is full. Let

(1.1) g : ι(a) z
soo f // ι(b)

be a morphism g : q′(ι(a)) → q′(ι(b)) between two objects a, b ∈ K, given by a
fraction in K̃ such that cone(s) ∈ J̃. The morphism g is also given by the fraction

(1.2) ι(a) z ⊕ cone(s)

(
s 0

)
oo

(
f 0

)
// ι(b) .

There exists a distinguished triangle in K̃ on the “denominator”
(
s 0

)
as follows :

z ⊕ cone(s)

(
s 0

)
// ι(a)

(
s1

0

)
// cone(s)⊕ T (cone(s))

(
s2 0
0 1

)
// T (z)⊕ T (cone(s)) .

Note that the second and third objects belong to K. Hence z⊕cone(s) ∈ K too and
since cone(s) ⊕ T (cone(s)) ∈ J, the fraction pictured in (1.2) defines a morphism
between q(a) and q(b) in K/J , whose image by F is the morphism g of (1.1). �

Remark 1.14. In the above Proposition, we do not claim that F realizes the idempo-
tent completion of K/J since there is no reason for K̃/J̃ to be idempotent complete.
Take for instance K = K̃ = Dperf(X) and J = J̃ = Dperf

Z (X) for some closed subset
Z ⊂ X of a scheme X for which K0(X) → K0(X rZ) is not surjective and use
K̃/J ∼= Dperf(XrZ), see Thomason [20, § 5].

2. Supports in strongly closed tensor triangulated categories

Definition 2.1. We call a tensor triangulated category (K,⊗, 1) strongly closed if
there exists a bi-exact functor hom : K

op ×K−→K with natural isomorphisms

(2.1) HomK(a⊗ b, c) ∼= HomK(a,hom(b, c))

and such that all objects are strongly dualizable, i.e. the natural morphism

(2.2) D(a)⊗ b
∼→ hom(a, b)

is an isomorphism for all a, b ∈ K, where we denote by D(a) the dual D(a) :=
hom(a, 1) of an object a ∈ K. More details can be found in [14, App.A], for
instance. It follows from (2.2) that

(2.3) D(D(a)) ∼= a

for all a ∈ K ; see for instance [14, Thm. A.2.5 (b)].

Remark 2.2. Many examples of triangulated categories appear inside some huge
tensor triangulated categories C with infinite coproducts. This is the approach
of Hovey-Palmieri-Strickland [14], where C is also assumed to be generated (as a
triangulated category with coproducts) by a set G of strongly dualizable objects
and to satisfy a Brown representability property. If all objects g ∈ G are compact
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(“small” in loc. cit.), that is, HomK(g,−) commutes with coproducts, then C is
called algebraic. If moreover the unit 1 ∈ C is compact as well, then C is called a
unital algebraic stable homotopy category. Several examples of such categories are
given in [14, Ex. 1.2.3 and § 9] ; see in particular Examples 1.2.3 (c) and (e) loc. cit.

To such a unital algebraic stable homotopy category C, we can associate the
strongly closed tensor triangulated category K of its compact objects (see [14,
Thm. 2.1.3 (d)]). Starting with C = D(QcohX) the derived category of quasi-
coherent OX -modules over a noetherian separated scheme X, we obtain K =
Dperf(X). See more in § 4.1.

This method gives an industrial way of producing strongly closed tensor triangu-
lated categories. Note however that very nice and important examples can also be
manufactured directly by hand, like for instance the stable category K = stab(kG) ,
with tensor product −⊗

k
− over k, obvious unit and internal hom. See more in § 4.2.

Lemma 2.3. Let K be a strongly closed tensor triangulated category and let a ∈ K.
Then the object a is a direct summand of a⊗ a⊗D(a).

Proof. Use the unit-counit relation for the adjunction −⊗ a : K −→←− K : D(a)⊗−
which itself follows from (2.1) and (2.2). See alternatively [14, Lem.A.2.6]. �

Proposition 2.4. Let K be a strongly closed tensor triangulated category and let
J ⊂ K be a thick ⊗-ideal. Then J is radical, that is, a⊗n ∈ J⇒ a ∈ J.

Proof. It suffices to prove a⊗2 ∈ J⇒ a ∈ J. From a⊗a ∈ J we have a⊗a⊗D(a) ∈ J

(since J is a ⊗-ideal) and by Lemma 2.3 we have a ∈ J (since J is thick). �

Corollary 2.5. Let K be a strongly closed tensor triangulated category and let
a ∈ K be an object. Then supp(a) = ∅ if and only if a = 0.

Proof. We know from [1, Cor. 2.4] that supp(a) = ∅ is equivalent to a⊗n = 0 for
some n ∈ N and therefore to a = 0 by the above Proposition applied to J = 0. �

Proposition 2.6. Let K be a strongly closed tensor triangulated category and let
J ⊂ K be a thick ⊗-ideal. Then D(J) = J.

Proof. Let b ∈ J. From J being a ⊗-ideal it contains D(b)⊗D(b)⊗ b and then also
D(b)⊗D(b)⊗D2(b) since D2(b) ∼= b. Applying Lemma 2.3 to a = D(b), we know
that D(b) is a direct summand of D(b) ⊗ D(b) ⊗ D2(b) ∈ J and hence D(b) ∈ J

since J is thick. So, we have the inclusion D(J) ⊂ J. We get the other inclusion by
applying D(−) to this one, using again that D2 ' IdK , see (2.3). �

Proposition 2.7. Let a, b ∈ K be objects in a strongly closed tensor triangulated
category K. We have :

(i) supp(D(a)) = supp(a).
(ii) supp(hom(a, b)) = supp(a) ∩ supp(b).

Proof. Let P ∈ Spc(K) be a prime. By Proposition 2.6, we have a ∈ P⇔ D(a) ∈ P.
By definition of the support (see Def. 2.1) we then have supp(D(a)) = {P ∈ Spc(K) |
D(a) /∈ P} = {P ∈ Spc(K) | a /∈ P} = supp(a), hence (i). Part (ii) follows from (i),
from strong dualizability (2.2) and from Proposition 1.3 (v). �

Corollary 2.8. Let K be a strongly closed tensor triangulated category. Suppose
that the supports of two objects do not meet : supp(a) ∩ supp(b) = ∅. Then there
is no non-trivial morphism between them : HomK(a, b) = 0.
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Proof. By Proposition 2.7 (ii) and Corollary 2.5, we have hom(a, b) = 0. But then

HomK(a, b) = HomK(1⊗ a, b)
(2.1)
= HomK(1,hom(a, b)) = 0. �

Remark 2.9. For f : a → b with supp(a) ∩ supp(b) = ∅, we have q
P
(f) = 0

in K/P for every P ∈ Spc(K). However, from the local vanishing of a mor-
phism f , we cannot deduce f = 0 but only f⊗n = 0 for some n ≥ 1 (see [1,
Prop. 2.21]). For instance, let E′� E � E′′ be an exact sequence of vector bundles
over a scheme X. In Db(VBX), we have an associated distinguished triangle whose
third map E′′ → T (E′) is zero if and only if the original short exact sequence splits.
So, in general, this map is locally zero but is not zero in Db(VBX). (Here, supp(E′′)
and supp(T (E′)) can intersect non-trivially, so Corollary 2.8 does not apply.)

Remark 2.10. Recall that an additive category K is idempotent complete (or pseudo-
abelian or karoubian) if all idempotents of all objects split, that is, if e ∈ HomK(a, a)
with e2 = e then the object a decomposes as a direct sum a ' a′ ⊕ a′′ on which e
becomes

(
1 0
0 0

)
, that is, a ' Im(e)⊕Ker(e). One can always “idempotent complete”

an additive category K ↪→ K̃ and K̃ remains triangulated, if K was, see [2].

Theorem 2.11. Let K be an idempotent complete, strongly closed tensor trian-
gulated category. Let Y1 , Y2 ⊂ Spc(K) be disjoint Thomason subsets of Spc(K)
(see Rem. 1.8). Then the subcategory KY1∪Y2 supported on Y1 ∪ Y2 (see Not. 1.5)
coincides with KY1 ⊕KY2 := {a ∈ K | a ' a1 ⊕ a2 with ai ∈ KYi

}.

Proof. In fact, the core of the proof consists in proving that KY1 ⊕KY2 is indeed a
thick ⊗-ideal of K (see Def. 1.1). It is clearly ⊗-ideal.

Let us see that KY1 ⊕KY2 is a triangulated subcategory. Let

a1 ⊕ a2
u−→ b1 ⊕ b2

v−→ c
w−→T (a1 ⊕ a2)

be a distinguished triangle in K with supp(ai) ⊂ Yi and supp(bi) ⊂ Yi for i =
1, 2. Since supp(a1) ∩ supp(b2) ⊂ Y1 ∩ Y2 = ∅, we know by Corollary 2.8 that
HomK(a1, b2) = 0. Similarly HomK(a2, b1) = 0. Therefore u =

(
u1 0
0 u2

)
where

ui : ai → bi for i = 1, 2. Note that cone(ui) ∈ KYi
. By uniqueness of the cone, we

have c ' cone(u1)⊕ cone(u2) and so c ∈ KY1 ⊕KY2 .
Let us then prove that KY1 ⊕KY2 is thick. Indeed, let e = e2 be an idempotent

on an object of the form a1⊕ a2 with supp(ai) ⊂ Yi for i = 1, 2. As above, we have
HomK(a1, a2) = HomK(a2, a1) = 0 so the idempotent has the form e =

(
e1 0
0 e2

)
for

idempotents ei = (ei)2 : ai → ai . Now, since the ambient category K is idempotent
complete, each ai decomposes as ai = Im(ei)⊕Ker(ei). Note that supp(Im(ei)) ⊂
supp(ai) ⊂ Yi . So, since we have Im(e) ' Im(e1) ⊕ Im(e2), this means that the
direct summand Im(e) of a1 ⊕ a2 also belongs to our subcategory KY1 ⊕ KY2 .
Every direct summand is the image of an idempotent thus we have proved that the
subcategory KY1 ⊕KY2 is closed under taking direct summands.

Therefore, the subcategory KY1 ⊕ KY2 is thick, ⊗-ideal and triangulated. It
is also radical like every thick ⊗-ideal by Proposition 2.4. Then, because of the
classification of such subcategories given in Theorem 1.7, there is a Thomason
subset Y ⊂ Spc(K) such that KY1 ⊕ KY2 = KY . On the other hand KY1 ⊕ KY2

clearly is the smallest thick ⊗-ideal containing KY1 and KY2 . By the classification
again, the subset Y must similarly be the smallest Thomason subset of Spc(K)
containing Y1 and Y2, that is, Y = Y1 ∪ Y2 . �
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Remark 2.12. If supp(a) = Y1 ∪Y2 with Y1 and Y2 disjoint, closed, and with quasi-
compact complement, then Theorem 2.11 gives a decomposition a ' a1 ⊕ a2 with
supp(ai) ⊂ Yi . Now, since Y1 ∪ Y2 = supp(a) = supp(a1) ∪ supp(a2) and since
Y1 ∩ Y2 = ∅, we necessarily have equality supp(ai) = Yi . This was the formulation
given in the Introduction.

Example 2.13. Let L be a strongly closed tensor triangulated category such that
K0(L) 6= 0. Define a category K as the following full subcategory of L× L :

K :=
{

(x1 , x2) ∈ L× L
∣∣ [x1] = [x2] in K0(L)

}
.

It is easy to check that K inherits from L×L the structure of a tensor triangulated
category with 1K = (1L , 1L). Moreover, K is cofinal in L × L, that is, every
object of L×L is a direct summand of an object of K. (Indeed, Thomason proved
in [19] that cofinal subcategories are exactly characterized by subgroups of K0 .) By
Proposition 1.12, Spc(K) = Spc(L×L) = Spc(L)tSpc(L). Let us denote by Y1 and
Y2 these two disjoint copies of Spc(L) in Spc(K). For an object x = (x1 , x2) ∈ L×L,
we have supp(x) = supp(x1) t supp(x2) with supp(xi) ⊂ Yi and therefore the
condition supp(x) ⊂ Y1 is equivalent to x2 = 0. The element 1K has support
Y1 t Y2 but cannot be decomposed as a1 ⊕ a2 with ai ∈ K and supp(ai) ⊂ Yi , for
this would imply that a1 = (1L, 0) ∈ K and therefore [1L] = 0, which contradicts
K0(L) 6= 0. Of course, such a decomposition 1K = (1L, 0) ⊕ (0, 1L) exists in the
bigger category L× L.

Therefore our Theorem 2.11 fails if we do not assume K idempotent complete.

Remark 2.14. So far, in addition to being idempotent complete (which can be
“arranged”), we only needed the category K to satisfy the following two properties :

(1) Every thick ⊗-ideal of K is radical. (Prop. 2.4)
(2) If supp(a) ∩ supp(b) = ∅ then HomK(a, b) = 0. (Cor. 2.8)

Note however that we do not see why these conditions pass to localizations K/J,
a fact we shall need in the sequel. Hence our a priori more restrictive condition
that the tensor triangulated category K is strongly closed behaves better than just
asking for K to satisfy (1) and (2) above. This is what we briefly sketch now.

Proposition 2.15. Let K be a strongly closed tensor triangulated category.
(i) Consider the idempotent completion ι : K ↪→ K̃. Then there exists a well-

defined structure of strongly closed tensor triangulated category on K̃ such
that ι(a)⊗ ι(b) ∼= ι(a⊗ b) and hom(ι(a), ι(b)) ∼= ι(hom(a, b)).

(ii) Let J ⊂ K be a thick ⊗-ideal and consider the corresponding Verdier local-
ization q : K→ K/J. Then there exists a well-defined structure of strongly
closed tensor triangulated category on K/J such that q(a)⊗ q(b) ∼= q(a⊗ b)
and hom(q(a), q(b)) ∼= q(hom(a, b)).

Proof. To see (i), recall that the objects of K̃ are pairs (a, e) with a ∈ K and
e = e2 ∈ HomK(a, a). One can then define the product on K̃ by (a, e) ⊗ (b, f) :=
(a⊗b , e⊗f) and the internal hom by hom

(
(a, e) , (b, f)

)
=

(
hom(a, b) , hom(e, f)

)
.

To see (ii), it suffices to observe that the functors a⊗−, −⊗ b, hom(a,−) and
hom(−, b) are exact and that they send J to itself. For hom(−,−), it suffices to see
that D(J) ⊂ J which has been established in Proposition 2.6.

In both cases, the relevant adjunctions are easily constructed via their unit and
counit, by exporting those existing on K. Details are left to the reader. �
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3. Dimension functions and quotients of the associated filtrations

Extend the usual order from Z to Z ∪ {±∞} by −∞ < d < +∞ for all d ∈ Z.

Definition 3.1. Let K be a tensor triangulated category. A dimension function
on K is a function dim : Spc(K)−→ Z ∪ {±∞} satisfying two conditions :

(1) If Q ⊂ P then dim(Q) ≤ dim(P) ;
(2) If Q ⊂ P and dim(Q) = dim(P) is finite then Q = P.

Example 3.2. The main example to keep in mind is dim(P) = dimKrull

(
{P}

)
the

Krull dimension of the irreducible closed subset of Spc(K) generated by the point P.
By Propositions 1.9 and 1.10, this number dim(P) ∈ Z≥0 ∪ {+∞} is equal to the
supremum of those m ∈ Z for which there exists a sequence of m strict inclusions
of primes ending at P :

Qm ( Qm−1 ( · · · ( Q1 ( Q0 = P .

Example 3.3. One can also consider dim(P) = − codimKrull

(
{P}

)
the opposite of

the Krull codimension of {P}. This number dim(P) ∈ Z≤0 ∪ {−∞} is the infimum
of those n ∈ Z for which there exist −n strict inclusions of primes starting at P :

P = Q0 ( Q−1 ( · · · ( Qn+1 ( Qn .

Notation 3.4. Let dim : Spc(K)−→Z∪{±∞} be a dimension function on a tensor
triangulated category K. For every p ∈ Z ∪ {±∞}, we define

Spc(K)(p) :=
{

P ∈ Spc(K)
∣∣ dim(P) = p

}
.

Definition 3.5. Let dim : Spc(K) → Z ∪ {±∞} be a dimension function and let
Z ⊂ Spc(K) be a closed subset. Then we define

(3.1) dim(Z) := sup
P∈Z

dim(P)

for Z non-empty and we set dim(∅) = −∞.

Notation 3.6. Let dim : Spc(K)−→Z∪{±∞} be a dimension function. For every
p ∈ Z ∪ {±∞}, we define a subcategory K(p) of K as follows :

K(p) =
{

a ∈ K
∣∣ dim(supp(a)) ≤ p

}
.

We obviously have
√

0 ⊂ K(−∞) ⊂ · · · ⊂ K(p−1) ⊂ K(p) ⊂ . . . ⊂ K(+∞) = K .

Note that K(−∞) can differ from {a ∈ K | supp(a) = ∅} =
√

0 as illustrated by the
example of the constant dimension function dim(P) = −∞, ∀P ∈ Spc(K).

Definition 3.7. Let L be a local tensor triangulated category, in the sense that its
spectrum has a unique closed point x0 ∈ Spc(L). (Then x0 necessarily is x0 =

√
0

and when L is strongly closed, this closed point is x0 = 0.) We define

FL(L) :=
{

a ∈ L
∣∣ supp(a) ⊂ {x0}

}
the category of “finite length” objects. This terminology is not justified intrisically
but by analogy with commutative algebra (where a finitely generated module over
a local ring is of finite length if and only if its support is contained in the unique
closed point). However, more generally, the classification of Theorem 1.7 implies
that FL(L) is the smallest non-zero thick ⊗-ideal of L, at least when Spc(L) is
noetherian, for {x0} clearly is the smallest non-empty Thomason subset of Spc(L).
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Proposition 3.8. Let L be a local (Def. 3.7) tensor triangulated category and let
dimL : Spc(L)→ Z≥0 ∪ {+∞} be the Krull dimension (see Ex. 3.2). Then

FL(L) = L(0) .

Proof. We have Spc(L)(0) = {x0}, where x0 is the only closed point of Spc(L).
Hence, for Z ⊂ Spc(L) closed, we have dim(Z) = 0 if and only if Z = {x0}. �

Remark 3.9. Let dim : Spc(K)−→Z ∪ {±∞} be a dimension function and let
J ⊂ K be a thick ⊗-ideal. We can restrict the dimension function on the subspace
Spc(K/J) ⊂ Spc(K), see Prop. 1.11. This will be used intensively below. With this
in mind, observe the difference between the previous proposition and the next one.

Proposition 3.10. Let K be a tensor triangulated category and let dim : Spc(K)→
Z ∪ {±∞} be a dimension function on K. Let p ∈ Z and P ∈ Spc(K)(p). Consider
the local category L = K/P and equip Spc(L) with the restriction of the given
dimension function on the subspace Spc(L) ⊂ Spc(K). Then we have

FL(L) = L(p) .

Proof. We have Spc(L)(p) = {P} (see Prop. 1.11 and Def. 3.1). Hence, for Z ⊂
Spc(L) closed, we have dim(Z) = p if and only if Z = {P}. �

Proposition 3.11. Let dim : Spc(K)−→Z ∪ {±∞} be a dimension function. Let
p ∈ Z ∪ {±∞}. Let J ⊂ K be a thick ⊗-ideal. (Recall Remark 3.9.) Then the
localization functor q : K→ K/J maps K(p) into (K/J)(p).

Proof. Suppose that a ∈ K(p). Then, since supp(q(a)) = supp(a) ∩ Spc(K/J) ⊂
supp(a), we have dim(supp(q(a))) ≤ dim(supp(a)) ≤ p. �

Remark 3.12. For every dimension function and every p ∈ Z ∪ {±∞}, we have
K(p) ⊂ K̃(p) and K̃(p) is the idempotent completion of K(p). Indeed, K̃ is idempotent
complete, hence so is every thick subcategory, like K̃(p) for instance, and K(p) ⊂
K̃(p) is cofinal since supp(a⊕ T (a)) = supp(a) for every a ∈ K̃.

Definition 3.13. A tensor triangulated category K will be called topologically
noetherian if the topological space Spc(K) is noetherian, i.e. if every non-empty
family of its closed subsets contains a minimal element for inclusion. Recall that
this forces every closed subset to be a finite union of irreducibles. Recall as well
that every subspace of a noetherian topological space is again noetherian.

Remark 3.14. It sometimes simplifies things to assume K topologically noetherian.
For instance, an immediate corollary of Theorem 2.11 is : In a topologically noether-
ian, idempotent complete, strongly closed tensor triangulated category, the support
of an indecomposable object is connected.

Remark 3.15. Given a set I and a collection {Ki}i∈I of triangulated categories, the
coproduct

∐
i∈I

Ki is the triangulated category whose objects are collections {ai}i∈I

of objects ai ∈ Ki with ai = 0 for all but finitely many indices i ∈ I and with mor-
phisms defined componentwise : Hom‘

Ki
({ai} , {bi}) = ⊕i∈IHomKi(ai, bi). The

shift functor and distinguished triangles are also defined componentwise. Each
category Ki can be seen as a subcategory of

∐
i∈I

Ki and every object in the cate-

gory
∐
i∈I

Ki is the finite direct sum of its components {ai}i∈I = ⊕
i∈I

ai. In this paper,

we do not consider tensor structures on such coproducts.
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Lemma 3.16. Let K be a topologically noetherian tensor triangulated category. Let
dim : Spc(K)−→Z≥0 ∪ {+∞} be a non-negative dimension function. Localization
induces a well-defined functor :

q
0

: K(0) −→
∐

P ∈ Spc(K)(0)

FL(K/P)

a 7−→ { q
P
(a) }

P∈Spc(K)(0)
.

Proof. Let a ∈ K(0). By Propositions 3.11 and 3.10, q
P
(a) ∈ FL(K/P) for all

P ∈ Spc(K)(0). Observe that Spc(K)(0) consists of closed points since Q ( P ∈
Spc(K)(0) would imply dim Q < 0 by Definition 3.1. (For the dimension of Ex-
ample 3.2, we have conversely that closed points belong to Spc(K)(0) but this
needs not be true for general dimension functions.) Therefore, the assumption
dim(supp(a)) = 0 means that supp(a) = ∪n

i=1{Pi} for finitely many distinct closed
points P1 , . . . , Pn ∈ Spc(K) with dim(Pi) = 0 ; we use here that Spc(K) is noe-
therian. Hence q

P
(a) = 0 for all but finitely many P ∈ Spc(K). So, the functor q0

is well-defined. �

We now start with a special case of our second main result (Thm. 3.24).

Theorem 3.17. Let K be a topologically noetherian, idempotent complete, strongly
closed tensor triangulated category. Let dim : Spc(K)−→Z≥0 ∪ {+∞} be a non-
negative dimension function. The localization functor as in Lemma 3.16

q
0

: K(0) −→
∐

P ∈ Spc(K)(0)

FL(K/P)

is an equivalence of categories. (For the notation FL, see Def. 3.7.)

Proof. The functor q
0

has trivial kernel, that is, q
0
(a) = 0 ⇒ a = 0. This is clear

since for every non-zero a ∈ K(0) we have supp(a) 6= ∅, by Cororollary 2.5. Choose
P ∈ supp(a). Then a /∈ P and so q

P
(a) 6= 0.

The functor q
0

is essentially surjective. Indeed, it suffices to see that for all P ∈
Spc(K)(0) and b ∈ K/P with supp(b) = {P}, there exists a ∈ K with supp(a) = {P}
and q

P
(a) ' b. Let c ∈ K such that b = q

P
(c). Let supp(c) = {P1} ∪ · · · ∪ {Pn} be

a decomposition into irreducible closed subsets without redundancy, i.e. Pi 6⊂ Pj

for i 6= j (this exists by Definition 3.13 and Proposition 1.10). Since

{P} = supp(b) = supp(q
P
(c)) = supp(c) ∩ Spc(K/P) =

n⋃
i=1

{Pi} ∩ Spc(K/P) ,

there is one index j ∈ {1, . . . , n} such that P ∈ {Pj} and so P ⊂ Pj or equivalently
Pj ∈ Spc(K/P). Therefore Pj = P by the above equality read backwards. We
can and will assume that j = 1. Since P ∈ {Pi} forces Pi = P = P1 and since
we assumed the decomposition of supp(c) to be without redundancy, we obtain a
decomposition of the support of c into two disjoint closed subsets :

supp(c) = {P} t
( n⋃

i=2

{Pi}
)

.

By Theorem 2.11, the object c decomposes as c ' a ⊕ d with supp(a) = {P} and
supp(d) = ∪n

i=2{Pi}. In particular, P /∈ supp(d) and therefore d ∈ P or equivalently
q
P
(d) = 0, which implies q

P
(a) ' q

P
(c) = b as wanted.



SUPPORTS AND FILTRATIONS 13

The functor q
0

is full. Indeed, let a, b ∈ K(0) and let P1 , . . . ,Pn be the distinct
points of dimension zero composing supp(a) ∪ supp(b). Then, by Theorem 2.11,
we know that a ' a1 ⊕ · · · ⊕ an and b ' b1 ⊕ · · · ⊕ bn with supp(ai) ⊂ {Pi} and
supp(bi) ⊂ {Pi}. We also know from Corollary 2.8 that HomK(ai , bj) = 0 for all
i 6= j. Similarly, morphisms decompose “componentwise” in

∐
K/P , by definition

of the coproduct, see Rem. 3.15. So, we can reduce the discussion to the case of
n = 1 and supp(a) = supp(b) = {P}. Consider a morphism between q

P
(a) and

q
P
(b) in K/P, which can be represented by a fraction

(3.2) a c
soo f // b

of morphisms in K with cone(s) ∈ P. The latter means P /∈ supp(cone(s)). Consider
a distinguished triangle in K

c
s // a

s1 //

∃ t
]]

�
t_

J
? cone(s)

s2 // T (c) .

Since supp(a)∩ supp(cone(s)) = ∅, we know by Corollary 2.8 that s1 = 0. In other
words, s : c→ a is a split epimorphism whose cone belongs to P. Choose a section
t : a → c of the epimorphism s. Its cone is T−1(cone(s)) ∈ P, so we can amplify
the above fraction (3.2) by t : a→ c. We obtain the equivalent fraction

a a
f t // b ,

which is the image in K/P of a morphism between the objects a and b in K.
The proof of the Theorem is finished, because of the following well-known general

fact, whose proof is sketched below for the convenience of the reader. �

Proposition 3.18. Let F : K−→L be a full, essentially surjective, exact functor
with trivial kernel, between triangulated categories. Then F is an equivalence.

Proof. It suffices to show that F is faithful. Let f ∈ HomK(a, b) be such that

F (f) = 0. Consider a distinguished triangle a
f // b

f1 // c
f2 // Ta in K. Since

F is exact and F (f) = 0, the morphism F (f1) is a split monomorphism, say
g ◦ F (f1) = idF (b) for g ∈ HomL(F (c), F (b)). Since F is full, there exists h ∈
HomK(c, b) such that g = F (h). Since F (h f1) = idF (b) is an isomorphism and
since Ker(F ) = 0 the morphism h f1 is an isomorphism. So f1 is a split monomor-
phism and finally f = 0. �

Remark 3.19. Let K be a topologically noetherian, idempotent complete, strongly
closed tensor triangulated category and let P ∈ Spc(K) be a closed point. Then the
subcategory FL(K/P) of K/P is idempotent complete. Indeed, let dim : Spc(K)→
Z≥0 ∪ {+∞} be the Krull dimension of Example 3.2. The condition dim(P) = 0 is
equivalent to P being a closed point of Spc(K). Since K(0) is a thick subcategory
of the idempotent complete category K, it is idempotent complete. Hence the
coproduct of Theorem 3.17 is idempotent complete. So, it suffices to prove that, if∐

i∈I Ki is idempotent complete, then each Ki is idempotent complete. The latter
is an easy exercise. We do not know whether K/P itself is idempotent complete.

Proposition 3.20. Let dim : Spc(K)−→Z ∪ {±∞} be a dimension function. For
every p ∈ Z∪{±∞}, we have K(p) =

⋂
dim(P)>p

P, with the usual convention
⋂
∅

= K.
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Proof. For an object a ∈ K, we have equivalences :

a ∈ K(p)
(3.1)⇐⇒

(
∀P ∈ supp(a), dim(P) ≤ p

)
Def. 1.1⇐⇒

(
∀P ∈ Spc(K), a /∈ P ⇒ dim(P) ≤ p

)
⇐⇒

(
∀P ∈ Spc(K), dim(P) > p ⇒ a ∈ P

)
⇐⇒ a ∈

⋂
dim(P)>p

P

which is the claim. �

Proposition 3.21. Let dim : Spc(K)−→Z ∪ {±∞} be a dimension function and
assume that K is topologically noetherian (Def. 3.13). Let P ∈ Spc(K) and let
p ∈ Z ∪ {±∞}. Then we have P ⊃ K(p) if and only if dim(P) > p.

Proof. From Proposition 3.20 it is clear that dim(P) > p implies P ⊃ K(p).
Conversely, assume that P ⊃ K(p). Since Spc(K) is noetherian, the open

Spc(K)r{P} is quasi-compact. Then, by [1, Prop. 2.14 (b)], there exists an ob-
ject a ∈ K such that supp(a) = {P}. We clearly have dim(supp(a)) = dim(P) since
{P} = {Q ⊂ P}, see Prop. 1.9 and Def. 3.1 (1). Now P ∈ supp(a) means that a /∈ P

and in particular a /∈ K(p) ⊂ P. The property a /∈ K(p) means by definition that
dim(supp(a)) > p. In short, dim(P) = dim(supp(a)) > p as was to be shown. �

Corollary 3.22. Let dim : Spc(K)−→Z ∪ {±∞} be a dimension function on
a topologically noetherian tensor triangulated category K. Let p ∈ Z ∪ {±∞}.
Consider M := K/K(p) and the localization functor q : K−→M. Consider also the
idempotent completion ι : M ↪→ M̃. Then via the identifications of Propositions 1.11
and 1.12, Spc(M) and Spc(M̃) coincide with the following subspace

Spc(M) = Spc(M̃) = {P ∈ Spc(K) | dim(P) > p}
of the spectrum Spc(K) of the ambient category. �

Example 3.23. Let K be a topologically noetherian tensor triangulated category
and denote by dimK : Spc(K)−→Z≥0 ∪ {+∞} the Krull dimension (see Ex. 3.2).
Let p ∈ Z≥0. Consider the two possible dimension functions on Spc(K/K(p)) : the
one restricted from the above dimK on Spc(K/K(p)) ⊂ Spc(K) (see Rem. 3.9) and
secondly, the intrinsic Krull dimension dimK/K(p)

for K/K(p). Then they differ
exactly by p, namely for every prime Q ∈ Spc(K) such that Q ⊃ K(p) we have

dimK(Q) = dimK/K(p)
(Q) + p .

This follows immediately from the definition of the Krull dimension and from Propo-
sition 3.21. This fact will not be used below, since we always deal with “abstract”
dimension functions which are not necessarily the Krull one (nor co-one).

Theorem 3.24. Let dim : Spc(K)−→Z ∪ {±∞} be a dimension function on a
topologically noetherian, strongly closed tensor triangulated category K. Let p ∈ Z.
Then we have a fully faithful functor :

K(p)

/
K(p−1) −→

∐
P ∈ Spc(K)(p)

FL(K/P)

induced by localization. This functor is cofinal, hence induces an equivalence after
idempotent completion on both sides. (For the notation FL(K/P), see Def. 3.7.)
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Proof. Using the dimension function P 7→ dim(P)− p instead of the given one, we
can assume that p = 0.

Let M = K/K(−1) and let q : K−→M be the localization functor. By Corol-
lary 3.22, we can identify Spc(M) and Spc(M̃) with the following subset of Spc(K) :

Spc(M) = Spc(M̃) = {P ∈ Spc(K) | dim(P) ≥ 0} .

Observe that the quotient category considered in the statement is indeed

(3.3) K(0)/K(−1) = M(0) .

To prove this, first observe that K(−1) ⊂ K(0) ⊂ K, so we have an inclusion
K(0)/K(−1) ⊂ K/K(−1) = M. For an object a ∈ K, by the above description
of Spc(M), the following subsets of Spc(K) coincide :

{P ∈ Spc(K) | P ∈ supp(a) and dim(P) > 1}
= {P ∈ Spc(M) | P ∈ supp(a) ∩ Spc(M) and dim(P) > 1}
= {P ∈ Spc(K) | P ∈ supp(q(a)) and dim(P) > 1} ,

the second equality coming from supp(q(a)) = supp(a) ∩ Spc(M). Now the first of
these subsets is empty exactly when a ∈ K(0) whereas the third subset is empty
exactly when q(a) ∈M(0). This establishes Equation (3.3). Let us now decompose
K(0)/K(−1) = M(0) as in the statement (for p = 0 of course).

Note that the dimension function restricted from Spc(K) to Spc(M) and to
Spc(M̃) is non-negative. Note also that Spc(M) = Spc(M̃) is noetherian, since it
is a subspace of the noetherian space Spc(K). So we can apply Lemma 3.16 both
to M and to M̃ as well as Theorem 3.17 to the idempotent complete M̃. This gives
the horizontal arrows in Diagram (3.4) below.

For every prime P ∈ Spc(M), recall from Proposition 1.12 that the corresponding
prime P̃ ∈ Spc(M̃) simply is the idempotent completion of P. By Proposition 1.13,
we have a natural functor

F
P

: M/P−→ M̃/P̃

which is fully faithful and cofinal. This functor restricts to a fully faithful and
cofinal functor F

P
: (M/P)(0)−→ (M̃/P̃)(0) by Remark 3.12, which also guarantees

the cofinality of the inclusion ι
M

: M(0) ↪→ (M̃)(0). We now have all the pieces of
the following obviously commutative diagram :

(3.4) M(0)

q
0 //

ι
M

��

∐
P ∈ Spc(M)(0)

(M/P)(0)

‘
F

P

��

(M̃)(0) q
0

//
∐

P ∈ Spc(M)(0)
(M̃/ P̃)(0) .

We know by Theorem 3.17 that the lower q
0

functor in (3.4) is an equivalence
and we have seen above that the two vertical functors are fully faithful and cofinal.
This proves that the upper functor q

0
in (3.4) is fully faithful and cofinal.

For every prime P ∈ Spc(M), we have M/P ∼= K/q−1(P), where q−1(P) ∈ Spc(K)
is the prime corresponding to P ∈ Spc(M), see Prop. 1.11. Using this and (3.3) to
express M in terms of K in the upper row of (3.4), we have the result. �
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Remark 3.25. In the Introduction, the statement of Theorem 3.24 only involves
Krull dimension. The link is made via Proposition 3.8.

Finally, we unfold the result for the dimension function of Example 3.3.

Theorem 3.26. Let K be a topologically noetherian, strongly closed tensor trian-
gulated category. Let codim : Spc(K)−→Z≥0 ∪ {+∞} be the Krull codimension.
For each q ∈ Z≥0 consider Spc(K)(q) := {P ∈ Spc(K) | codim(P) = q} and

K(q) := {a ∈ K | codim(supp(a)) ≥ q} .

Then we have · · · ⊂ K(q+1) ⊂ K(q) ⊂ · · · ⊂ K(0) = K and fully faithful functors :

K(q)
/

K(q+1) −→
∐

P ∈ Spc(K)(q)
FL(K/P)

induced by localization. These functors are cofinal, hence induce equivalences after
idempotent completion on both sides. (For the notation FL(K/P), see Def. 3.7.)

Proof. We know that dim := −codim : Spc(K)→ Z∪{±∞} is a dimension function.
Note that Definition 3.5 becomes here codim(Z) = infP∈Z codim(P) as usual. We
clearly have Spc(K)(q) = Spc(K)(−q) and K(q) = K(−q) for all q ∈ Z≥0. Hence the
result follows from Theorem 3.24 applied to p = −q. �

4. Applications to algebraic geometry and modular representation
theory

4.1. Schemes. Let X be a quasi-compact and quasi-separated scheme. Recall
from [11, Cor. 6.1.13, p. 296] that being quasi-separated simply means that the in-
tersection of two quasi-compact open subsets remains quasi-compact ; this holds of
course if the underlying space of X is noetherian and a fortiori if X is noetherian.

We denote by Dperf(X) the derived category of perfect complexes over X. A
concise introduction is given in Thomason [19, § 3.1] and a more detailed one in [20,
§ 2], where the reader will find further references to Grothendieck’s original (SGA).

A complex of OX -modules is perfect if it is locally quasi-isomorphic to a bounded
complex of vector bundles and we denote by Dperf(X) the corresponding full sub-
category of D(OX – Mod). If Db(VBX) stands for the derived category of bounded
complexes of vector bundles over X, we have a fully faithful functor Db(VBX) ↪→
Dperf(X) and this is an equivalence if X has an ample family of line bundles,
which is quite common in practice. If X = Spec(A) is affine, this boils down to
Dperf(X) ∼= Db(VBX) ∼= Kb(A – proj) the homotopy category of bounded com-
plexes of finitely generated projective A-modules (which are free if A is local).

The category Dperf(X) is contained in the subcategory D+
Qcoh(X) of cohomo-

logically bounded below complexes with quasi-coherent cohomology and consists
of the compact objects therein. However, this is wrong inside D(OX – Mod). (See
more in Bondal–van den Bergh [4].) The category Dperf(X) is also equivalent to the
category of compact objects in D(QcohX), at least when X is moreover separated,
as explained in Neeman [16, § 2]. This is one possible approach to the following
result in the spirit of Remark 2.2.
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Proposition 4.1. The category of perfect complexes Dperf(X) is a strongly closed
tensor triangulated category with the derived tensor product − ⊗L

OX
− as tensor

product and the derived Hom sheaf RHomOX
(−,−) as internal hom.

Proof. The fact that E ⊗L
OX

F and RHomOX
(E,F ) are perfect for every perfect

E,F ∈ Dperf(X) can be found in the above references. The relevant adjunc-
tion (2.1), as well as strong dualizability (2.2), can be checked locally and are
well-known for bounded complexes of finitely generated projective modules. We
leave the details to the reader. �

We proved in [1, Cor. 5.6] that the map

X −→ Spc(Dperf(X))

x 7−→ P(x) := Ker(Dperf(X)→ Dperf(OX,x))

is a homeomorphism for X topologically noetherian. Under this homeomorphism,
the support coincides with the homological support, that is the support of the sum
of the homology OX -modules. As already mentioned, the reader will find in [5]
the extension of this result to X quasi-compact and quasi-separated (i.e. whose
underlying space is spectral in the sense of Hochster [13]). At this point, the first
Corollary of the Introduction is under roof by means of Theorem 2.11. To apply
our second main result (Thm. 3.24) though, we need to identify the local categories
Dperf(X)/P(x) and this is where we need noetherianity of X. For every x ∈ X,
from the definition of P(x), we obtain a canonical functor

(4.1) Dperf(X)/P(x)−→Dperf(OX,x) = Kb(OX,x – free)

which is an equivalence. Indeed, for every open (affine) neighborhood U ⊂ X of the
point x ∈ X, we have a localization Dperf(U)−→Dperf(OX,x) and Dperf(OX,x) is
the “colimit” of those Dperf(U) in the sense that every object and every morphism in
Dperf(OX,x) extends to some neighborhood U and that two such “germs” of objects
or morphisms defined on some U are equal in Dperf(OX,x) if and only if they become
equal in some smaller open V 3 x. Thomason (see [20, § 5]) established that for
every quasi-compact open U ⊂ X, if we denote by Z = XrU its closed complement,
we have a fully faithful functor Dperf(X)/ Dperf

Z (X)−→Dperf(U) which is cofinal,
meaning that a complex in Dperf(U) can be lifted to Dperf(X) if and only if its
class in K-theory belongs to the image of K0(X) → K0(U). It is then easy to
deduce from this discussion that the functor (4.1) is fully faithful and that its
essential image consists of those complexes whose class belongs to the image of
K0(X) → K0(OX,x). But the latter homomorphism is always surjective since
K0(OX,x) ' Z. So, the functor (4.1) is an equivalence. Via this equivalence, the
finite length objects of Dperf(X)/P(x), in the sense of Definition 3.7, correspond to
those complexes in Dperf(OX,x) whose homology is supported on {x}, that is, those
complexes whose homology is a finite length OX,x-module (we need here that the
homology of a complex in Dperf(OX,x) is finitely generated and this holds if OX,x is
noetherian). Hence FL

(
Dperf(OX,x)

)
= Kb

fin.lg.(OX,x – free) as in the Introduction.

4.2. Support varieties. Let k be a field of positive characteristic and let G be
a finite group whose order is divisible by the characteristic of k. (Otherwise kG
is semi-simple, i.e. kG – mod = kG – proj and the stable category will be triv-
ial.) Let stab(kG) = kG – mod /kG – proj be the stable category, whose objects
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are finitely generated (left) kG-modules and whose morphisms are the kG-module
homomorphisms modulo those which factor via projective modules. This is a tri-
angulated category. See details in Happel [12], Benson [3] or Carlson [7]. Indeed,
kG – mod satisfies Krull-Schmidt, in the sense that every module has a unique de-
composition as a direct sum of indecomposable kG-modules. Working in stab(kG)
essentially means ignoring the projective summands. So, a non-projective in-
decomposable kG-module remains indecomposable in stab(kG). One can prove
that stab(kG) consists of the compact objects in the bigger triangulated category
Stab(kG) = kG – Mod /kG – Proj of not necessarily finitely generated kG-modules
modulo projectives. This is one possible approach to the following result in the
spirit of Remark 2.2.

Proposition 4.2. The category stab(kG) is a strongly closed tensor triangulated
category with −⊗k − as tensor product and Homk(−,−) as internal hom.

Proof. Recall that M⊗kN is a kG-module with diagonal action g (m⊗n) = (g m)⊗
(g n) and similarly for Homk(M,N) : for a k-linear homomorphism f : M → N we
have (g f)(m) = g (f(g−1m)). The adjunction (2.1) and strong dualizability (2.2)
are easy exercises from the basic adjunction

HomkG(M ⊗k N,L) ' HomkG(M,Homk(N,L))

and from the fact that this adjunction preserves the property of being factorizable
via a projective module. The latter is immediate from its naturality and from
the fact that M ⊗k N and Homk(M,N) are projective as soon as M or N is. In
kG – mod, we already have Homk(M,N) ∼= Homk(M,k) ⊗k N . See [7, § 2 and
Thm. 3.3] if necessary. �

Recall that H•(G, k) is the graded cohomology ring of G with coefficients in k
in characteristic two and only its even part in odd characteristic. This is done so
that H•(G, k) is commutative – and this is not important since Proj(−) does not
see nilpotent homogeneous elements of positive degree anyway. One sets VG(k) =
Proj(H•(G, k)), the projective support variety of the group G over the field k.
This can be extended to finite group schemes as well, as explained in Friedlander-
Pevtsova [10]. For a kG-module M , one can consider the closed subset VG(M) ⊂
VG(k) defined by the homogeneous ideal AnnH•(G,k)(Ext∗kG(M,M)), where our ring
H•(G, k) = Ext•kG(k, k) acts on Ext∗kG(M,M) by cup product, that is simply via
the tensor product −⊗k− in stab(kG) using that M ⊗k k = M . Consider the map

VG(k) −→ Spc(stab(kG))

x 7−→ P(x) := {M ∈ stab(kG) | x /∈ VG(M)} .

In [1, Cor. 5.10], we proved that this map is a homeomorphism, under which VG(M)
corresponds to our support supp(M). This holds for any finite group scheme G.

Finally, for G an ordinary finite group, recall that the complexity c of a kG-
module M is defined to be the smallest integer such that there exists a projective
resolution · · · → P2 → P1 → P0 → M → 0 of M for which the k-dimension
of Pi does not grow faster than ic−1. The complexity of a projective module is
zero. The complexity of M is well-known to be equal to the Krull dimension
dimKrull(VG(M)) of the homogeneous affine support variety of M and is therefore
equal to dimKrull(VG(M)) + 1, since a projective variety VG(M) has dimension one
less than the corresponding homogeneous affine variety VG(M). See details in [3,



SUPPORTS AND FILTRATIONS 19

Vol. 2, Chap. 5]. Indeed, Carlson, Donovan and Wheeler [8, Thm. 3.5] also give
another description of the morphisms in Mp+1/Mp , at least when the field k is
algebraically closed. Further details will be left to the specialized reader.
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