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Abstract. We establish effective descent for faithful ring objects in tensor

triangulated categories. More generally, we discuss descent for monads in

triangulated categories without tensor, where the answer is more subtle.
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Introduction

Descent is an important useful device and so are triangulated categories. Yet,
there seems to be two misconceptions about their interaction. Put briefly, the first
one is that descent could not hold for triangulated categories and the second one
that descent always holds for them. Unsurprisingly, the truth lies in between.

The idea that descent could not hold for triangulated categories is based on the
well-known failure of Zariski descent for derived categories of non-affine schemes; see
Example 2.1. However, this failure has a rather bold reason, namely the existence
of locally trivial morphisms which are not globally trivial, i.e. the non-faithfulness
of the derived pull-back to a Zariski cover. We claim that this problem is irrelevant
to descent theory since faithfulness really is the very first necessary condition one
always requires. Even ordinary ring-theoretic descent trivially fails for non-faithful
ring homomorphisms. And no one would say that descent could not hold for rings.

Here, we prove that this obvious necessary condition – faithfulness – is indeed
already sufficient for descent to hold for ring objects in triangulated categories :

Theorem (Corollary 3.1). Let A be a ring object in an idempotent-complete tensor
triangulated category C. Then A satisfies descent in C if and only if A is faithful.

The second misconception is the expectation that this Theorem holds for monads
as well. We shall return to this at the end of the Introduction. Let us first remind
the reader of the theory of descent. Precise definitions can be found in Section 1.
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2 PAUL BALMER

For commutative rings, R → A, following Grothendieck’s original insight [5],
Knus and Ojanguren defined in their 1974 paper [8] a descent datum on an A-

module M to be an A ⊗ A-isomorphism γ : A ⊗M
∼→ M ⊗ A satisfying some

cocycle condition. Here, ⊗ means ⊗R. Inspiration comes from Zariski covers of
affine schemes, as recalled in Example 3.6 below. For a general homomorphism
R→ A, the descent problem is to decide when extension of scalars A⊗− induces an
equivalence between the category of R-modules and that of A-modules with descent
data. The exact characterization, secretely due to Joyal-Tierney, is that R → A
should be a so-called “pure monomorphism” of R-modules, see Mesablishvili [11].
This first notion of descent data can be extended verbatim to the framework of
symmetric monoidal categories, as recalled in Remark 3.4 below. By comparison to
the Joyal-Tierney result, our Theorem above shows how things become considerably
simpler in the presence of a triangulated category structure : Essentially, descent
always holds in that case. But let us be careful with this conclusion.

Actually, symmetry of the tensor is not necessary, as we now explain. In 1976,
Cipolla [4] generalized descent to non-commutative rings, replacing the above γ by
an A-linear morphism M → A ⊗M satisfying different conditions. His approach
transposes equally well to triangulated categories with a non-necessarily symmetric
monoidal structure (see Remark 3.3) and our Theorem holds in that generality.

So far, so good.
Nevertheless, descent is not specific to ring objects and it is usual nowadays

to study descent in the generalized context of monads. The reader will find a 2-
page vademecum on monads in Appendix A. In that world, there is no tensor and
therefore no symmetry to worry about. Hence, we make our general discussion in
the language of monads in Section 2 and specialize to ring objects in Section 3.

For a monad M on a category C, the (effective) descent problem is to decide
whether the free-M -module functor FM , which replaces the above A⊗−, yields an
equivalence between C and the category DescC(M) of M -modules equipped with a
new notion of descent data, jazzed-up from Cipolla’s; see Mesablishvili [12, § 2].

We prove in Corollary 2.15 that the functor FM : C→ DescC(M) is always fully
faithful (for M faithful, of course) and we give a description of its essential image in
Main Lemma 2.18. In that respect, the program of faithful descent is fulfilled : For
any faithful monad M one can uniquely reconstruct C from M -modules with descent
data satisfying some additional property. We give a simple characterization of
effective descent in Theorem 2.20 and further equivalent conditions in Theorem 2.23,
maybe more user-friendly. For instance, we have :

Theorem. Let M : C → C be a monad on an idempotent-complete triangulated
category C, with M additive and faithful. Then M satisfies effective descent if and
only if M reflects semi-simplicity, i.e. if a morphism g in C is such that M(g) has
a kernel in C then g itself has a kernel in C.

In view of those results, it is tempting to believe that every faithful monad on a
triangulated category satisfies effective descent. This claim can even be found in the
literature. It is however incorrect. In Theorem 4.6, we provide a hereditary abelian
category A and a faithful monad M on Db(A), even realized by an adjunction of
derived categories, such that M does not satisfy effective descent. This counter-
example is quite elementary. So, failure of effective descent for faithful monads
should not be considered a pathological phenomenon.
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1. The descent category

Let (M,µ, η) be a monad on a category C with multiplication µ : M2 → M
and unit η : IdC → M . See details in Appendix A. Recall that the prototype of a
monad is M = A ⊗ − for A a ring object in a monoidal category (C,⊗,1). And
recall that the prototype of the prototype is to take for C the category of good old
R-modules over a commutative ring R, for ⊗ the tensor product over R and for
A any associative unital R-algebra. As in [12], one defines the descent category,
DescC(M), for M in C as a suitable category of comodules in the category of
M -modules in the following way :

(1.1)

(LM ) – Comod(M –ModC)

C

FM
$$JJJJJJJJJJJJJJJM 99
QM // DescC(M)

def.

ULM

wwoooooooooooooooo

M – ModC

UM

ddJJJJJJJJJJJJJJJ
FLM

77oooooooooooooooo

LM :=FMUM

XX

Let us read the above slightly intimidating picture step-by-step. We start in the
upper-left corner with the given monad M on the category C. We create the lower
categoryM – ModC ofM -modules in C (a. k. a.M -algebras). It is related to the orig-
inal category C by the Eilenberg-Moore adjunction FM : C �M – ModC : UM with
the usual free-module functor FM and its right adjoing, the forgetful functor UM .
This adjunction “realizes M”, that is, we have UM FM = M . The other composi-
tion LM := FM UM defines a comonad on the category M – ModC of M -modules
(see A.9). Now, we can build the category of comodules in M – ModC with respect
to that comonad LM . This is by definition our descent category DescC(M) which
appears in the upper-right corner. We give an explicit description of DescC(M),
just in terms of M and C, in Remark 1.4 below.

Of course, there also exists a “co”-Eilenberg-Moore adjunction as in the above
picture, i.e. a free-comodule functor FLM and its left adjoint ULM , which forgets
the LM -coaction (only). This second adjunction realizes the comonad LM , that
is, ULM FLM = LM . By finality of the Eilenberg-Moore adjunction among all
adjunctions which realize a given comonad (here LM ), the left-hand adjunction
of (1.1) maps uniquely into the right-hand one, that is, there is a unique functor
QM : C → DescC(M) such that ULMQM = FM and QMUM = FLM . We also
describe this comparison functor QM in simple terms in Remark 1.4.

We have now obtained the whole picture (1.1).

1.2. Definition ([12]). One says that the monad M satisfies effective1 descent in C

when the above functor QM : C−→DescC(M) is an equivalence. In words, this
property says that one can uniquely reconstruct objects and morphisms of C out of
M -modules equipped with suitable “descent data”, expressed via the LM -coaction.

1.3. Remark. It is well-known that deciding when a comparison functor like QM
is an equivalence can be done with Beck’s Comonadicity Theorem, see Beck [2,

1Following [12], M “satisfies descent” just means that QM is fully faithful.
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Thm. 1], or Mac Lane [10, Ex. VI.7.6, p. 155] applied to opposite categories, or
Kashiwara-Schapira [7, Thm. 4.3.8]. Here, we shall not use Beck’s Theorem be-
cause we do not have descent in general. Also, we want to give as self-contained
a treatment as possible. Still, several arguments are reminiscent of Beck’s tech-
niques, with a triangulo-categorical twist and we shall refer to variants of Beck’s
result when possibly interesting for the reader.

1.4. Remark. Unfolding the definitions, the category DescC(M) is the following.
Its objects are triples (x, %, δ) where x is an object in C and % : M(x) → x and
δ : x→M(x) are morphisms in C such that the following five diagrams commute :

(1.5)

M2(x)
M(%)

//

µx

��

'&%$ !"#1

M(x)

%

��

M(δ)
//

'&%$ !"#3

M2(x)

µx

��
M(x)

% //

'&%$ !"#2

'&%$ !"#5

x
δ //

δ

��

'&%$ !"#4

M(x)

M(ηx)

��
x

xxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxx

ηx

OO

M(x)
M(δ)

//
%

oo M2(x) .

The meaning of (1.5) is the following. The morphism % : M(x)→ x defines a struc-
ture of M -module on x, which involves the commutativity of the square marked 1
and the triangle marked 2. The morphism δ : x → M(x) is the descent datum on
the M -module x. It is a morphism of M -modules from x to the free M -module
M(x), as expressed by the commutativity of the square marked 3. Moreover, δ is
an LM -coaction; this is expressed by the commutativity of the square marked 4
and the triangle marked 5. Indeed, the comonad LM = (LM , λ, ε) is defined
by LM (x, %) = (M(x), µx) for every M -module (x, %), and has comultiplication
λ(x,%) = M(ηx) and counit ε(x,%) = % . See details in Remark A.9.

A morphism f : (x, %, δ) → (x′, %′, δ′) in DescC(M) is a morphism f : x → x′

in C which is compatible with the M -module structures and the descent data, that
is, %′M(f) = f % and M(f) δ = δ′f .

Finally, the comparison functor QM : C−→DescC(M) is given by

(1.6) QM (x) =
(
M(x) , µx , M(ηx)

)
for every object x in C and by Q(f) = M(f) for every morphism f in C.

We unfold all the above for the monad M = A⊗− in Section 3, where the case
of a Zariski cover is also recalled in Example 3.6.

2. Faithful descent in triangulated categories

2.1. Example. As announced in the Introduction, here is an example of the non-
faithfulness of Zariski localization in derived categories of schemes. Observe that
if E�F�G is a non-split exact sequence of vector bundles over a scheme, the
associated map G → E [1] in the derived category is non-zero but becomes zero over
every affine open subscheme (where the sequence does split). This happens already
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with the Koszul sequence OP1 �OP1(1) ⊕ OP1(1)�OP1(2) over P1, so there is
nothing exotic or pathological about this phenomenon.

2.2. Remark. Recall that an additive category C is idempotent-complete if every
idempotent endomorphism splits. When C is triangulated, see [1].

From now on, C is a triangulated category in the sense of Grothendieck-Verdier,
see Neeman [14]. We shall not use the Octahedron Axiom, so “triangulated” could
as well mean “pre-triangulated” below. See also Remark 2.24.

2.3. Remark. Of course, if the comparison functor QM : C−→DescC(M) of (1.1)
is an equivalence, or simply if it is faithful, then so is UM ◦ ULM ◦QM = M since
both forgetful functors are faithful. So, faithfulness of the monad M is a necessary
condition for descent. Conversely, let us see what we can prove by assuming only
that. First, recall well-known facts about triangulated categories, see [14, § 1.2] :

2.4. Remark. For f : x→ x′ in a triangulated category, the following are equivalent :

(i) f is a monomorphism.

(ii) For some (hence every) distinguished triangle x′′
f0→ x

f→ x′ → Σx′′, f0 = 0.

(iii) f is a split monomorphism, i.e. admits a retraction r : x′ → x, rf = idx.

(iv) There exists an isomorphism x′ ' x⊕ y under which f becomes ( 1
0 ).

2.5. Definition. Let us say that a morphism g is semi-simple if it is the composition
g = g2 ◦ g1 of a split epimorphism g1 followed by a split monomorphism g2.

2.6. Definition. A complex is contractible if its identity is null-homotopic. We say

that a (truncated) complex of the form 0 → x
f→ y

g→ z is contractible if there
exist morphisms ` : y → x and m : z → y such that ` f = idx and f `+mg = idy :

(2.7) 0 // x
f // y

g //

`

ee z .
m

ee

Its is clear that in that case f is a kernel of g. Also, any additive functor preserves
such contractible complexes.

2.8. Lemma. For a morphism g : y → z in an idempotent-complete additive cate-
gory, the following properties are equivalent :

(i) The morphism g is semi-simple (Definition 2.5).

(ii) There exists a morphism m : z → y such that g = gmg.

(iii) There exists a contractible complex 0→ x
f→ y

g→ z (Definition 2.6).

If moreover C is triangulated then these three properties are further equivalent to :

(iv) The morphism g has a kernel in C.

Proof. All this is also a standard exercise. For (ii)⇒(iii), use the idempotent e = mg
on y. For (iv)⇒(iii), let f : x → y be a kernel of g. Since f is a monomorphism,
Remark 2.4 gives us y ∼= x⊕ w and the following (solid) exact sequence

(2.9) 0 // x
f = ( 1

0 )
// y ∼= x⊕ w

g = ( 0 g̃ )
//

` := ( 1 0 )

jj z

m := ( 0
r )

ll heb_\Y

for some object w ∈ C and some morphism g̃ : w → z. Then g̃ is a monomorphism
since f is the kernel of g. Finally, set m := ( 0

r ) for any retraction r of g̃. �
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2.10. Lemma. Let F : C → D be a faithful additive functor between triangulated

categories. Let 0 → x
f−→ y

g−→ z be a complex in C. Then it is contractible (Defi-
nition 2.6) if and only if its image under F is contractible.

Proof. Let us prove the non-trivial direction. Suppose 0→ F (x)
F (f)−→ F (y)

F (g)−→F (z)
contractible in D. Then F (f) is a split monomorphism, hence by faithfulness of F ,
f is also a monomorphism. By Remark 2.4, f must be a split monomorphism. So,
up to isomorphism, we can assume that y = x⊕ w for some object w ∈ C, so that
f = ( 1

0 ) and g =
(
0 g̃

)
for g̃ : w → z. By contractibility of

0 // F (x)
( 1
0 )
// F (x)⊕ F (w)

( 0 F (g̃) ) // F (z) ,

F (g̃) must be a monomorphism in D. As for f , this implies that g̃ is already a split
monomorphism in C, say r g̃ = idw. Hence we get the contractibility as in (2.9). �

2.11. Remark. The above argument can be repeated inductively to show that a
complex in C, which is bounded on one side, is contractible if and only if its image
under F is contractible.

2.12. Proposition. Let (M,µ, η) be a faithful additive monad on a triangulated
category C and x ∈ C an object. Then the following complex is contractible in C :

(2.13)
0 // x

ηx // M(x)
ηM(x) −M(ηx)

// M2(x) .

In particular this complex is exact, i.e. ηx : x→M(x) is a kernel of ηM(x)−M(ηx).

Proof. Note that (2.13) is a complex by naturality of η : IdC →M . By Lemma 2.10,
it suffices to observe that the image of this complex under M is contractible with :

0 // M(x)
M(ηx)

// M2(x)
M(ηM(x))−M2(ηx)

//

µx

jj M3(x) .

µM(x)

kk

Here µM(η) = idM by (A.2) and µM(x)M
2(ηx) = M(ηx)µx by naturality of µ. �

2.14. Remark. The complex (2.13) is the beginning of the Amitsur complex, as
in [8], whose contractibility (hence exactness everywhere) can be proven as above
via Remark 2.11.

2.15. Corollary. Let (M,µ, η) be a faithful additive monad on a triangulated cate-
gory C. Then the functor QM : C−→DescC(M) of (1.1) is fully faithful.

Proof. Proposition 2.12 implies that x
ηx // M(x)

ηM(x) //
M(ηx)

// M2(x) is an equalizer.

Hence ηx : x→M(x) is a “regular monomorphism”. It then follows from a variant
of Beck’s Comonadicity Theorem, see [12, Thm. 2.3 (i)], that QM is automatically
fully faithful.

More directly, QM is faithful since M is, see (1.6) and it is full by following [8,
Démonstration of Prop. 2.5] : A morphism f : QM (x) → QM (x′) in DescC(M)
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makes the right-hand square commute in the following diagram since f commutes
both with ηM by naturality of η and with Mη, which is the coaction on QM (x) :

(2.16)

0 // x
ηx //

g

���
�
� M(x)

ηM(x) −M(ηx)
//

f

��

M2(x)

M(f)

��
0 // x′

ηx′
// M(x′)

ηM(x′) −M(ηx′)
// M2(x′) .

The two rows are exact by Proposition 2.12. So, there is a unique g : x→ x′ making

the diagram commute. Then f = f idM(x) = f µxM(ηx)
?
= µx′M(f)M(ηx) =

µx′M(f ηx)
(2.16)

= µx′M(ηx′g) = µx′M(ηx′)M(g) = idM(x′)M(g) = M(g) where
equality ? holds by M -linearity of f : M(x) → M(y) between free M -modules.
This means f = QM (g). Hence QM is full, as wanted. �

We now analyze the essential image of our functor QM : C→ DescC(M).

2.17. Lemma. Let (M,µ, η) be an additive monad on C and let (x, %, δ) be an object
in the descent category DescC(M). Then the complex

0 // x δ // M(x)
M(ηx−δ) //

%

ff M2(x)

µx

jj

is contractible in C, with the contraction given by % and µx as above.

Proof. This is a direct verification, using µxM(ηx) = idM(x) from (A.2), as well as
M(ηx − δ) δ = 0, % δ = idx and µxM(δ) = δ % from the relations marked 4, 5 and
3 in (1.5), respectively. �

2.18. Main Lemma. Let (M,µ, η) be a faithful additive monad on an idempotent-
complete triangulated category C. Let (x, %, δ) be an object in DescC(M). Recall
QM : C→ DescC(M) from (1.6). Then the following conditions are equivalent :

(i) (x, %, δ) belongs to the essential image of the functor QM .
(ii) The morphism ηx − δ : x→M(x) has a kernel in C (see Lemma 2.8).

Proof. (i)⇒(ii) : One easily checks that property (ii) is stable under isomorphism
in DescC(M), so we can assume that (x, %, δ) = QM (y) = (M(y), µy,M(ηy)) for
some y ∈ C. In that case, ηx − δ = ηM(y) − M(ηy) and this morphism admits
ηy : y →M(y) = x as kernel by Proposition 2.12.

For (ii)⇒(i), Lemma 2.8 applied to g = ηx−δ gives a contractible exact complex

0 // y
f // x

ηx−δ // M(x) for some morphism f : y → x in C. Let us show

that QM (y) ' x in DescC(M). This is a standard argument. First, apply the
additive functor M to the above contractible exact complex to get the contractible
exact complex in the upper row of the following commutative diagram in C

(2.19)

0 // M(y)
M(f) //

ϕ '
���
�
�

M(x)
M(ηx−δ) // M2(x)

0 // x δ // M(x)
M(ηx−δ) // M2(x)
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whose second row is a contractible exact complex by Lemma 2.17. Therefore
there exists an isomorphism ϕ : M(y)

∼→ x as in the above diagram satisfy-
ing δϕ = M(f), hence ϕ = %M(f). This ϕ is the wanted isomorphism be-
tween QM (y) = (M(y), µy,M(ηy)) and (x, %, δ) in DescC(M). Indeed, by the
square marked 1 in (1.5) and naturality of µ, we have %M(ϕ) = %M(%)M2(f) =
%µxM

2(f) = %M(f)µy = ϕµy which shows that ϕ is M -linear. Finally ϕ respects
the LM -coactions since M(ϕ)M(ηy) = M(%)M2(f)M(ηy) = M(%)M(ηx)M(f) =
M(f) = δ ϕ in which we used naturality of η and the relation marked 2 in (1.5). �

2.20. Theorem. Let (M,µ, η) be a faithful additive monad on an idempotent-
complete triangulated category C. Then M satisfies effective descent, i.e. the nat-
ural functor QM : C−→DescC(M) of (1.1) is an equivalence, if and only if the
following condition holds : For every object (x, %, δ) ∈ DescC(M), the morphism
ηx − δ : x → M(x) has a kernel in C (that is, ηx − δ is semi-simple, see Defini-
tion 2.5 and Lemma 2.8).

Proof. Immediate from Corollary 2.15 and Main Lemma 2.18. �

2.21. Remark. The proof of Lemma 2.18 describes the inverse of QM : C →
DescC(M) relatively explicitly. In other words, it tells us how to do descent. For
every M -module with descent datum (x, %, δ), we have Q−1M (x, %, δ) := ker(ηx − δ).

The following is standard, see for instance Borceux [3, Prop. 4.3.2] :

2.22. Lemma. Let D be an idempotent-complete additive category and let (L, λ, ε)
be a comonad on D (Definition A.4) with L : D→ D additive. Let g be a morphism
in L – ComodD such that UL(g) = g is semi-simple in D (Definition 2.5). Then,
the kernel of g in D can be equipped with an L-coaction which makes it a kernel
of g in L – ComodD. In particular, if UL(g) is semi-simple then g has a kernel
in L – ComodD.

Proof. We sketch the proof for the reader’s convenience : Say that g : y → y′

for L-comodules (y, δ) and (y′, δ′) in L – ComodD. By Lemma 2.8, there exists a

contractible exact sequence 0 // y0
f // y

g // y′ , for a morphism f : y0 → y

in D. We need to prove that y0 can be made into an L-comodule in such a way
that f is L-colinear. Since L : D → D is additive it preserves the contractible
exact sequence above (and so does L2 of course). Hence the rows of the following
commutative diagram are exact :

0 // y0
f //

δ0
���
�
� y

g //

δ
��

y′

δ′

��
0 // L(y0)

L(f) // L(y)
L(g) // L(y′) .

As the right-hand square commutes there exists a morphism δ0 : y0 → L(y0) in D

making the diagram commute. One easily proves that δ0 is the wanted L-coaction.
Indeed, the proof of λ δ0 = L(δ0) δ0 uses that L2(f) is a monomorphism; the proof
of εy0δ0 = idy0 uses that f is a monomorphism; finally the proof that f : (y0, δ0)→
(y, δ) is the kernel of g in L – ComodD uses that L(f) is a monomorphism. �

2.23. Theorem. Let (M,µ, η) be a faithful additive monad on an idempotent-
complete triangulated category C. Then the following properties are equivalent (see
Definition 2.5 and Lemma 2.8 for semi-simplicity and existence of kernels) :
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(A) The functor M : C→ C detects semi-simplicity : If g : y → z in C is such that
M(g) has a kernel in C then g has a kernel in C.

(B) The free M -module functor FM : C → M – ModC detects semi-simplicity :
If g : y → z in C is such that FM (g) is semi-simple in the additive cate-
gory M – ModC then g is semi-simple in C (i.e. it has a kernel in C).

(C) The monad M satisfies effective descent, i.e. QM : C
∼−→ DescC(M).

Proof. (A)⇒(C) : By Theorem 2.20, we need to show that for every (x, %, δ) ∈
DescC(M), the morphism ηx − δ : x → M(x) has a kernel. By (A), it suffices to
check that M(ηx − δ) : M(x) → M2(x) is semi-simple in C, which follows from
Lemma 2.17. (Apply Lemma 2.8 (ii) with m := µx : M2(x)→M(x).)

(C)⇒(B) : Let g in C such that FM (g) is semi-simple in M – ModC. Since FM =
ULM QM , it follows from Lemma 2.22 that QM (g) has a kernel in DescC(M). Since
we assume that QM is an equivalence, g has a kernel in C, which is triangulated.
Hence g is semi-simple by the part of Lemma 2.8 which uses “triangulated”.

(B)⇒(A) : It suffices to show that if g : y → z in C is such that M(g) is semi-
simple in C then FM (g) is semi-simple in M – ModC. Let m : M(z) → M(y) in C

such that M(g)mM(g) = M(g). Of course, FM (g) = M(g) : M(y) → M(z) but,
a priori, m is not M -linear. However, m̃ := µyM(m)M(ηz) : M(z) → M(y) is
M -linear (using associativity and naturality of µ) and satisfies FM (g) m̃ FM (g) =
FM (g) by naturality of µ and η and the above relation M(g)mM(g) = M(g).
These straightforward verifications are left to the reader. �

2.24. Remark. Mesablishvili pointed out that the above proofs rely only on the
following property of triangulated categories : Monomorphisms are split. Hence,
the above results hold in a broader setting, see [13]. He also pointed out to me that
exactness of the monad, which we required (out of habit) in a previous version of
the article, was indeed superfluous. Only additivity is necessary, as stated above.

2.25. Remark. We have seen in Proposition 2.12 that when M is faithful then
ηx : x → M(x) is a split monomorphism. However, the retraction might not be
natural in x. When a natural retraction π : M → IdC of η exists, then effective
descent follows by (A) of Theorem 2.23. Indeed, suppose that g : y → z is such
that M(g) is semi-simple in C. By Lemma 2.8, there exists m : M(z)→M(y) with
M(g)mM(g) = M(g) in C. Let then m̄ := πymηz : z → y. A direct verification
(using naturality of π) shows that g m̄ g = g. This recovers, in the special case of
C triangulated, the following general result for additive categories :

2.26. Corollary (Mesablishvili [12, Cor. 3.17]). Let (M,µ, η) be an additive monad
on an idempotent-complete additive category C, admitting a natural transformation
π : M → IdC such that π ◦ η = id. Then M satisfies effective descent.

3. The case of ring objects

We consider a triangulated category C with a monoidal functor, the tensor,
⊗ : C × C−→C with unit object 1 ∈ C. We just need − ⊗ − additive in each
variable. Recall Remark 2.24 for generalization beyond triangulated categories.

3.1. Corollary. Let (A,µA, ηA) be a ring object in an idempotent-complete tensor
triangulated category C. Define DescC(A) = DescC(M) to be the descent category
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for the associated monad (M,µ, η) = (A ⊗ −, µA ⊗ −, ηA ⊗ −) in C. (See de-
tails in Remark 3.3 below.) Then the natural functor QA : C−→DescC(A) is an
equivalence, i.e. A satisfies effective descent, if and only if A is faithful.

Proof. As in Remark 2.3, A must be faithful to satisfy descent. Conversely, suppose
that A, hence M = A ⊗ −, is faithful. We want to apply Corollary 2.26. By
Proposition 2.12, ηA : 1 → A is a split monomorphism. Choose a retraction
πA : A→ 1 of ηA in C and define the requested natural retraction π of η = ηA⊗− :
IdC → A⊗− to be πx := πA ⊗ idx : A⊗ x→ x for every x ∈ C. �

3.2. Remark. In the above statement, we do not need the tensor ⊗ to be symmetric
monoidal. This illustrates the clarity of the monadic approach. Similarly, if C acts
on some other category D via a bi-additive � : C ×D−→D, then M = A � − is
an additive monad on D to which we can apply the results of Section 2.

3.3. Remark. For convenience of quotation, let us unfold the definition of the descent
category, DescC(A), for a ring object (A,µ, η) in C, first without assuming symmetry
of ⊗. An object (x, %, δ) in DescC(A) is a triple with x ∈ C an object, % : A⊗x→ x
the A-module structure on x and δ : x→ A⊗x the comodule structure (a. k. a. the
descent datum); this triple must satisfy the five conditions of (1.5), which are here :

A⊗A⊗ x
1⊗% //

µ⊗1

��

'&%$ !"#1

A⊗ x

%

��

1⊗δ //

'&%$ !"#3

A⊗A⊗ x

µ⊗1

��
A⊗ x

% //
'&%$ !"#2

'&%$ !"#5

x
δ //

δ

��

'&%$ !"#4

A⊗ x

1⊗η⊗1

��
x

sssssssssssssss

sssssssssssssss

η⊗1

OO

A⊗ x
1⊗δ

//
%

oo A⊗A⊗ x .

In Cipolla’s words [4], the relations marked 4 and 5 express conditions (1) and
(2) of [4, Definizione p. 45]. (Note that there is a misprint in the definition of d 3

in [4], which should read d 3(s⊗m) = s⊗ f(m).) A morphism of A-modules with
descent data f : (x, %, δ) → (x′, %′, δ′) is simply a morphism f : x → x′ in C which
commutes with action and descent data, as before : f % = %′ (1 ⊗ f) : A ⊗ x → x′

and δ′ f = (1⊗f) δ : x→ A⊗x′. The functor QA : C−→DescC(A) maps an object
x to (A⊗x, µ⊗ 1, 1⊗ η⊗ 1) and a morphism f : x→ x′ to 1⊗ f : A⊗x→ A⊗x′.

3.4. Remark. Continuing Remark 3.3, let us now assume that ⊗ : C × C−→C is
symmetric monoidal. Let us denote the switch of factors by τx,y : x⊗y ∼−→ y⊗x. In
that case, one can verify that the category DescC(A) is isomorphic to the category

whose objects are triples (x, %, γ) with (x, %) an A-module and γ : A⊗ x ∼→ x⊗A
an isomorphism of A⊗A-modules such that the following diagram commutes :

(3.5)

A⊗A⊗ x
1⊗γ //

τ⊗1 ((PPPPPPPP A⊗ x⊗A
γ⊗1 // x⊗A⊗A .

A⊗A⊗ x
1⊗γ

// A⊗ x⊗A
τ⊗1

66nnnnnnnn
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Morphisms of such triples are defined in the obvious way. The isomorphism of
categories with DescC(A) relates (x, %, δ) and (x, %, γ) via the following dictionary :

δ : x→ A⊗ x � // γ(δ) := (%⊗ 1) (1⊗ τ) (1⊗ δ)

δ(γ) := τ γ (η ⊗ 1)
�oo γ : A⊗ x ∼→ x⊗A .

This verification was an exercise thirty-five years ago in [4] and remains so today.

The formulation with the isomorphism γ : A⊗x ∼→ x⊗A instead of the coaction
δ : x→ A⊗x is essentially the one of [8, § II.3]. Equation (3.5) is the usual cocycle
condition, which would read “γ2 = γ3γ1” in the notation of [8].

3.6. Example. Let R be a commutative ring and Spec(R) = D(s1) ∪ . . . ∪D(sn) a
Zariski cover by principal open subsets and set A = R[1/s1]×· · ·×R[1/sn]. Then an
A-module in C = R – Mod is the same thing as a collection of R[1/si]-modules Mi

and the isomorphism γ provides isomorphisms between the restrictions of Mi and
Mj to D(si)∩D(sj). Here, the cocycle condition (3.5) yields the usual compatibility
over triple intersections and descent just means gluing of modules.

4. A faithful triangular monad without descent

Let k be a field and R =
(
k 0
k k

)
⊂ M2(k) the k-algebra of lower-triangular (2×2)-

matrices in k. It is the path algebra of the A2-quiver • → •. Let A = R – mod
be the category of finitely generated left R-modules. The ring R is hereditary and
satisfies Krull-Schmidt. Thinking of R in columns, we have

R = P2 ⊕ P1

where P2 =
(
k
k
)

and P1 = ( 0
k ) have left R-action by matrix multiplication. These

are indecomposable projective R-modules and there is only one other isomorphism
class of indecomposable R-module, given by the non-projective module M = k with
left R-action ( a 0

b c ) · x = ax. We have an exact sequence :

(4.1) 0→ P1
α−→P2

β−→M → 0 ,

where α : P1 �P2 is the obvious inclusion α
(
0
y

)
=

(
0
y

)
and where β ( xy ) = x.

Dually, we have right R-modules Q1 = (k 0) and Q2 = (k k), with right R-action
by matrix multiplication again. They are projective : R = Q1 ⊕ Q2 (in rows) and
there is also a right R-module N := k given by y · ( a 0

b c ) = yc. We now have an
exact sequence of right R-modules, with γ(x 0) = (x 0) and δ(x y) = y :

(4.2) 0→ Q1
γ−→Q2

δ−→N → 0 .

We have interesting isomorphisms of right R-modules

(4.3) HomR(P2, R) ' Q1 and HomR(P1, R) ' Q2

under which HomR(α,R) is γ. Note that HomR(−, R) swaps dimension two and
dimension one (over k). The isomorphisms of (4.3) are easy to establish, for instance

using that P1 = coker
(
R
·d−→R

)
for d = ( 1 0

0 0 ) with dual ker
(
R

d·−→R
)

= Q2.
On the other hand, duals over k do respect dimension. We have isomorphisms

(4.4) Homk(Q1,k) 'M , Homk(Q2,k) ' P2 and Homk(N, k) ' P1

of left R-modules (R acts on Homk(X,k) via (af)(x) = f(xa) as usual). These are
easy to establish on k-bases and are left to the reader.
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4.5. Lemma. There are three adjunctions of exact functors as follows :

Db(A)

RHomR(P2 ,−)

��

Db(A)

RHomR(P1 ,−)

��

Db(A)

RHomR(M,−)

��
Db(k)

M⊗
k
−

OO

Db(k)

P2⊗
k
−

OO

Db(k) .

P1[1]⊗
k
−

OO

Proof. Recall A = R – mod. For every X ∈ Db(A) and every Y ∈ Db(k), we have

RHomR(X,−) ∼= RHomR(X,R)⊗L
R − and Homk(Y,−) ∼= Homk(Y,k)⊗k − .

Combining this with the usual ⊗L–RHom adjunction, yields an adjunction

Db(A)

RHomR(X,−) ∼= Y
L
⊗
R
−

��
Db(k)

Homk(Y , −) ∼= Z ⊗
k
−

OO

where Y := RHomR(X,R) is seen as a complex of right R-modules and where
Z := Homk(Y,k) is again a complex of left R-modules.

A direct computation with the notation introduced before the Lemma yields for
the three indecomposable values of X, namely P2, P1 and M , the following result :

If X = P2 then Y ' Q1 and Z 'M .
If X = P1 then Y ' Q2 and Z ' P2 .
If X = M then Y ' N [−1] and Z ' P1[1] .

To check the last row, for instance, use the projective resolution (4.1) of M , apply
HomR(−, R) and use (4.3) and (4.2) to see that RHomR(M,R) = N [−1]. Then
Z = Homk(N [−1],k) ∼= Homk(N, k)[1] ' P1[1] by (4.4). �

4.6. Theorem. Let k be a field, R =
(
k 0
k k

)
and A = R – mod the category of left

R-modules as above. (Equivalently, A is the category Arr(k – vect) of arrows of
finite-dimensional k-vector spaces.) Consider the adjunction obtained by adding up
the three adjunctions of Lemma 4.5 :

Db(A)

F := RHomR

(
P2 ⊕ P1 ⊕M , −

)
��

Db(k)

G :=
(
M ⊕ P2 ⊕ P1[1]

)
⊗
k
−

OO

Then the associated monad M := GF on C := Db(A), see (A.7), is faithful (and
exact) but does not satisfy effective descent in the triangulated category C.

Proof. Both functors F and G are faithful. For the latter it follows obviously from
G 6= 0. For F , note that L := P2 ⊕P1 ⊕M is the direct sum of all indecomposable
objects, up to isomorphisms. Moreover, since R is hereditary, every object X in
Db(A) is a sum of translates of these three objects. Faithfulness of F then easily
follows from Hi(RHomR(L,X)) ∼= HomDb(A)(L,X[−i]) for every i ∈ Z.

Let us discuss descent. In C = Db(A), consider the morphism α : P1 → P2

of (4.1). As every other morphism of Db(k), the morphism F (α) is semi-simple.

Hence so is G(F (α)) = M(α). However, α is not semi-simple in C = Db(A) (if it
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satisfied Lemma 2.8 (ii), it would do so in A since A ↪→ Db(A) is fully faithful, but
this is impossible since HomA(P2, P1) = 0). So, M does not satisfy property (A)
of Theorem 2.23, hence does not satisfy descent. �

4.7. Remark. Unfolding the above counter-example, one can check that the faithful
monad M : C → C is indeed given by A ⊗L

R − for some ring object A. This might
puzzle the reader, in view of Corollary 3.1. Explicitly, A = Homk(Y, Y ) where
Y = RHomR(L,R) is a complex of right R-modules. However, this A is not a ring
object in C itself (which has no obvious tensor structure) but in the bigger derived
category of R-bimodules, which only acts on C. What happens is that although
A⊗L

R − : C→ C is faithful, the ring A itself is not faithful in the derived category
of R-bimodules. Therefore Theorem 4.6 does not contradict Corollary 3.1.

4.8. Remark. When the triangulated category C comes with a model (and if trian-
gular descent fails), the reader might want to recourse to the interesting approaches
proposed in Hess [6] or Lurie [9], via enriched structures.

Appendix A. Monads, modules, and co

A.1. Definition. Recall that a monad (M,µ, η) on a category C is an endofunctor
M : C → C, together with two natural transformations, µ : M2 → M (multiplica-
tion) and η : IdC →M (two-sided unit), satisfying the usual commutativities :

(A.2)

M3
Mµ //

µM
��

M2

µ

��
M2

µ
// M

and

M
Mη //

IIIIIIII

IIIIIIII M2

µ

��

M
ηMoo

uuuuuuuu

uuuuuuuu

M

which express associativity of µ and the two-sided unit, respectively. Inspiration
comes from the monad M(−) = A ⊗ − for some ring object A = (A,µ, η) in a
monoidal category C, with multiplication µ : A⊗A→ A and unit η : 1→ A.

An M -module (2) in C is a pair (x, %) where x is an object in C and % : M(x)→ x
(the M -action) is a morphism such that the following diagrams commute :

M2(x)
M(%) //

µx

��

M(x)

%

��
M(x)

% // x

and

x
ηx //

GGGGGGGGG

GGGGGGGGG M(x)

%

��
x .

Morphisms f : (x, %)→ (x′, %′) of M -modules are morphisms f : x→ x′ in C which
are M -linear, i.e. %′ ◦M(f) = f ◦ %. We denote the category of M -modules in C

by M – ModC. The free-module functor FM : C−→M – ModC is given by FM (x) =
(M(x), µx). It is left adjoint to the forgetful functor UM : M – ModC−→C, which
forgets the action. This yields the so-called Eilenberg-Moore adjunction :

(A.3)

C

FM

��
M – ModC .

UM

OO

2In [10], “M -modules” are called “M -algebras”. We prefer “modules” since this concept coin-
cides with that of A-modules, not of A-algebras, in the motivating example M = A⊗−.
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Its unit IdC → UM FM = M is simply the given unit η of M whereas its counit
εM : FM UM → IdM –ModC

is given for every M -module (x, %) by (εM )(x,%) = %.

Let us quickly recall the dual notions, to fix notations.

A.4. Definition. A comonad in a category D is a triple (L, λ, ε) where L : D → D

is a functor with comultiplication λ : L → L2 and counit ε : L → IdD such that
(λL) ◦ λ = (Lλ) ◦ λ and (Lε) ◦ λ = (εL) ◦ λ = idL. The category L – ComodD of
L-comodules in D is the following : Its objects are pairs (x, δ) where δ : x→ L(x) is
a morphism in D (the L-coaction on x) such that L(δ) ◦ δ = λ ◦ δ and εx ◦ δ = idx.
A morphism of L-comodules f : (x, δ) → (x′, δ′) is an f : x → x′ in D such
that L(f) ◦ δ = δ′ ◦ f . There is a free-comodule functor FL : D−→L – ComodD,
x 7→

(
L(x), λx

)
, which is right (!) adjoint to the obvious forgetful functor UL :

L – ComodD−→D. This is the “co”-Eilenberg-Moore adjunction :

(A.5)

L – ComodD

UL

��
D .

FL

OO

Its counit is the given ε : UL FL = L → IdD and the unit ηL : IdL –ComodD
→

FL UL is defined for every L-comodule (x, δ) by δ : x→ L(x) = FL UL(x, δ).

A.6. Remark. It is well-known that every adjunction F : C � D : G with unit
η : IdC → GF and counit ε : FG→ IdD, induces both

(A.7)
a monad

(
M := GF , µ := GεF , η

)
on C , and

a comonad
(
L := FG , λ := FηG , ε

)
on D .

Adjunctions (A.3) and (A.5) show that any (co)monad can be realized in this way.
In fact, the Eilenberg-Moore adjunctions are the final such realizations, in the
following sense (see [10, Thm. VI.3.1]) : Given an adjunction F : C � D : G and
setting M = GF : C−→C and L = FG : D−→D as in (A.7), there exist two
(unique) functors P : D−→M – ModC and Q : C−→L – ComodD

(A.8)

C

F

}}zzzzzzzzzz

FM

  BBBBBBBBBB

D

G

==zzzzzzzzzz

P = PF,G,η,ε
//_______ M – ModC

UM

``BBBBBBBBBB and

C

F
!!DDDDDDDDDD

Q = QF,G,η,ε //_______ L – ComodD

UL

||yyyyyyyyyy

D

G

aaDDDDDDDDDD FL

<<yyyyyyyyyy

which are morphisms of adjunctions, i.e. P ◦ F = FM and UM ◦ P = G, whereas
Q ◦ G = FL and UL ◦ Q = F . Explicitly, P (d) =

(
G(d) , G(εd)

)
for every object

d ∈ D and P (g) = G(g) for every morphism g in D. Dually, Q(c) =
(
F (c) , F (ηc)

)
for every object c ∈ C and Q(f) = F (f) for every morphism f in C.

A.9. Remark. Finally, we explicit the comonad LM on M – ModC associated to a
monad M on a category C. We have the Eilenberg-Moore adjunction FM : C �
M – ModC : UM of (A.3). As in (A.7), such an adjunction induces a comonad on
the right-hand category, here M – ModC, that we denote

LM := FM ◦ UM : M – ModC−→M – ModC .

The comonad (LM , λM , εM ) has comultiplication λM = FM η UM and counit εM as
after (A.3). Explicitly, for every M -module (x, %) we have LM (x, %) =

(
M(x) , µx

)
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whereas LM (f) = M(f) for every M -linear f . The comultiplication (λM )(x,%)
at (x, %), which is a morphism of M -modules from LM (x, %) =

(
M(x) , µx

)
to

(LM )2(x, %) =
(
M2(x) , µM(x)

)
, is given by the morphism M(ηx) : M(x)→M2(x)

in C. Finally, the counit (εM )(x,%) at (x, %), which is a morphism of M -modules
from LM (x, %) = (M(x), µx) to (x, %), is given by the morphism % : M(x)→ x in C.
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