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Abstract. We establish a Mayer-Vietoris long exact sequence for Witt groups of regular
schemes. We also establish homotopy invariance for Witt groups of regular schemes. For this,

we introduce Witt groups with supports using triangulated categories. Subsequently we use

these results to prove the Gersten-Witt Conjecture for semi-local regular rings of geometric
type over infinite fields of characteristic different from two.

Dedicated to Professor Manuel Ojanguren on his sixtieth birthday.

0. Introduction

The Witt group W(X) of a scheme X was defined in Knebusch’s 1977 paper [11]. In
this generality, that is when X is not assumed to be affine, very little is known about the
contravariant functor W (−). Motivated by K-theory analogies, we may first restrict our
attention to regular schemes. Even then, such elementary questions as the existence of a
Mayer-Vietoris exact sequence

· · · −→W(U ∪ V )−→W(U)⊕W(V )−→W(U ∩ V )−→· · ·
and homotopy invariance

W(X) ∼= W(A1
X)

appear to be out of range of classical methods. These are the main results of the present
paper. Mayer-Vietoris is Theorem 2.5. Homotopy invariance is Theorem 3.4. We shall work
over regular noetherian separated schemes on which 2 is everywhere invertible.

Over affine schemes, homotopy invariance is a famous theorem of Karoubi [9, Corollary
3.10] and a Mayer-Vietoris exact sequence can be found in Ranicki [18, Chapter 6]. Those
authors work, more generally, over rings with involution, but not over global schemes.

These two results are obviously of great importance. The first basic reason is purely
practical. In any theory for which such theorems hold, they immediately provide computa-
tions by means of geometric decomposition, without needing to know much about explicit
bundles, symmetric forms, and so on. But Mayer-Vietoris and homotopy invariance have
other, more far-reaching applications. One of them was mentioned to the author by Bruno
Kahn, namely a formal proof of the Gersten conjecture over infinite fields. We now recall
what this conjecture is about.
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Given a scheme X, we denote by X(p) its points of codimension p and for any point x ∈ X
by κ(x) the residue field at x. If X is regular separated and noetherian, and if X has finite
Krull dimension n, we want to study complexes of the form :

0 → W(X)−→
⊕

x ∈ X(0)

W(κ(x))−→
⊕

x ∈ X(1)

W(κ(x))−→· · ·−→
⊕

x ∈ X(n)

W(κ(x)) → 0.

Such a Gersten-Witt complex has been constructed by several authors, under more restrictive
hypotheses, mainly the existence of a ground field. In the above general setting, such a
complex is obtained in [3], as the E1-term of a Gersten-Witt spectral sequence.

The Gersten Conjecture for Witt groups (Pardon [15]) claims the existence and the ex-
actness of such a complex for X = Spec(R) where R is a regular local ring. This conjecture
was inspired by the K-theoretic analogue. The reader will see that our proof stems from
Quillen’s original proof, which was given for R semi-local, regular and of geometric type
over a base field k. It is for such rings, with k infinite and of characteristic different from 2,
that we prove the above Witt group version of the conjecture in Section 4.

The following is an overview of the present article.
The treatment of Witt groups of global schemes relies upon triangulated categories and

their Witt groups, or in short, Triangular Witt Groups. A detailed and elementary introduc-
tion to this framework can be found in [TWG, Part I, Section 2]. To avoid alzheimerizing the
reader, we choose not to repeat it here. In Theorem 1.1, we give a summary of the material
needed to understand this paper. In the remainder of Section 1 we apply this abstract the-
ory to schemes, building a cohomology theory with supports in the sense of Colliot-Thélène,
Hoobler and Kahn [CT-H-K].

Mayer-Vietoris is a corollary of flat excision, which is in turn an easy consequence of
[TWG] and some considerations about triangulated categories. This is done in the very
short Section 2. Throughout the paper, we use well known results about derived categories.
They can all be deduced from [5] or [20], if necessary, but are much simpler because of our
regularity hypotheses. In every case, we include either a reference or a sketch of the proof.

Section 3 is dedicated to global homotopy invariance. We obtain it by means of Mayer-
Vietoris glueing, as soon as we have the affine homotopy invariance of all the higher and
lower Witt groups Wn which appear in the general theory (see [TWG] or Theorem 1.1).
Note that Karoubi’s theorem gives us the affine result only for the usual Witt group. The
higher Witt groups he constructs and for which he also obtains homotopy invariance (see
[9]) are not the same as ours. In this regard, the reader is referred to [12], [2] and [22]. On
the other hand, L-theorists also have homotopy invariance results (see [7] and Chapter 5 of
[18]). This might lead to another proof of our Theorem 3.1 below.

Nevertheless, the reader is not assumed to have extensive knowledge of L-theory. More-
over, since we are only interested in affine coverings of regular schemes, we need only ho-
motopy invariance for regular rings. In fact, we are able to outline a very elementary proof
that Wi(R) = Wi(R[t]) for R regular. This is done in Section 3.

Section 4 illustrates the strength of the above theorems with a short demonstration of
the Gersten Conjecture, which improves on Quillen’s fundamental ideas. The improvements
needed here are due primarily to Gabber and also to Colliot-Thélène, Hoobler and Kahn [CT-
H-K], who showed that Gabber’s arguments apply to very general situations. Moreover, they
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formalized their proofs under some simple axioms, among which étale excision (COH 1) and
homotopy invariance (COH3). We do not state the list of all possible axioms (COH 1 . . . 6)
that a cohomology theory can satisfy, nor the dependences between them, because this can
be found in [CT-H-K, Part 2]. On the other hand, we state those of their axioms that we
prove to be true for Witt groups, namely (COH 1) in Remark 2.4 and (COH 3) in Remark 3.5.

The assumption that the ground field k is infinite should not be considered as crucial.
The case of a finite k requires the existence of “transfers” in the cohomology theory under
consideration. See for instance axiom (COH 6), loc. cit. General transfers for Witt groups
will be treated in a forthcoming work in collaboration with Charles Walter [4].

Regarding generalization beyond the hypothesis that our semi-local ring is of geometric
type, the reader is referred to the recent preprint of Panin [14], where the equicharacteristic
case is obtained by an argument which seems likely to generalize to Witt groups.

Several people have already discussed the Gersten-Witt Conjecture in the past : Pardon
in [16]; Barge, Sansuc and Vogel in a series of talks and notes at the beginning of the 80’s;
more recently Rost mentioned to the author that the conjecture should be a consequence of
Schmid’s work [19] and general considerations along the lines of Rost’s Chow groups with
coefficients; Panin has also mentioned that he knows a proof as soon as homotopy invariance
holds. Finally, Pardon has a very recent preprint [17] on the subject.

In a nutshell, the present article connects the abstract results of [TWG] with the geometric
results of [CT-H-K]. In the author’s point of view, putting the Witt groups into the big
picture of cohomology theories and having at hand such tools as Mayer-Vietoris and global
homotopy invariance, is probably as important as the Gersten-Witt Conjecture itself.

1. Witt cohomology with supports

1.1. Theorem. There exists a family of covariant “Witt groups” functors (Wn)n∈Z defined
on triangulated categories with duality, taking their values in abelian groups, and satisfying
the following properties :

(1) If E is an exact category with duality in which 2 is invertible and if Db(E) is endowed
with the induced duality, we recover the usual Witt group of E among the Witt groups
of Db(E) as follows :

Wus(E) ∼= W0
(
Db(E)

)
.

(2) If 0 → J → K → L → 0 is a short exact sequence of triangulated categories with
duality, there exist connecting homomorphisms ∂n : Wn(L) → Wn+1(J) for all n ∈ Z
and a long exact sequence

· · · −→Wn−1(L) ∂n−1

−→ Wn(J)−→Wn(K)−→Wn(L) ∂n

−→Wn+1(J)−→· · ·

which is natural with respect to morphisms of short exact sequences.
(3) There is an isomorphism of functors Wn ' Wn+4 for all n ∈ Z, making the above

long exact sequence 12-periodic.
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1.2. Explanations and references. This theorem is the material of [TWG], where
triangulated categories with duality and the functors Wn are defined, see [1, Section 2]. All
the categories under consideration are supposed to be Z[ 12 ]-categories, which means that all
the Hom-groups are uniquely 2-divisible.

Part (1) is established in [2, Theorem 4.3] for exact categories in which split epimorphisms
are admissible. Note that all the exact categories used in the present article satisfy this rather
weak assumption. Moreover, Charles Walter found an elegant way to go from that case to
the general case of any exact category, as explained in [3, after 1.4].

In part (2), a short exact sequence of triangulated categories with duality

0 → J → K → L→ 0

refers to the situation where J is a saturated triangulated subcategory ofK (see [21, II.2.1.6])
on which the duality restricts, and L = K/J , with the induced duality. Equivalently, L is
a localization of K compatible with the duality and J is the “kernel” of this localization,
that is the full subcategory of K on those objects which become isomorphic to zero in L.
The long exact sequence is the main result of [1, Theorem 6.2] under the assumption that
K is weakly cancellative (A ⊕ B ' B ⇒ A ' 0). Again, the triangulated categories under
consideration here do satisfy this hypothesis. Nevertheless, the author found a microscopic
improvement of one of the arguments of [1] to remove this cancellation assumption and this
is presented in [3, proof of 2.1]. Naturality of the long exact sequence is a triviality based
on the very explicit definition of the connecting homomorphisms ∂n, see [1, Section 5].

Part (3) is very easy in this framework; see [1, Proposition 2.14]. Actually and more
precisely, if we consider Witt groups of symmetric and skew-symmetric forms, we have an
isomorphism between Wn+2 and the “skew-symmetric” Wn. See also [2, Explanation 5.1].

1.3. Notation. Let X be a scheme. We will always suppose that X contains 1
2 which

naturally means that 2 is everywhere invertible on X.
We denote by E(X) the exact category of locally free coherent OX -modules. We denote

by Db(X) the derived category of bounded complexes of E(X). This is endowed with a
duality

(−)∗ : Db(X) → Db(X)

coming from the trivial one on E(X). In short, this duality is the total derived functor of
HomOX

(−,OX). More details can be found in [TWG].

1.4. Definition. Throughout this article, we consider pairs (X,Z) where X is a scheme
containing 1

2 , and where Z is a closed subset of X. A morphism of pairs (X ′, Z ′) → (X,Z)
is a morphism f : X ′ → X such that f−1(Z) ⊂ Z ′. We will say that the pair (X,Z) is a
regular pair if X is regular noetherian and separated.

1.5. Definition. Let (X,Z) be a non necessarily regular pair as in 1.4. We denote by
Db

Z(X) the full subcategory of Db(X) on those complexes whose homology is concentrated
on Z, that is the “kernel” of the restriction functor Λ : Db(X) → Db(X−Z). The duality on
Db(X) gives a duality on Db

Z(X), as can be easily deduced from the fact that the restriction
functor Λ commutes with the duality.
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Let n ∈ Z. We define the nth Witt group of X with supports in Z to be the nth Witt
group of the triangulated category with duality Db

Z(X) :

Wn
Z(X) := Wn

(
Db

Z(X)
)
.

1.6. Theorem. Let X be a regular noetherian separated scheme containing 1
2 . Let Z ⊂ Y

be two closed subsets of X. Then there is a natural long exact sequence of Witt groups with
supports :

· · · → Wn−1
Y−Z(X − Z)−→Wn

Z(X)−→Wn
Y (X)−→Wn

Y−Z(X − Z)−→Wn+1
Z (X) → · · ·

Proof. By Theorem 1.1, part (2), everything amounts to prove that the following is an
exact sequence of triangulated categories with duality :

0−→Db
Z(X)−→Db

Y (X)−→Db
Y−Z(X − Z)−→ 0.

This is in turn an easy consequence of the following commutative diagram (think of the
Snake Lemma !) : 0

��
Db

Y−Z(X − Z)

��
0 // Db

Z(X) //

��

Db(X) // Db(X − Z) //

��

0

0 // Db
Y (X) // Db(X) // Db(X − Y ) //

��

0

0.
The two lines and the third column are short exact sequences of triangulated categories
with duality. In fact, for any separated noetherian regular scheme X and for any closed
subset Z ⊂ X, the open subscheme X −Z is still separated noetherian and regular and the
following is a well-known exact sequence of triangulated categories with duality :

0 → Db
Z(X)−→Db(X)−→Db(X − Z) → 0.

This central result is easy to prove if we use the abelian category of coherent modules instead
of locally free ones (see also the first paragraph of the proof of 2.3). Fortunately, those two
categories have equivalent derived categories on regular noetherian separated schemes. �

1.7. Remark. In the terminology of [CT-H-K, Definition 5.1.1], Theorem 1.6 precisely says
that our Witt groups form a cohomology theory with supports. In particular, putting Y = X
in the above, we get a long exact sequence

· · · → Wn−1(X − Z)−→Wn
Z(X)−→Wn(X)−→Wn(X − Z)−→Wn+1

Z (X) → · · ·
which shows the W•

Z(X) as relative Witt groups for the regular pair (X,Z).
It is natural to ask if those relative Witt groups can be expressed only in terms of Z,

ideally as some Witt groups of Z equipped with the reduced scheme structure and some
twisted-shifted duality. We won’t give an answer to this very interesting question here, but
we will see that even if Wn

Z(X) does not depend only on Z, it depends on X only in the
neighborhood of Z. Here, “neighborhood” can be understood in the Zariski, étale or flat
sense.
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2. Excision and Mayer-Vietoris

2.1. Notations. Let X be a noetherian scheme and Z be a closed subset of X. We will
denote by A(X) the abelian category of coherent OX -modules and by AZ(X) the Serre
subcategory of A(X) of those modules with support in Z.

2.2. Theorem. Let f : X ′ → X be a flat morphism of noetherian schemes. Let Z be a
closed subscheme of X and let Z ′ = Z ×X X ′. Suppose that f induces an isomorphism
Z ′

∼→ Z. Then we have an equivalence of categories :

f∗ : AZ(X) ∼−→ AZ′(X ′).

Proof. Consider the commutative diagram (with “exact lines”) of abelian categories :

0 // AZ(X) //

��

A(X) //

f∗
��

A(X − Z)

��

// 0

0 // AZ′(X ′) // A(X ′) // A(X ′ − Z ′) // 0.

By Joyet [8, Corollary 10], the right-hand square is a cartesian diagram of abelian categories,
i.e. a pull-back. It is then straigthforward to prove that the “kernels” are equivalent. �

2.3. Corollary (Flat Excision). Let f : X ′ → X be a flat morphism of noetherian
separated regular schemes containing 1

2 . Let Z ⊂ X be a closed subscheme and let Z ′ =
Z×XX ′. Suppose that f induces an isomorphism f : Z ′ ∼→ Z. Then we have an equivalence
of categories :

f∗ : Db
Z(X) ∼−→ Db

Z′(X ′).

In particular, for all n ∈ Z, we have a natural isomorphism :

Wn
Z(X) ∼−→ Wn

Z′(X ′).

Proof. Given an abelian category A and a Serre subcategory B, there is usually no equiva-
lence between the derived bounded category of B and the full subcategory Db

B(A) of Db(A)
whose objects are those complexes which have homology in B. Nevertheless, this is true
when A = A(X) and B = AZ(X), by Keller [10, 1.15, condition (c1)] and the use of the
Artin-Rees lemma as in Keller’s Example (b), loc. cit.

It is now very easy to deduce this corollary from the above theorem. Of course, this uses
the regularity of X in the end to have Db(X) ∼= Db

(
A(X)

)
. For the second part, There is

nothing left to do by the very definition of Wn
Z(X) given in 1.5. �

2.4. Remark. In particular, the above holds for f étale. In the words of the authors of
[CT-H-K], this means that our cohomology theory with supports W•

−(−) satisfies the axiom
of étale excision (COH1) - the reader might prefer the terminology Nisnevich excision.
Anyway, we obtain a Mayer-Vietoris long exact sequence by the usual argument. Observe
that around n = 0 in the theorem below, we have usual Witt groups of schemes by Theorem
1.1, part (1). It is interesting that this very little corollary of the following theorem was not
known for usual Witt groups.
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2.5. Theorem (Mayer-Vietoris). Let X be a noetherian separated and regular scheme
which contains 1

2 . Let X = U ∪V be an ordered open covering of X. Then there is a natural
long exact sequence

· · · → Wn−1(U ∩ V ) → Wn(X) → Wn(U)⊕Wn(V ) → Wn(U ∩ V ) → Wn+1(X) → · · ·

Proof. Consider Z := X − U with any closed subscheme structure. Then the inclusion
f : V ↪→ X satisfies the assumptions of Corollary 2.3 and we have Z ′ = Z. Now compare
the two long exact sequences (1.7) obtained for the regular pairs (X,Z) and (V,Z) and use
excision and a simple chase to prove the result. �

3. Global homotopy invariance

3.1. Theorem. Let R be a regular noetherian ring containing 1
2 . For all n ∈ Z, the natural

map Wn(R) → Wn(R[t]) is an isomorphism.

Proof. By Theorem 1.1 part (3), we only have four cases to do. The case n ≡ 0 mod
4 is Karoubi’s Theorem [9, Corollary 3.10]. We also refer the reader to Ojanguren and
Panin’s simple proof of this result [13, Theorem 3.1]. As recalled in 1.2 above (see also
[2, Explanation 5.1]), the group W2 is nothing but a W0 of skew-symmetric forms. Its
homotopy invariance follows from the references given for the case n = 0. We outline a
proof for n = 1 below, and leave the adaptations for n = 3 to the reader. As before, this
amounts to “change skew-symmetry into symmetry”, that is to replace the identification
Id ∼→ ∗2 by its opposite.

The proof requires two lemmas, in which we assume some minimal familiarity with [TWG]
and the definitions given there. We start with a general lemma about W1, not related directly
to homotopy invariance. Recall that over affine schemes, the derived category Db(Spec(R))
considered since 1.3 is just the homotopy category of bounded complexes of finitely generated
projective R-modules Kb

(
P(R)

)
. Of course, W1(P) stands for W1

(
Kb(P)

)
.

3.2. Lemma. For any additive Z[ 12 ]-category P with duality (−)∗, the following holds.

(1) Any element in W1(P) is represented by a space (M,φ) of the form :

M :=
φ ��

· · · 0 // 0 //

��

P
d //

ϕ
��

Q //

−ϕ∗

��

0 //

��

0 · · ·

M# = · · · 0 // 0 // Q∗
−d∗

// P ∗ // 0 // 0 · · ·

where φ is a homotopy equivalence and where Q sits in degree 0 in the complex M .
(2) Any symmetric space as above is Witt-equivalent to the opposite of the following one :

M ′ :=
φ′ ��

· · · 0 // 0 //

��

P
ϕ //

d
��

Q∗ //

−d∗

��

0 //

��

0 · · ·

(M ′)# = · · · 0 // 0 // Q
−ϕ∗

// P ∗ // 0 // 0 · · ·

obtained by permuting the form (ϕ) and the differential (d).
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Proof. Part (1) is already in [2, Proposition 5.2] and holds for any exact category. More
details on odd-indexed Witt groups and groups of formations will be available in [22].

For part (2), choose a symmetric homotopy inverse χ = (. . . , 0, ψ,−ψ∗, 0, . . . ) of φ, for
a morphism ψ : Q∗ → P and choose a morphism ε : Q → P such that ψϕ + ε d = 1P and
ψ∗ϕ∗ + d ε = 1Q. Define a complex N and a morphism h : N →M ⊕M ′ as follows :

N :=

h
��

· · · 0 // P
ϕ∗d //(

ψϕ
εd

)
��

P ∗ //(
ψ∗

ε∗

)
��

0 · · ·

M ⊕M ′ = · · · 0 // P ⊕ P

(
d 0
0 ϕ

)
// Q⊕Q∗ // 0 · · ·

The reader may check that this is a homotopy equivalence with homotopy inverse being
( 1 1 ) in degree 1 and (ϕ∗ d∗ ) in degree 0. Via this h, the form φ⊥φ′ induces a form
ω := h#(φ⊥φ′)h on N , which is easily proved to be neutral, i.e. [N,ω] = 0 ∈ W1(P). �

The author first hoped for a categorical expression of Kb(P(R[t])) in terms of Kb(P(R))
and for a proof of homotopy invariance on the level of triangulated categories. We don’t
know if it is possible or not. Nevertheless, we obtain part of this strategy as presented below.

Given any additive category P, we can define another additive category P[t] as follows.
We take for P[t] the same objects as those of P, except that we write them P [t] when they
are in the new category and we define the morphisms by formal polynomials :

HomP[t](P [t], Q[t]) :=

{
n∑

i=0

fit
i

∣∣∣∣∣n ∈ N, fi ∈ HomP(P,Q) for all i = 0, . . . , n

}
.

It is easy to check that this defines a category (with the obvious composition) and that it is
additive. If P comes equipped with a duality (−)∗, we can extend it to P[t] by (P [t])∗ = P ∗[t]
and (

∑
fit

i)∗ =
∑
f∗i t

i.

Applying this to the category P = P(R) of finitely generated projective R-modules, P[t] is
the full subcategory of P(R[t]) of those projective R[t]-modules which are extended from R.
As soon as K0(R) → K0(R[t]) is surjective, their derived categories are equivalent :

Kb
(
P(R)[t]

) ∼→ Kb
(
P(R[t])

)
.

Therefore, our Theorem 3.1 amounts to prove that for any additive category with duality P,
we have an isomorphism W1(P) ∼→ W1(P[t]). To prove this we need a last lemma.

3.3. Lemma. Let P be an additive Z[ 12 ]-category with duality. Consider an element of
W1(P[t]) of the form [M,φ] with :

M :=
φ

��

· · · 0 // 0 //

��

P [t] d //

ϕ
��

Q[t] //

−ϕ∗��

0 //

��

0 · · ·

M# = · · · 0 // 0 // Q∗[t]
−d∗

// P ∗[t] // 0 // 0 · · ·

with d of degree n ≥ 0 and ϕ of degree m ≥ 1. Assume that m is either n or n+ 1.
Then (M,φ) is isometric to a space (M ′, φ′) of the same type (written with ′ everywhere),

such that deg(d′) ≤ n and deg(ϕ′) ≤ m− 1.
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Proof. Case (1) : assume that n ≥ 1. Write d = d0 + d1 t
n where deg(d0) ≤ n − 1 and d1

is constant and ϕ = ϕ0 + ϕ1 t
m where deg(ϕ0) ≤ m− 1 and ϕ1 is constant. Let a = m− n

which is 0 or 1 by hypothesis. Observe that ϕ∗d = d∗ϕ implies ϕ∗1d1 = d∗1ϕ1.
We add to our symmetric space (M,φ) the following acyclic complex (i.e. in Kb(P[t]) we

add a zero object) : · · · 0 → P [t]⊕ P ∗[t] α−→P ∗[t]⊕ P [t] → 0 · · · , where α is the hyperbolic
isomorphism. We call the orthogonal sum of these spaces (N,ψ), with for instance the zero
form on the trivial part. We use a homotopy Q[t] ⊕ P ∗[t] ⊕ P [t] → Q∗[t] ⊕ P [t] ⊕ P ∗[t] to
modify the representant up to homotopy of the form ψ into the one presented below. The
homotopy is easy to find because it is almost forced by the fact that α is an isomorphism.

N :=

ψ

��

· · · 0 // P [t]⊕ P [t]⊕ P ∗[t]


d 0 0
0 0 1
0 1 0


//


ϕ −ϕ1t

a 0
0 0 0

−ϕ∗1d ta ϕ∗1d1t
a 0


��

Q[t]⊕ P ∗[t]⊕ P [t] //


−ϕ∗ 0 d∗ϕ1t

a

ϕ∗1t
a 0 −d∗1ϕ1t

a

0 0 0


��

0 · · ·

N# = · · · 0 // Q∗[t]⊕ P [t]⊕ P ∗[t]
−d∗ 0 0
0 0 −1
0 −1 0


// P ∗[t]⊕ P ∗[t]⊕ P [t] // 0 · · ·

We now use on N an automorphism, given on P [t]⊕ P [t]⊕ P ∗[t] by :

 1 0 0
tn 1 0
0 0 1

 and by

Id on Q[t]⊕ P ∗[t]⊕ P [t]. A direct verification shows that the new space we obtain satisfies
the requirement of (1) when n ≥ 1.

Case (2) : assume that n = 0, i.e. M is a constant complex ! This is now classical. Write

φ = φ(0) · (1 + β t)

where β is an endomorphism of M such that (1 + β t) is an automorphism. This forces β
to be nilpotent and the usual trick of finding a square root to (1 + β t) gives the required
isometry :

(
√

1 + β t )∗ φ(0)
√

1 + β t = φ(0) (1 + β t) = φ.

We use the fact that
√

1 + β t is a polynomial in β t, with coefficients in Z[ 12 ]. �

End of the proof of Theorem 3.1. The proof is now an easy induction on the degrees
of the form and the differential of (M,φ) as in the above lemmas. Indeed, Lemma 3.3 allows
us to reduce the degree of ϕ as long as deg(ϕ) ≥ deg(d) and Lemma 3.2 (2) allows us to
switch ϕ and d when this inequality does not hold.

By this method we prove the surjectivity of W1(P) → W1(P[t]). This homomorphism is
also injective since it has an obvious section, given by t 7→ 0. �
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3.4. Theorem. Let X be a noetherian separated regular scheme on which 2 is everywhere
invertible. Then for any n ∈ Z the natural map :

Wn(X)−→Wn(A1
X)

is an isomorphism. This is in particular true for the usual Witt group : W(X) ∼= W(A1
X).

Proof. This is a simple induction on the number of noetherian affine open subschemes in
some covering of X, using of course Theorems 2.5 and 3.1, and paying all due attention to
the order of the coverings : when X = U ∪ V choose A1

X = A1
U ∪ A1

V . To apply induction,
we need the intersection of two affine open subschemes to be affine. This follows from X
separated. The usual group is the n = 0 case by Theorem 1.1, part (1). �

3.5. Remark. For any regular pair (X,Z) as in 1.4 and for any n ∈ Z the natural map

Wn
Z(X)−→Wn

A1
Z
(A1

X)

is an isomorphism, where A1
Z is the closed subset of A1

X above Z. To see this, it suffices to
compare the two long exact sequences (1.7) for the regular pairs (X,Z) and (A1

X ,A1
Z) and

apply Theorem 3.4 to X and X − Z. In the formalism of [CT-H-K], this means that our
cohomology theory W•

−(−) satisfies the axiom (COH3).

4. The Gersten Conjecture

The Gersten Conjecture claims the existence and the exactness of a Gersten-Witt complex,
i.e. a complex of the following form :

0 → W(X)−→
⊕

x ∈ X(0)

W(κ(x))−→
⊕

x ∈ X(1)

W(κ(x))−→· · ·−→
⊕

x ∈ X(n)

W(κ(x)) → 0

where X = Spec(R) is the spectrum of a regular local ring of dimension n. Of course, in
that case, there is only one point in X(0) and only one point in X(n), but we write the above
complex in its general form since it exists not only for regular local rings.

The first major difficulty, in contrast to what happens with K-theory, is precisely to build
such a complex. A well-known classical construction is the second residue homomorphism :⊕

x ∈ X(0)

W(κ(x))−→
⊕

x ∈ X(1)

W(κ(x))

and one expects the complex to start with this homomorphism. Note that this first differ-
ential is not well defined and depends on a choice of local parameters. This will also be the
case for the higher differentials. Nevertheless, the exactness of the complex will not depend
on those choices. The most general Gersten-Witt complex is established in [3], basically for
all regular schemes. For the convenience of the reader, we recall here how it is constructed.
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4.1. Notation. Let X be a regular noetherian and separated scheme containing 1
2 . We

will denote by
D(p)(X) :=

⋃
Z⊂X

codim(Z)≥p

Db
Z(X)

the full saturated triangulated subcategory with duality of Db(X) on those complexes such
that the support of their homology is of codimension ≥ p. In short, the above !

4.2. Construction of Gersten-Witt complexes. This part is a quick overview of
some technical results of [3]. The proofs are to be found there.

Let X be as in 4.1 and assume moreover that it is of Krull dimension n. Then we have a
finite filtration :

0 = D(n+1)(X) ⊂ · · · ⊂ D(1)(X) ⊂ D(0)(X) = Db(X).

For simplicity, we write D(i)(X) = 0 for i ≥ n+ 1 and D(j)(X) = Db(X) for j ≤ 0.
This filtration is the triangular analogue of the classical K-theoretic filtration on the level

of abelian categories, which is used to produce the classical Gersten complex. For each
integer p, we have a short exact sequence of triangulated categories with duality :

0 → D(p+1)−→D(p)−→D(p)/D(p+1) → 0

in which we suppressed the mention of X for readibility. By Theorem 1.1, we have a long
exact sequence of Witt groups :

· · · −→Wi(D(p+1))−→Wi(D(p))−→Wi(D(p)/D(p+1)) ∂−→Wi+1(D(p+1))−→· · ·

We use these connecting homomorphisms ∂ (which are natural and explicitly presented in
[TWG I, Section 5]) to produce the following complex

(GW1) · · · → Wp(D(p)/D(p+1)) dp

−→Wp+1(D(p+1)/D(p+2)) → · · ·

where the map dp is defined as the homomorphism ∂ : Wp(D(p)/D(p+1)) → Wp+1(D(p+1))
followed by the canonical homomorphism Wp+1(D(p+1)) → Wp+1(D(p+1)/D(p+2)). The fact
that (GW1) is really a complex is a triviality. Now, there is a natural isomorphism :

Wp(D(p)/D(p+1)) ∼=
⊕

x ∈ X(p)

W(Ox-fl)

where W(Ox-fl) is the Witt group of finite length Ox-modules with a natural duality. This
is again the transposition of the similar equivalence on the level of abelian categories which
appears in the construction of the K-theoretic Gersten complex. Using these identifications,
we obtain a natural complex :

(GW2) · · · →
⊕

x ∈ X(p)

W(Ox-fl)−→
⊕

x ∈ X(p+1)

W(Ox-fl) → · · ·
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The choices announced at the beginning of the Section appear at this stage. That is, each
choice of local parameters in the regular local rings Ox gives an isomorphism W(κ(x)) '
W(Ox-fl). In K-theory, there is such an isomorphism, but it does not depend on the choices
of parameters (here, the choices actually affect the compatibility of the dualities). Pushing
the complex (GW2) along those last isomorphisms, and introducing W(X) = W0(D(0)) at
the left end, we obtain the announced Gersten-Witt complex :

(GW) 0 → W(X) →
⊕

x ∈ X(0)

W(κ(x)) →
⊕

x ∈ X(1)

W(κ(x)) → · · · →
⊕

x ∈ X(n)

W(κ(x)) → 0

Let us repeat that the maps are well-defined but depend upon choices of local parameters
in the local rings. Nevertheless, the exactness of (GW) does not depend on those choices,
since all these complexes are isomorphic : they are all isomorphic to the natural (GW1), by
construction. It was also established in [3] that the classical second residue homomorphism
appears where we expect it to appear, that is between X(0) and X(1).

The author has no idea of a simpler description of these homomorphisms, involving the
choices. In particular, it is not known if these homomorphisms coincide with Schmid’s
homomorphisms in the special case where the latter are defined.

4.3. Theorem. The Gersten conjecture for Witt groups holds for semi-local regular rings
of geometric type over an infinite field of characteristic different from 2. In other words, the
complex (GW) defined in 4.2 is exact when X = Spec(R) is the spectrum of such a ring.

Proof. The proof occupies the end of the Section. We apply the general strategy of [CT-
H-K]. The main point is the following result, where all the subtlety of their “Geometric
Presentation Theorem” (3.1.1 loc. cit.) is encoded.

4.4. Theorem. Let k be an infinite field of characteristic different from 2. The Witt co-
homology theory with supports W•

Z(X), considered for regular pairs (X,Z) with X smooth
over k, is “stricly effaceable”. This means the following : For any smooth scheme X over
k and any finite set of points t1, . . . , tr ∈ X, for any p ≥ 0, for any neighborhood V ⊂ X
of t1, . . . , tr and for any closed subset Z ⊂ V of codimension ≥ p+ 1, there exists an open
neighborhood U ⊂ V of t1, . . . , tr and a closed subset Z ′ ⊂ V such that codimV (Z ′) ≥ p and
such that the map

Wq
Z∩U (U)−→Wq

Z′∩U (U)

is zero for any q ∈ Z.

Proof. We want to apply Theorem 5.1.10 of [CT-H-K]. For this we need our cohomology
theory to satisfy étale excision (COH1) and what Colliot-Thélène, Hoobler and Kahn call
“the key lemma for cohomology” or (COH 2). We do not re-state this axiom here because
it suffices to know that homotopy invariance (COH3) implies this “key lemma”, as proved
in Proposition 5.3.2 loc. cit. The result follows by Remarks 2.4 and 3.5 above. �

4.5. Corollary. Let X be a smooth scheme over an infinite field k, let t1 . . . , tr ∈ X
be a finite number of points of X and let Y = Spec(OX,(t1... ,tr)) where OX,(t1... ,tr) is the
semi-local ring of X at (t1 . . . , tr). Then the following natural homomorphism

Wi
(
D(p+1)(Y )

)
−→Wi

(
D(p)(Y )

)
is equal to zero for any i ∈ Z.
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Proof. This is a formal consequence of the Effacement Theorem 4.2 and the proof goes
exactly like in the one of Proposition 2.1.2 of [CT-H-K], mutatis mutandis. We use in
particular the fact that

Wi
(
D(p)(X)

)
= lim

Z⊂X
codim(Z)≥p

Wi
(
Db

Z(X)
)

which is easily verified, using the definition of D(p)(X) and the very explicit definitions of
the Witt groups; in other words, any symmetric space over D(p)(X) is already defined over
some Db

Z(X) and any such space which is metabolic in D(p)(X) is already metabolic in some
Db

Z(X). For very similar reasons, the natural map

lim
V⊂X open
t1,... ,tr∈V

Wi
(
D(p)(V )

)
−→Wi

(
D(p)(Y )

)

is an isomorphism for any i ∈ Z. Again, this would be true “without Witt groups” on both
sides, if we had developped a suitable formalism of direct limit of triangulated categories.
We do not want to use this sophistication and leave the details to the reader. �

4.6. End of the proof of Theorem 4.3. The end goes as usual. For our semi-local
Y , we obtain long exact sequences associated to the short exact sequences of triangulated
categories 0 → D(p+1) → D(p) → D(p)/D(p+1) → 0, as in 4.2. Because of Corollary 4.4,
those long exact sequences break up into short exact sequences :

0 → Wi(D(p))−→Wi
(
D(p)/D(p+1)

) ∂−→Wi+1(D(p+1)) → 0

for all i ∈ Z and all 0 ≤ p ≤ n = dim(Y ). Putting together the above short exact sequences
(for i = p) and repeating the computations presented in 4.2, we obtain the announced exact
sequence :

0 → W(Y ) →
⊕

x∈Y (0)

W(κ(x)) →
⊕

x∈Y (1)

W(κ(x)) → · · · →
⊕

x∈Y (n)

W(κ(x)) → 0.

Observe that the proof establishes really the exactness of the natural Gersten-Witt complex
(GW1) presented in 4.2. �
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