CODESCENT THEORY I: FOUNDATIONS

PAUL BALMER AND MICHEL MATTHEY

ABSTRACT. Consider a cofibrantly generated model category S, a small cate-
gory C and a subcategory D of C. The category S€ of functors from C to S has
a model structure, with weak equivalences and fibrations defined objectwise
but only on D. Our first concern is the effect of moving C, D and S. The
main notion introduced here is the “D-codescent” property for objects in SC.
Our program aims at reformulating as codescent statements the Conjectures
of Baum-Connes and Farrell-Jones, and, in the long run, at tackling them
with new methods. We set the grounds of a systematic theory of codescent,
including pull-backs, push-forwards and various invariance properties.

1. INTRODUCTION

What we shall call codescent theory is a simple local-to-global concept, which
appears all over mathematics. The first main goal of this paper is to explain this
idea in elementary terms. The second one is to prove some general results which will
be used in [2] to establish the reformulation as codescent statements of the Baum-
Connes Conjecture and of the Farrell-Jones Isomorphism Conjectures. The gain of
this reformulation will be twofold. First, it will become conceptually clear what
these famous but slightly esoteric conjectures are about. Secondly, it will bring a
much more flexible framework in which to study them. For both reasons, it seems
important to present a rigorous and elementary explanation of what codescent
precisely means and we strove to make the present notes accessible to beginners.
Let us start with a heuristic motivation.

Suppose we are studying a family of topological spaces X(¢) depending func-
torially on ¢ € C, where ¢ can be thought of as a “parameter” belonging to a
small category C. Suppose we are given a subset of parameters D C C, possibly
much smaller, on which we have some “homotopical information” about X, i.e.
about X(d), only for d € D; when can we extend this information to the whole
of C? For instance, suppose we have two such families of spaces X and Y, and
suppose we are given a natural transformation n: X — Y for which we know that
n(d): X(d) — Y(d) is a weak homotopy equivalence (i.e. a m,-isomorphism) for
each d € D; when can we guarantee that n(c): X(¢) — Y'(¢) is a weak homotopy
equivalence for all ¢ € C? We shall call n a D-weak homotopy equivalence in the
former situation and a C-weak homotopy equivalence in the latter. Proving that
a D-weak homotopy equivalence between X and Y is indeed a C-weak homotopy
equivalence is a prototypical codescent question.

We will give below a model-theoretic definition of codescent, but here is an equiv-
alent formulation, which is better suited for a first introduction since it does not
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involve homotopical algebra. In particular, because of this, the notion of codes-
cent will be independent of the choice of specific model category structures. For
this definition, we need two well-known facts. The first one is that there exists a
category Ho(Zop®) which is the category Zop® of functors from C to the category
Top of topological spaces, with the C-weak homotopy equivalences inverted. The
restriction of a C-weak homotopy equivalence being trivially a D-weak homotopy
equivalence, there is a restriction functor

Res,: Ho(Zop®) — Ho(7Zop?) .
The second fact we need is that this restriction Res% has a left adjoint
Znd$: Ho(Zop?) — Ho(Top©) .

An object X € Top® satisfies codescent with respect to D exactly when X, viewed
in Ho(Zop€), belongs to the image of this functor Znd$%. This simple definition of
codescent suffers from the disadvantage of the category Ho(7op®) and the functor
Ind% not being described concretely enough. Both are unique up to isomorphism
and the important fact is their existence. A concrete construction of Ho(Zop®) and
of Ind% is one of the main reasons why model categories enter the game.

A substantial recollection of homotopical algebra is the subject of Appendix A
and the reader should proceed to it now, in case of doubt. We start by proving that
Top® is equipped with a model category structure in which the weak equivalences
are the D-weak homotopy equivalences. Stress the absence of misprint: we really
consider D-weak homotopy equivalences on Zop®. Then any X € Top® has a so-
called cofibrant replacement QX for this model structure:

Ex

QX ————X.
D-weq

We shall say that X has the codescent property with respect to D (or simply X
satisfies D-codescent) if the map £x is a C-weak homotopy equivalence. We will
prove in Theorem 13.5 that this is equivalent to the preceding formulation.

As an illustration of the codescent property, a classical argument of homotopy
theory (Ken Brown’s Lemma) allows us to answer the initial heuristical question,
namely: if n: X — Y is a D-weak homotopy equivalence and if X and Y both
satisfy D-codescent, then 7 is a C-weak homotopy equivalence (see Corollary 6.3).

It is then a natural and conceptually meaningful problem to determine whether a
given functor X € Top® satisfies D-codescent and we can thus start looking around
in mathematics for functors having this nice property.

For instance, given a group G, consider the orbit categories C = Or(G) and
D = Or(G,F), for some family F of subgroups, and let X (H) be a space whose
n-th homotopy group is the n-th K-theory group K2#(Z[H]), for all H € C. We
shall see in [2] that the morphism £x is essentially a global assembly map and that
the natural question whether X satisfies codescent is strongly connected to the
Farrell-Jones Isomorphism Conjecture. Namely, for a given group, we will prove
that K-theory satisfies codescent for these suitable orbit categories if and only if the
Isomorphism Conjecture holds for this group and all its subgroups. The homotopy
theory of diagrams of spaces over an orbit category has long been known, as for
instance in [5].
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Of course, the terminology is inspired by the notion of descent for presheaves of
spaces on a Grothendieck site. In algebraic geometry, it is a well-known and often-
answered question whether K-theory satisfies descent for a given Grothendieck
topology. We shall comment further on this analogy in Section 5.

In fact, the category of topological spaces could have been replaced here by any
cofibrantly generated model category S, as for example the category Zop, of pointed
topological spaces, or the category sSets of simplicial sets, or the category Sp of
spectra (of pointed simplicial sets, for instance), or even the category Ch(R-mod)
of chain complexes of left R-modules for a unital ring R. We shall naturally present
everything in this generality, both for aesthetical reasons and to ensure the flexibility
of the theory.

The aim of the article is not to produce yet another model category structure
on a category of diagrams, nor to enter the discussion of how general S can be or
how model categories could be re-axiomatized to allow any diagram category to
be again a model category. These questions are important but they are not really
relevant to us. We are intentionally picking and choosing the level of generality
in different sections to suit the exposition. What we need model categories for is
to prove theorems about moving the functor X and the shape-categories C and D.
In practice, the category of values & will be rather dumb: topological spaces,
chain complexes and the like. Essentially everything proven in this first part can
be obtained after replacing the assumption that S is cofibrantly generated by the
weaker assumption that the D-relative structure on S, i.e. the one described above,
really is a model category structure.

The book Mac Lane [15] will be our reference for general notions from category
theory such as adjunctions, (co)units, (co)limits, and so (co)on. Our references for
model categories are given in Appendix A.

Here is an outline of the content of the paper.

Consider the category S€ of covariant functors from a small category C to a
cofibrantly generated model category S. As explained above, we need a relative
model structure on S¢ with the weak equivalences and the fibrations tested over
some given subcategory D of C, that is, D-objectwise. We denote this model cat-
egory by Us(C,D). Proving that Us(C, D) indeed is a model category is done in
Section 3 and involves classical and well-known techniques. Here, we base the proof
on a more general result, Theorem 2.1, which says that one can produce a model
structure on a given category B, using a set of functors {e,: B — M,} from B to
a collection of model categories {M,}.

The notion of D-codescent is introduced in Section 4, where the theory we are
mainly concerned with really begins.

In Section 5, we explain, as a background motivation, the analogies and the
main differences between codescent and the standard notion of descent in algebraic
geometry and K-theory.

Section 6 is devoted to the liberty one can take in the definition of codescent
and to the resulting flexibility of the codescent property.

In Section 7, we introduce and discuss various Quillen functors at the level of the
model category Us(C, D), induced by a functorial change of one of the categories
S, C and D. Some useful Quillen adjunctions are established, notably concerning
the induction and restriction functors.
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In Section 8, some slightly more subtle Quillen adjunctions, that turn out to be
crucial in [2], are brought to light. For example, it is shown that under various
favorable circumstances, the restriction functor is a left Quillen functor, whereas it
is, for rather easy reasons, always a right Quillen functor.

Next, in Section 9, we discuss when the Quillen functors of Sections 7 and 8
preserve the codescent property. This constitutes a central part of the paper.

Section 10 gathers basic facts about codescent. The cofibrant replacements in
Us(C, D) are also briefly commented on. In Part II, see [1], we produce very explicit
cofibrant approximations in Us(C, D) under mild conditions on S.

We explain in Section 11 how one can prune away some data (namely, some
morphisms or objects) from the categories C and D, without altering the codescent
property of a given X.

Using results of the paper, we treat some elementary examples in Section 12.

In Section 13, we study the homotopy category of the model category Us(C, D).
We describe the functors induced at the level of homotopy categories by the in-
duction and the restriction functors. We also reformulate “at this homotopy level”
the codescent property, as first defined in the Introduction. We also prove that the
homotopy category of Us(C, D) and that of Us(D, D) are equivalent categories.

Finally, we introduce the codescent locus in Section 14. A way of describing this
notion is as follows: the D-codescent locus of a functor X € S¢ is the largest full
subcategory of C on which the restriction of X satisfies D-codescent. Most of the
main results in the paper have a very convenient reformulation in this language.
This very brief section can serve as an index to the rest of the paper.

Appendix A contains a substantial — but almost minimal for our purposes —
recollection of definitions and results on model categories. Appendix B recalls the
notion of right and left Kan extensions and the corresponding adjunctions. Roughly
speaking, this concerns the various functorial behaviours of the category S* under
a functorial change of the source-category A.

Sections 6, 9, 10, 11, 13 and 14 are part of the theory of codescent properly
speaking, the other sections rather being the necessary preparatory material. Other
aspects of the theory will be the subject of forthcoming parts.

Acknowledgements: The authors express their gratitude to Daniel Dugger for
helpful comments, and to the referee for a very careful reading of the manuscript
and for suggesting many improvements regarding the exposition.
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2. PULLING BACK COFIBRANTLY GENERATED MODEL STRUCTURES

We start with a rather technical but quite general result on how to define a
cofibrantly generated model structure on a given category, by “pulling-back” cofi-
brantly generated model structures via a set of functors.

Notions such as relative I-cell complexes or smallness are recalled in Appendix A,
where the definition of a cofibrantly generated model category is also to be found
(see A.5 and A.24).

Theorem 2.1. Let B be a complete and cocomplete category, and let A be a set
(of “indices”). Suppose that for every “index” a € A, we are given a cofibrantly
generated model category (M, Weqa, Cofq, Fiby) with generating sets I, C Cof, and
Jo C Weq, N Cof,. Suppose we are also given functors

€a: B— M,
for all a € A, which fulfill the following three conditions :

(a) fora € A, the functor €, preserves pushouts and transfinite compositions;
(b) for a € A, the functor e, has a left adjoint 1o: My — B ;
(¢c) fora,b e A, the following inclusions hold :

€p 0Ly (l,) C Ip-cell and €y 0 Lo(Ja) C Jp-cell.

Then B inherits the structure of a cofibrantly generated model category with weak
equivalences and fibrations tested via the functors {eq}aca, and with cofibrations
given by the left lifting property, as follows :

Weq :={f|ea(f) € Weqq, for all a € A}

Fib:={f|ea(f) € Fiba, for all a € A}

Cof := LLP(Weq N Fib) .
Furthermore, the sets

I:= U ta(ly) and J = U ta(Ja)
a€A acA
can be taken as sets of generating cofibrations. Finally, for every a € A, we have
eo(L-cell) C I,-cell and ,(J-cell) C J,-cell.

Morally and typically, functors e, satisfying conditions (a) and (b) would simply
be functors preserving small colimits and limits. Condition (c) expresses the relation
between the various functors. A key device in the proof will be the following simple
observation.
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Lemma 2.2. Let F': D — & be a functor admitting a right adjoint U: € — D.

(i) Consider two morphisms f in D and g in E. Then g € RLP(F(f)) if and
only if U(g) € RLP(f).

(ii) Assume that U preserves transfinite compositions. Given a class of mor-
phisms KC in € and an object d € D which is small relative to U(K), then
F(d) is small relative to K.

Proof. Part (i) is an easy exercise on adjunctions, see if necessary [13, Lem. 2.1.8].
Part (ii) is also easy. Let k be a cardinal such that d is k-small relative to U(K).
Then, for any rs-filtered ordinal A and for every A\-sequence

€ — e — ... —eg— ...
in K, its composite with U,
Uleg) — Uler) — ... — Uleg) — ...,

is a A-sequence in U(K) by assumption on U. Now, using successively adjunction,
k-smallness of d, the assumption on U again, and adjunction again, we see that

cgl<iIAn morg (F(d),eg) = cgl<i§1 morp(d, U(eg)) = morp (d, cgl<i§n Ulep))
= morp (d, U(cglg\n eg)) = morg (F(d), cgl<if\n es) -

This proves that F(d) is x-small relative to K. O

Proof of Theorem 2.1. Let us define I and J as in the “furthermore part” of the
Theorem. We start by making and proving two claims.

Claim 1 : We have RLP(I) = Weq N Fib and RLP(J) = Fib.

To see this, we apply Part (i) of Lemma 2.2 for F' := ¢, and U :=¢,:

RLP(]) :RLP( U ta(la) ) = () RLP (ta(Z.))

acA acA
= () 2 (RLP(L,)) = () €2 (Weqa N Fibe) = Weq N Fib.
acA a€A

A similar argument proves the other equality.

Claim 2 : For every b € A, we have g,(I-cell) C Ip-cell and e;,(J-cell) C Jp-cell.

From hypothesis (a), we have ep(I-cell) C ep(I)-cell and ep(J-cell) C ep(J)-cell.
Note that if K is a set of L-cell complexes, then any K-cell complex is an L-
cell complex. So, we deduce the claim from the inclusions e,(I) C Ip-cell and
ep(J) C Jp-cell, which hold by hypothesis (c).

We now want to check that B and the classes of morphisms Weq, I and J satisfy
conditions (K1)-(K6) of Kan’s Theorem A.28.

Condition (K1) is easy. Indeed, for every a € A, the condition holds for Wegq,,
and ¢, is a functor. So, the result follows from the equality Weq = (,c 4 €2 (Weqa).
Condition (K2) comes from applying Lemma 2.2 (ii) to F := 1, and U := &y,
with b € A, to K := I-cell and to d being the domain of an arbitrary morphism
in I,. The hypothesis of Lemma 2.2 (ii) that d is small relative to U(K) follows
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from the fact — proven in Claim 2 — that U(K) C I-cell and from the definition of
M, being cofibrantly generated. This shows that the domain of every morphism
in ¢,(Ip) is small relative to I-cell. A similar argument applies to J and gives (K3).
For Condition (K4), note that Claim 2 implies that we have J-cell C Weg since
Jp-cell C cof(Jp) C Weqy. So, it suffices to see that J-cell C cof(I). It is clear
from Claim 1 that RLP(I) C RLP(J). Applying the obviously inclusion-reversing
operation LLP(—) yields that cof(J) C cof(l) and a fortiori that J-cell C cof(I).
Conditions (K5) and (K6) follow immediately from Claim 1, which guarantees,
here, that RLP(I) = Weq N RLP(J). O

Definition 2.3. Let B be a category, A a set, and {e,: B — M, }aca a collection
indexed by A of functors to model categories M,. Assume that the hypotheses
of Theorem 2.1 are satisfied. We shall refer to the induced model structure on B
described in Theorem 2.1 as the model structure on B pulled back from {Mg}aca
via {€q}acA-

Proposition 2.4. Let B be a complete and cocomplete category. Consider a col-
lection {eq: B — Balaca of functors to complete and cocomplete categories B, .
Consider, for every a € A, a further collection {¢qb: By — Maptoen, of functors
to cofibrantly generated model categories Mg . Assume that
(a) for every a € A, the collection of functors {¢ap}tven, satisfies the hypothe-
ses of Theorem 2.1.

Endow each B, with the model structure pulled back from { Mg p}vep, via {@as}iecB, -
Assume further that

(b) the collection of functors {e,}aca satisfies the hypotheses of Theorem 2.1.

Then, the whole collection of composed functors {¢ap0€a}tacabeB, Satisfies the hy-
potheses of 2.1 and the model structure on B pulled back from {Bs}aca via {eq}aca
is the same as the model structure pulled back directly from {Magp}tacapen, via

{%71: © 5a}a€A,b€Ba-

Proof. We only have to check that the collection of composed functors satisfies
the hypotheses (a), (b) and (c) of Theorem 2.1. Conditions (a) and (b) are clear.
Condition (c¢) uses the last sentence of Theorem 2.1 applied to the functors {e, }aca-
The rest is straightforward. O

3. THE MODEL CATEGORY Us(C,D) oN S¢

Suppose given a cofibrantly generated model category S (see A.24), a small
category C and a subcategory D of C. As an application of the result of Section 2,
we show that there is a model structure on the category S of covariant functors
from C to S, i.e. of S-valued co-presheaves over C, with the weak equivalences and
the fibrations defined D-objectwise.

Convention 3.1. For the rest of the paper, we make the following agreements :

(i) For a (small) category C, by a subset of C, we mean a subset of obj(C).
(ii) If a subset D in a (small) category C is considered itself as a category
without further mention, then we mean D as a full subcategory of C.

Definition 3.2. It will be convenient to designate by a pair of small categories
any pair (C, D) where C is a small category and D is a subset of C.
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Definition 3.3. Let S be a category and C a small category. We denote by S¢ the
category of (covariant) functors from C to S, with the natural transformations as
morphisms. An object in S€ is sometimes called a C-diagram in S. We sometimes
refer to S as the category of “values”.

Definition 3.4. Let (C,D) be a pair of small categories. We call a morphism
n: X — Y in 8¢ a D-weak equivalence (respectively a D-fibration) if, for every
d € D, the morphism 7(d): X(d) — Y(d) is a weak equivalence (respectively a
fibration) in §. We use respectively and respectfully the following notations :

n n
X Drwed Y and X —m Y.

A trivial D-fibration is a D-fibration which is also a D-weak equivalence.

As kindly pointed out to us by Peter May, the next result is already known as
[16, Variant 10], when S stands for the category of weak Hausdorff k-spaces.

Theorem 3.5. Let S be a cofibrantly generated model category and let (C,D) be
a pair of small categories. Consider the category SC equipped with D-weak equiv-
alences, D-fibrations and with cofibrations defined by the left lifting property with
respect to trivial D-fibrations. Then, this determines a cofibrantly generated model
category structure on SC€.

Proof. The category S¢ is complete and cocomplete: small limits and colimits in
S€ are obtained C-objectwise. Consider, for any d € D, the evaluation functor

cq: ¢ —S, X+ X(d).
This functor €4 clearly commutes with small limits and colimits. As can be seen
in B.6, its left adjoint tq: S — S€ is given by

ti(s): C —S, c¢— H s,
more (d,c)
for every object s € S, and by
ta(@): ta(s) — wa(s’), cr— H a,
more (d,c)
for every morphism a: s — s’ in S. In particular, for d and b in D,
ep o ta(a) = H !
morc (d,b)

is a coproduct of copies of o. We apply Theorem 2.1 with B := S¢, A := objD,
and, for every d € D, with Mg := S and ¢4 as above. Conditions (a) and (b) are
clear. To see that Condition (c) is fulfilled, observe that a coproduct of maps in I
is an I-cell. This can be found in [13, Lem. 2.1.13] for instance. |

Notation 3.6. Let S be a cofibrantly generated model category and let (C,D) be
a pair of small categories. The model category on S¢ defined in Theorem 3.5 will
be denoted by

Us(C, D) := S¢ with the model structure of Theorem 3.5.

When D = C, we also write Us(C) for Us(C,C). If S is clear from the context, we
drop it from the notations, writing U (C, D) and U(C) respectively. This notation is
inspired by the one in Dugger [6], although he writes UC for our Ussets (CP).
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Definition 3.7. A morphism in S¢ that is a cofibration in U(C, D) is called a
D-cofibration, although this can not be tested D-objectwise in general; trivial D-

cofibrations are the trivial cofibrations of U(C,D). In the same spirit, an object
X € 8€ is called D-cofibrant if it is cofibrant in Us(C, D) (see A.7).

Remark 3.8. As the proof of Theorem 3.5 shows, the model structure on U(C, D)
does only depend on the set of objects D and not on morphisms between those
objects (hence Definition 3.2).

Remark 3.9. Note that the functorial factorizations for U(C,D) (and hence the
cofibrant replacement) are given by Theorem A.28 and its proof, that is, those
functorial factorizations are obtained via Quillen’s small object argument with re-
spect to I and J, see [12] or [13]. For more on this topic, we refer to the final part
of Section 10 below.

Remark 3.10. When & = sSets and D = C, Theorem 3.5 gives in particular the
model structure of Dwyer-Kan [7], which is also the “left” model structure of
Heller [11, §11.4]. The special case where D = C with § an arbitrary cofibrantly
generated model category is also to be found in Hirschhorn [12, §11.6].

Remark 3.11. For a subcategory D of a small category C, and for S equal to the
category of simplicial sets or of topological spaces, the model category Us(C, D)
does not coincide with the category S¢P considered by Dwyer and Kan in [8]: the
latter is the category of D-restricted C-diagrams, that is, the full subcategory of the
model category Us(C) of those X € S¢ such that X (a) is a weak equivalence in S
for every morphism « in D. So, this is really different from what we consider here.

* ok ok

For the notion of retract, used in the next definition, we refer to A.4 (i).

Definition 3.12. Let D and D’ be two subsets of a (small) category C. We call D
and D’ essentially equivalent in C if every object of D is isomorphic in C to some
object of D' and if every object of D’ is isomorphic in C to some object of D. We
say that D and D’ are retract equivalent in C if every object of D is a retract in C
of some object of D’ and if every object of D’ is a retract in C of some object of D.

If D and D’ are essentially equivalent, then they are retract equivalent.

Proposition 3.13. Let C be a small category and let D and D' be subsets of C,
that are retract equivalent in the above sense. Then, the model structures U(C, D)
and U(C,D') on the category S are the same, up to the choice of the functorial
factorizations.

Proof. If an object d is a retract of some object d’ and if a morphism 7: X — Y
in S is a weak equivalence or a fibration at d’ then the same is true at d, by Axiom
(MC 3) for the model category S. Thus U(C, D) and U(C,D’) have the same weak
equivalences and the same fibrations. Hence the result (see A.12 if needed). O

Proposition 3.14. Let (C,D) be a pair of small categories.

(i) Let D C £ C C be a subset bigger than D. In S¢, every D-cofibration is
an E-cofibration and every trivial D-cofibration is a trivial £-cofibration. In
particular, D-cofibrant objects are E-cofibrant.
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(ii) If a morphism 1 in S is a (trivial) D-cofibration, then n(c) is a (trivial)
cofibration in S for all ¢ € C. In particular, a D-cofibrant diagram X € S€
is C-objectwise cofibrant, i.e. X(c) is cofibrant in S, for all ¢ € C.

Proof. Clearly, being a (trivial) E-fibration is more than being a (trivial) D-
fibration. Therefore, the morphisms having the left lifting property with respect to
(trivial) D-fibrations, will have that property with respect to (trivial) E-fibrations.
This gives (i) (see A.12 if necessary). Now, by (i), for &€ = C, every (trivial) D-
cofibration is a (trivial) C-cofibration. Then, to prove (ii), it suffices to know that
a C-cofibration is objectwise a cofibration. This is proven in [12, Prop. 11.6.3]. We
give an alternative proof in Remark 8.8 below. (]

Examples 3.15. We give a couple of “limit” examples for pairs (C, D).

(1) Assume that D = & is empty. Then, there is no condition to satisfy to be
a D-fibration or a D-weak equivalence, and consequently, every morphism
is a trivial D-fibration. In this case, the D-cofibrations are exactly the
isomorphisms, as is easily checked.

(2) Let us assume that C is discrete (see B.5). In this situation, S¢ is the legiti-
mate notion for the product [[ S of | obj(C)| copies of the model category S.
It is easy to check that D-cofibrations are exactly those morphisms 7 such
that n(c) is a cofibration when ¢ € D, and an isomorphism when ¢ ¢ D.

4. THE NOTION OF D-CODESCENT IN &€

For this section, we fix & a cofibrantly generated model category (see A.24),
and we drop it from the notations. We define here the D-codescent property for a
functor X € 8¢, where D is a subcategory of C. We also discuss some examples.

We start with the following observation.

Remark 4.1. Let M be a model category. One can distinguish different notions of
“cofibrant substitutions”. Namely, concerning the choice of an assignment

(9,): M — arr(M), X+— ({x: QX — X)),

with QX cofibrant and £x a weak equivalence, one can require or not Q to be
functorial; one can only require that £x is a weak equivalence or one can further
require that it is a fibration; finally, in the strictest sense, Q could be the functorial
factorization (MC 5) (a) in M applied to the (unique) morphism @ — X, in
which case £x is a trivial fibration. We will not distinguish all these notions here
for sake of readability, but will focus on the most rigid and the most flexible ones.
So, following [12], we will say that (QX,£x) — or, abusively, QX —is:

e the cofibrant replacement (and we write @ in place of Q) if it is obtained

by the factorization axiom applied to @ — X
e a cofibrant approximation if QX is cofibrant and £x is a weak equivalence.

We will see in the very useful Propositions 6.5 and 6.6 how these differences can be
dealt with, and how flexible codescent is with this respect.

Notation 4.2. We denote the cofibrant replacement in U(C, D) by
Q%: U(C, D) — arr (U(C, D)), X r— (657: Q%X — X).
When D = C, we also write £¢§ and Q¢ X.
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Definition 4.3. Let (C,D) be a pair of small categories, and let X € S¢. We say
that X satisfies D-codescent (or codescent with respect to D) if the morphism

&P Q5X — X

in U(C, D) is a C-weak equivalence; we sometimes say that X is a D-codescending
object. For a given object ¢ € C, we say that X satisfies D-codescent at c, if the
morphism

5P () QB X (e) — X (o)

is a weak equivalence in §. Given a subset A of C, we say that X satisfies D-
codescent on A, if it satisfies D-codescent at every object ¢ € A.

So, X satisfies D-codescent if and only if it satisfies D-codescent on C\D.

* ok ok

Before starting the general theory (cf. Section 6 and following), we present a few
basic, but hopefully instructive, examples.

Example 4.4. We first give two examples sitting at two opposite ends.

(1) Assume that D = @. Then, by Example 3.15 (1), the initial object & of S¢
is, up to isomorphism, the unique cofibrant object in U(C, D). Therefore, an
X € S€ satisfies D-codescent at ¢ € C if and only if the unique morphism
g — X(c) is a weak equivalence in S. In short, X satisfies codescent
exactly where @ — X (c) is a weak equivalence.

(2) Assume that D = C. Then, every X satisfies D-codescent everywhere.
This is tautological : D-codescent involves deciding whether a certain D-
weak equivalence is a C-weak equivalence. Note however that not every X
is D-cofibrant, for X being D-cofibrant requires X (c) to be cofibrant in S,
for each ¢ € C (see Proposition 3.14 (ii)).

The next example illustrates the flavour of codescent quite well.
Example 4.5. Consider the category

>~d a e
C = 1d¥dﬁoi>o id,

with only two objects d and ¢ and one non-identity morphism a: d — ¢. Let
D be the full subcategory with d as unique object. Giving an object X € S€
consists in giving two elements of S, say X; and X5, related by a morphism, say
x: X1 — Xo, which is X(«). To give a morphism 7: X — X’ amounts to give
two morphisms n;: X; — X7 and n2: Xo — X} such that 2'n; = nea (with the
obvious notations). Let us determine when an object

x oy oox
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is D-cofibrant in U(C, D). By Proposition 3.14 (ii), we know that X; and X5 must
be cofibrant in S. Now, consider the commutative square in S¢

%] Y g — O X1 = X3
7 id
s
h 7
// P dgf' id T
s
s
S~ 7 Xlij)XQ X1 £>X2
i o~ 7
id id

where Y and p: Y — X are defined by the right-hand diagram. It is clear that
p is a trivial D-fibration since it is a D-isomorphism. If X is D-cofibrant, there
must exist a lift h: X — Y and it is easy to see that h; = idx,, and that
ho: Xo — X, is a two-sided inverse of z. So, for X to be cofibrant, we need z to
be an isomorphism. Conversely, assume that X; and X5 are cofibrant and that x
is an isomorphism. Consider a square

%) Y S — g Yi =Y,
1 y
s
v
k, q def. a a2
s =
s
s
X1 > X, 7> 2o
\_U,/ \\{/
U1 V2

where ¢ is a trivial D-fibration. Since X; is cofibrant, there is a lift k1: X7 — Y3
such that ¢1k; = v;. It is then easy to see that k; and ko := y k; ~ ! define a lift
k: X — Y in S€. In short,

X € 8C€ is D-cofibrant  iff X(a) is an iso between cofibrant objects in S.
Using this, it is immediate to see that
X € S€ satisfies D-codescent iff X (a) is a weak equivalence.

(This again illustrates the fact that there are many more objects satisfying D-
codescent than D-cofibrant objects.) We leave it as an exercise for the interested
reader to check that the same two statements hold if C is replaced by the category
r~~d o c
idg @€ ——> @ QM
N7
with M denoting any monoid of endomorphisms of c.

Remark 4.6. In Section 12, we will further illustrate the situation for C “extremely
small” | namely with 2 objects, and for D reduced to a one-object category. Al-
though this sounds very limited and restrictive, these types of examples already
contain the basic non-trivial general properties of codescent. We also point out
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that for a torsion-free discrete group G, the Baum-Connes Conjecture will be re-
formulated in [2] as a codescent statement with C a two-object category of the
form

d
GCOL>33dC

and with D having d as unique object.

5. CODESCENT VERSUS DESCENT

The present section is a heuristical discussion, that aims at putting codescent in
some perspective, by comparison with the standard notion of descent in algebraic
geometry and K-theory. The ideas discussed here only reflect the authors’ current
opinion and will not be used in the sequel.

Given a Grothendieck topology on C, there is a model structure on simplicial
presheaves sSets®” — which is due to Joyal and Jardine, see for instance [14] — in
which the weak equivalences are tested stalkwise when the site has enough points
(and we assume this for simplicity here). The cofibrations are openwise cofibrations,
that is, cofibrations at each ¢ € C. In this situation, dually to what happens with
codescent, the cofibrations are clear and the fibrations are mysterious: they are
defined by the right lifting property with respect to trivial cofibrations. Given
a presheaf Y € sSetsC”, it is then a legitimate question to look at the fibrant
replacement

¢:Y — R(Y),

which is, by definition, a stalkwise weak equivalence, and to wonder when this
morphism ( is indeed an openwise weak equivalence. This is exactly the descent
problem for Y with respect to the given Grothendieck topology. See for instance
Mitchell [17] for a first introduction to these ideas. Similarly, one can — and should
— consider presheaves of spectra, or with other values S, as we also do here.

Thomason has proven that the algebraic K-theory spectrum he defines in [19]
satisfies descent for both the Zariski and the Nisnevich topology.

It is legitimate to wonder if codescent is not merely a form of descent, up to
some opposite-category-yoga. We explain now why we consider this as misleading.
Of course, there is an isomorphism of categories between the category of functors
from C to S and presheaves on C°P with values in S°P, say

a: 8¢ = (5P
Therefore, there is a model structure on the right-hand side transported from
Us(C,D), for an arbitrary choice of the subcategory D. Note that this isomor-
phism of categories « is indeed contravariant and consequently, on the right, it is
the fibrant replacement R(—) which is now mysterious and hence interesting. Our
codescent property for an X € S translates into a descent-like property : when is
the morphism X — R(aX) from aX to its fibrant replacement an objectwise,
i.e. openwise, weak equivalence 7
This sounds very coherent but faces the following drawbacks, in our opinion :
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(1) In principle, no one wants to work with the opposite category of simplicial
sets § = sSets®P, or similarly with 7op°P, having the good old morphisms
of “spaces” going backwards. In terms of marketing, it seems reasonable
to stick to the usual maps of “spaces”, in their usual direction. This com-
mercial policy forces the category of values S, and hence prevents us from
doing the above a-switching to SP.

(2) More seriously, for a functor like algebraic K-theory of group rings, say
K(R[G]) with R varying among commutative unital rings and G among
discrete groups, there really are two different functorial dependencies of
K (R[G]) involved. First, there is the dependence on the ring R, with
morphisms induced by ring homomorphisms out of R, say R — R’, in the
Zariski or Nisnevich site to fix the ideas; this is responsible for descent ques-
tions. Secondly, there is the dependence on the group G, with morphisms
induced by group homomorphisms to G, say ¢: H — G, where, typically,
H is a subgroup and ¢ is a conjugation-inclusion; this is responsible for
codescent. In symbols, we have:

K (R[H]) =295 K(R[G]) —%* > K (R'[G]).

So, even if we perform the above a-switch, we still have two different “de-
scents” involved.

(3) Moreover, not only the two morphisms described above can occur simul-
taneously, but they are indeed going in two opposite directions. The two
morphisms appearing in (2) could both go “from local to global” for in-
stance or both “from global to local” but this is not the case. Namely, in
the codescent situation, we know things about X (d) and want to extend it
to X (c¢) but morally X moves the information from X (d) to X(c), that is,
from the “local object” to the “global object”. In the descent problem, the
restriction goes from X (U) to X (V') for V' C U and hence tends to go from
the “global object” towards the “local objects”. This “direction” of codes-
cent is more formally explained by the Pruning Lemmas, see Remark 11.8
below.

Nevertheless, the analogy might be more important than the difference, at least
conceptually speaking, and might also be a source of inspiration for attacking code-
scent questions. It would also be interesting to have some kind of unified treatment
of both codescent and descent, not only in one type of conjectures as we achieve
here and in [2], but really in one common conjecture.

6. FLEXIBILITY OF CODESCENT

The present section is the beginning of codescent theory itself. We establish the
first properties related to the notion of codescent. We fix a cofibrantly generated
model category S (see A.24) for the rest of the section.

Recall that Ken Brown’s Lemma states, in particular, that if a functor between
model categories takes trivial cofibrations between cofibrant objects to weak equiv-
alences, then it takes all weak equivalences between cofibrant objects to weak equiv-
alences (see [13, Lem. 1.1.12]).



CODESCENT THEORY I 15

Proposition 6.1 (Rigidity of cofibrant objects).

Let (C,D) be a pair of small categories. If a morphism n: X — Y in S€ is a D-
weak equivalence and if X and'Y are D-cofibrant, then n is a C-weak equivalence.
Therefore, the cofibrant replacement

Qp: U(C,D) — U(C, D)
takes D-weak equivalences to C-weak equivalences.

Proof. Consider the identity functor U(C, D) — U(C). We claim that it preserves
all trivial cofibrations, which will be enough by Ken Brown’s Lemma. This holds
by the case £ = C in Proposition 3.14 (i), proving the first part.

For the second part, note that QCD preserves D-weak equivalences, like any cofi-
brant replacement functor (see A.14 if necessary). Hence Q% turns D-weak equiva-
lences into D-weak equivalences between cofibrant objects, which are C-weak equiv-
alences by the first part of the proof. O

Corollary 6.2 (Codescent for cofibrant objects).
Let (C,D) be a pair of small categories. Then D-cofibrant objects in SC satisfy
D-codescent. (]

For example, the constant functor X = @ in S¢ satisfies D-codescent, whatever
the subset D looks like. As Example 4.4 (2) shows, there are fortunately many more
objects satisfying D-codescent, than D-cofibrant objects (see Example 4.5 as well).

As another application of Proposition 6.1, we get the result mentioned as a
motivation in the Introduction, where S was merely chosen to be the category of
topological spaces in order to fix the ideas.

Corollary 6.3 (Rigidity of codescending objects).
Let (C,D) be a pair of small categories. Consider a D-weak equivalencen: X — 'Y
in SC. If X and Y satisfy D-codescent, then 1 is a C-weak equivalence.

Proof. By assumption, we have a commutative diagram

¢y Q%n cy
QD D-weq QD

55{9 \Lc—weq C—weqlgf,'v
x— 7Ty

D-weq

By Proposition 6.1, Q%n is a C-weak equivalence, and the result follows by 2-out-
of-3 for C-weak equivalences (that is, in U(C)). O

Remark 6.4. The class of D-codescending objects in S is mazimal among the sub-
classes K of obj (SC) such that every D-weak equivalence between objects of K is
a C-weak equivalence. Indeed, let K be a bigger class, i.e. such a class contain-
ing all D-codescending objects. If X € K, then f(’D: Q%X — X is a D-weak
equivalence and Q%X € K by assumption on K and by Corollary 6.2. It follows
from Corollary 6.3 that §§(’D is a C-weak equivalence. This proves that X satisfies
D-codescent, as was to be shown.

X ok Xk
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Proposition 6.5 (Local flexibility of codescent).
Let (C,D) be a pair of small categories. Then, for X € S€ and ¢ € C, the following
properties are equivalent :

(i) X satisfies D-codescent at c¢;

(i) there exists a trivial D-fibration n: X' — X for some X' which is D-
cofibrant and such that n(c) is a weak equivalence;

(iil) for every trivial D-fibration n: X' — X, where X' is D-cofibrant, n(c) is
a weak equivalence;

(iv) there exists a D U {c}-weak equivalence n: X' — X for some X' which is
D-cofibrant;

(v) for every D-weak equivalence n: X' — X, where X' is D-cofibrant, n(c)
18 a weak equivalence.

Proof. Since fg(’D: Q%X — X is a trivial D-fibration, one clearly has
(v) = (ili) = (i) = (ii) = (iv) .
(iv)=(v): Let n: X’ — X be a D U {c}-weak equivalence where X’ is some
D-cofibrant object. Now, for a D-weak equivalence (: Y — X, where Y is D-

cofibrant, consider the following commutative diagram obtained by applying the
functorial cofibrant replacement Q% to everything in sight :

Q%n Q5¢
C y/ C C
QDX C-weq QDX C-weq QDY
{;’,‘Dic—weq gf(’v \LD—weq gi’DlC—weq
X' . X ‘ Y
DU{c}-weq D-weq

The C-weak equivalences are in fact D-weak equivalences upgraded via rigidity
of cofibrant objects 6.1. Now, n(c) being a weak equivalence forces the same for
%D (¢) by the left square and, in turn, that {(c) is a weak equivalence by the right
square. ([

Proposition 6.6 (Global flexibility of codescent).
Let (C,D) be a pair of small categories. Then, for X € SC, the following properties
are equivalent :
(i) X satisfies D-codescent;
(ii) there exists a trivial D-fibration n: X' — X for some X' which is D-
cofibrant and such that n is a C-weak equivalence;
(iii) for every trivial D-fibration n: X' — X, where X' is D-cofibrant, n is a
C-weak equivalence;
(iv) there exists a C-weak equivalence n: X' — X for some X' which is D-
cofibrant;
(v) for every D-weak equivalence n: X' — X, where X' is D-cofibrant, n is a
C-weak equivalence.

Proof. As before, the only non-immediate implication is (iv)==(v), which follows
from a C-objectwise application of (iv)==(v) in Proposition 6.5. O

Remark 6.7. The bottom line of the global (resp. local) flexibility of codescent 6.6
(resp. 6.5) is that one can define the D-codescent property (resp. at ¢) using any
cofibrant approximation (4.1) in place of the cofibrant replacement that we used in
Definition 4.3.
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Example 6.8. Assume that C is a discrete category (see B.5) and that D C C.
As seen in Example 3.15(2), a diagram X’ € SC is D-cofibrant if and only if
it takes cofibrant values on D and the value @ (up to isomorphism) outside D.
Therefore, using local flexibility of codescent 6.5, one readily checks that X satisfies
D-codescent if and only if @ — X (c¢) is a weak equivalence for every ¢ € C\D,
without condition over D.

Remark 6.9. The global (resp. local) flexibility of codescent 6.6 (resp. 6.5) also
shows that if D and £ are subcategories of a small category C and if the model
categories U(C,D) and U(C,&) share the same weak equivalences and cofibrant
objects, then D-codescent (resp. at ¢) is equivalent to E-codescent (resp. at ¢); see
for instance Proposition 3.13.

X ok X

Proposition 6.10 (Weak invariance of codescent).
Let (C,D) be a pair of small categories. Let n: X — Y be a morphism in SC€.

(i) Let c € C and assume that n is a DU{c}-weak equivalence. Then X satisfies
D-codescent at ¢ if and only if Y satisfies D-codescent at c.

(ii) Assume that n is a C-weak equivalence. Then X satisfies D-codescent if
and only if Y satisfies D-codescent.

Proof. Choose X’ which is D-cofibrant with a D-weak equivalence £: X/ — X.
Consider the D-weak equivalence ¢ :=no&: X’ — Y. If n(c) is a weak equivalence
for some ¢ € C, we have that £(c) is a weak equivalence if and only if so is {(c).
Now, (i) is a consequence of local flexibility of codescent 6.5, and (ii) follows. O

Corollary 6.11. Let F: § — S be an endofunctor of the model category S of
values, and consider a natural transformation «: ids — F or a: F — ids such
that a(s) is a weak equivalence in S for every s in S — for instance, F could be the
fibrant or the cofibrant replacement in S.

Let (C,D) be a pair of small categories. Let X € Us(C,D) and consider the
composition F o X € Us(C,D). Then X satisfies D-codescent exactly where F o X
does. In particular, when deciding whether X satisfies D-codescent, one can always
assume that X is C-objectwise cofibrant, fibrant or both.

Proof. By assumption, a induces, objectwise, a natural transformation between
X and F o X, which is a C-weak equivalence. The first result follows from weak
invariance of codescent 6.10. The second is a direct consequence, noting that the
fibrant replacement of a cofibrant object is fibrant and cofibrant. O

Remark 6.12. This Corollary stresses the fact that X satisfying D-codescent has
essentially nothing to do with the fact that X takes cofibrant or fibrant values in S.
It is more a question of knowing to what extent the interrelation of D and C is
revealed by X (see however Proposition 9.1 (ii) below; compare with Example 6.8).
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7. SOME QUILLEN ADJUNCTIONS “FORWARDS” FOR Us(C, D)

In the present section, we discuss various functors at the level of Us(C, D), related
to a functorial change of the variable-categories S, C and D. The title of the section
will be justified at its end (see Remark 7.7 below).

Recall from A.16 the notion of Quillen adjunction, which should be thought of
as a morphism in the “category” of model categories.

Proposition 7.1. Let F': § = T :U be a Quillen adjunction between cofibrantly
generated model categories. Then, the induced pair of functors

FC: 8¢ =71°:U°,
defined by F¢(X) := Fo X and US(Y) := UoY, form a Quillen adjunction
between Us (C, D) and Uz (C, D) for any choice of D C C; in particular, FC preserves
cofibrant objects and weak equivalences between them.

Proof. The functors (F€,U°) are adjoint, see [12, Lem. 11.6.4]. Clearly, U¢ pre-
serves D-fibrations and trivial D-fibrations, since U does preserve fibrations and
trivial fibrations (see Remark A.17) and since, by the very definition, D-weak equiv-
alences and D-fibrations are tested D-objectwise. Therefore, FC is a left Quillen
functor (by A.17 again). The latter also yields the stated properties of FC. O

% kX

From now on, in this section, we shall not move the category of values S, and
we fix this notation below, i.e. S is a cofibrantly generated model category.

Lemma 7.2. Let ®: A — C be a functor between small categories, and consider
the induced functor
*: 8¢ — S84 Xr—Xod.

LetD C C and B C A be subsets. Consider ®* as a functor between model categories
UC,D) — U(A, B) and recall the terminology of A.15.

(i) If ®(B) C D, then ®* preserves weak equivalences and fibrations.

(ii) If ®(B) D D, then ®* detects weak equivalences and fibrations.

(iii) If ®(B) = D, then ®* reflects weak equivalences and fibrations.

Proof. Follows from Definition A.15, using that ®*n (b) = n(®(b)) for b € B. O

~— —

Definition 7.3. Recall from 3.2 that a pair of small categories means a pair (C, D),
where C is a small category and D is a chosen subset of objects of C. A morphism
of such pairs, ®: (A,B) — (C,D), is a functor ®: 4 — C such that ®(B) C D
(inclusion of sets of objects); when we write “®(B) = D”, we really mean an equality
of sets of objects.

Definition 7.4. By a full inclusion of pairs, (A,B) — (C,D), we mean a full
inclusion A — C such that B is contained in D. This is of course a morphism of
pairs as defined above.

Proposition 7.5. Let ®: (A,B) — (C,D) be a morphism of pairs of small cat-
egories. Then, the functor ®* and its left adjoint ®,: SA — S€ form a Quillen
adjunction :

Q. UAB) = UC,D) : 2.
In particular, ®, preserves cofibrant objects and weak equivalences between them.
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Proof. The existence of the left adjoint @, (also called the left Kan extension) is
classical and is recalled in Appendix B. By Lemma 7.2 (i), ®* is a right Quillen
functor, see Remark A.17. O

Corollary 7.6. Let (A,B) — (C,D) be a full inclusion of pairs of small categories
and consider the functors resgt and indi as in Appendix B. Then

indS: U(A, B) == U(C,D) :res§

form a Quillen adjunction. In particular, the induction of a B-cofibrant object is
D-cofibrant.

Proof. Immediate from Proposition 7.5 and the definition of resf4 and indi. O
—

Remark 7.7. For a morphism of pairs ®: (A, B) — (C, D), the functor ®* and its
left adjoint form a Quillen adjunction ®,: U(A, B) — U(C, D) : ®*, as described
in Proposition 7.5. This Quillen adjunction should be seen as “going from U (A, B)
to U(C,D)”. From our point of view, this is the “forward” functorial direction of
the construction U (—, —). This exists for any morphism of pairs P.

However, there are some morphisms of pairs ®: (A, B) — (C, D) where ®* and
its right adjoint ®, also form a Quillen adjunction ®*: U(C,D) == U(A,B) :
seen as a morphism of model categories (®*, @) going from U (C, D) to U(A, B), i.e.
going “backwards”. This is what we discuss in the next section.

8. SOME QQUILLEN ADJUNCTIONS “BACKWARDS” FOR Us(C, D)

The reader opening the article at random is invited to read Remark 7.7 at the
end of the previous section, before proceeding through this one.

Consider a morphism ® of pairs (see 7.3). Here, we determine conditions guar-
anteeing that the functor ®*, induced by @, is a left Quillen functor (compare 7.5).
Again, we fix a cofibrantly generated model category S (see A.24).

Definition 8.1. Let ®: (A,B) — (C,D) be a morphism of pairs. We shall say
that @ is left glossy if the following condition is satisfied: for every object b € B,
there is a set of morphisms in C

all having source ®(b) and with various targets ®(b;), such that

(i) the objects b; also belong to B;

(ii) for every morphism a: ®(b) — ®(a) in C with a € A, there exists a unique
pair (i,7), with ¢ an “index” in Ej and v a morphism b; — a in A, such
that o = ®() o f3;, that is,
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The terminology “glossy” is introduced to avoid using the mathematically overused
expressions “good”, “special” and the like.

Observe that condition (ii) has to be verified for all a in A, including those
contained in B (see for instance the two conditions required in Example 12.5 below).

Example 8.2. Let (A, B) — (C,D) be a full inclusion of pairs of small categories
(see 7.4). Then, this inclusion (A, B) — (C, D) is left glossy. It suffices to take for
each b € B the set Ej := {1}, with by := b and (; := id,.

Example 8.3. Here is an “extreme” example, which shows that left glossiness can
be very far from fullness. Let C be a small category and let C’ be the corresponding
discrete subcategory (B.5), that is, with the same objects and only with the identi-
ties as morphisms. Then, the inclusion (C',C’) — (C,C) is left glossy. It suffices to
take for each b € C’ the set Ey, := [[ ., morc(b, ¢), with, for every “index” i: b — ¢
in By, b; :=c and §; :=i.

Remark 8.4. Let ®: (A, B) — (C, D) be a morphism of pairs of small categories.
For any b € B, consider the inclusion of comma categories (see B.1)

(2(0)\2j5) = (2(0)\P),
where @z is the restriction of ® to a functor B — D (recall Convention 3.1 (ii)).
Saying that @ is left glossy is indeed tautologically equivalent to assuming that
for every b € B, there is a discrete subcategory & C (<I>(b) N\ <I>‘B) such that the
composite inclusion
& = (2(b)\ @) — ((b)\, @)

is an initial functor, as defined in [15, §IX.3, pp. 217-218] (this is also called left
cofinal by some authors, like in [12, 14.2.1]). This &, has nothing but the set
{(bs, Bi) }ier, of Definition 8.1 as objects. The main consequence of initiality is
that a limit over an initial subcategory ‘coincides’ with the limit over the whole
category, see [15, §IX.3] or [12, Thm. 14.2.5(2)]. Since a limit over a discrete
category is merely the corresponding product, we have in particular that for any
functor Y: A — S, the obvious morphism

lim Y(a) — Y (b;)
(a,®(b) S ®(a)) € B(B)\® z‘l_E[b

is an isomorphism, natural in Y.

Lemma 8.5. Let ®: (A,B) — (C,D) be a morphism of pairs of small categories.
Assume that ® is left glossy. Then, for Y € S and b € B, there is an isomorphism

o0y (b) = [[ Ybi),
i€Fy
that is natural in'Y (where notations are kept as in Definition 8.1).
Proof. By Definition B.3, we have the formula

dY(c) = lim Y(a),
(a e (I’(a)) € c\®

for Y € 84 and ¢ € C. Applying it to ¢ := ®(b) with b € B, we get

P*PY (D) = OY(R(D) = lim Y(a) = []Y®),
(a,®(b) 5 ®(a)) € B(B)\® ek,

where the isomorphism on the right holds by Remark 8.4. (]
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Theorem 8.6. Let @: (A, B) — (C, D) be a morphism of pairs of small categories.
Assume that the following properties hold :
(a) D= ®(B);
(b) @ is left glossy (see 8.1).
Then, the functor ®* and its right adjoint ®,: SA — S€ form a Quillen adjunction
" U(C, D) = U(A,B) : 9.

In particular, the functor ®* preserves cofibrations and fibrations, and reflects weak
equivalences.

Proof. We want to prove that @, preserves fibrations and trivial fibrations (see A.17).
By assumption (a) and by Lemma 7.2 (iii), it suffices to see that ®*®, preserves
fibrations and trivial fibrations. Let n:Y; — Ya be a (trivial) B-fibration in
U(A,B). This means that n(b): Y1(b) — Ya2(b) is a (trivial) fibration in S for
every b € B. Fix an object b € B and choose a set {5;: ®(b) — ®(b;) }icp, like
in Definition 8.1. By Lemma 8.5, we have ®*®n(b) = [[,cp, n(b:i). Since b; € B
for all ¢ € Ey, we deduce that ®*®n(b) is a product of (trivial) fibrations in S and
hence is again a (trivial) fibration (see A.12). Since this is true for an arbitrary
b € B, the first result follows. For the “In particular” part, invoke Remark A.17,
Proposition 7.5 and Lemma 7.2 (iii). O

Corollary 8.7. Let (C,D) be a pair of small categories and let A C C be a full
subcategory containing D. Then, the functor resi\ and its right adjoint exta form
a Quillen adjunction :

res§: U(C,D) == U(A, D) :ext .

In particular, the restriction to A of a D-cofibrant object is D-cofibrant, and the
functor resi‘ preserves cofibrations and fibrations, and reflects weak equivalences.

Proof. For the first part, apply Theorem 8.6 to the full inclusion (A, D) — (C,D)
as in Example 8.2 with B := D. The rest is clear. (Il

Remark 8.8. Let C be a small category. Let us prove directly that every C-
cofibration is objectwise a cofibration (see the proof of 3.14 (ii), where we referred
o [12]). By Example 8.3 and Theorem 8.6, the restriction of our C-cofibration to
the corresponding discrete subcategory C’ is a C’-cofibration. On a discrete cate-
gory, this is equivalent to being a cofibration objectwise as seen in Example 3.15 (2).
Stress that Corollary 8.7 was not applied to the non-full subcategory C’.

Remark 8.9. The assumption ®(B) = D which appears in Theorem 8.6, instead of
our usual ®(B) C D, is indeed not so restrictive. In fact, any morphism of pairs
®: (A, B) — (C,D) can be written as a composition

(A,B) — (C,®(B)) — (C,D),

where the first morphism is clearly surjective on the “D-part” and where the sec-
ond morphism is a full inclusion. Some of those full inclusions can be treated
independently as we now explain.

X ok Xk

We single out some particular full inclusions which still produce Quillen adjunc-
tion “backwards” (compare Remark 7.7).
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Definition 8.10. Let A be a subset of a (small) category C. We say that A is left
absorbant in C, if for every morphism ¢ — a in C with a € A, the object ¢ belongs
to A as well.

Lemma 8.11. Let A — C be a full subcategory of a small category C, that is left
absorbant in C. Then, the right adjoint exta: SA — S€ of the restriction functor
resa admits the following explicit description. For any X € S, the functor exti X
is equal to the functor X on A and takes the value x on objects of C\NA, where x is
the terminal object in S; this uniquely determines the functor extaX: C— S on
morphisms.

Moreover, a natural transformation n: X — Y in S induces a natural trans-
formation exti‘X — extaY in the obvious way, namely as n on A and as the
identity of x outside A.

Proof. Note that exta X, as defined in the statement, is a well-defined functor on
C because there are no morphisms v: ¢ — a in C, with ¢ € C~A and a € A, by left
absorbance of A. So, the only morphisms in C for which exti‘ X should be defined
are those of A, to which we apply X, and those with target outside .4, which we
send to the only morphism in & with target x. The functoriality of exta X is an
easy exercise. The functoriality of exti is an easy exercise as well.

The fact that this functor exti‘ describes the right adjoint to resi‘ can be checked
directly or using the description of extil which is given in B.3. Both ways use the
left absorbance of A again. O

Proposition 8.12. Let (A,B) — (C,D) be a full inclusion of pairs of small cate-
gories (see 7.4). Assume that A is left absorbant in C as defined in 8.10. Assume
further that DN A = B. Then, the functor resi‘ and its right adjoint extil form a
Quillen adjunction :

res§: U(C, D) = U(A, B) :ext.

In particular, the restriction to A of a D-cofibrant object is B-cofibrant, and the
functor resi\ preserves cofibrations, fibrations and weak equivalences.

Proof. Using the description of exti X given in Lemma 8.11, let us check that if a
morphism 7 is a (trivial) B-fibration in SA, then ext$ 7 is a (trivial) D-fibration in
S€. The latter is tested D-objectwise. For an object d € D, two cases can occur.
Either d does not belong to A, in which case the source and target of extil 7 (d) are
both equal to *, so that ext$ n (d) is an isomorphism; or d does belong to A, and
hence to B by assumption, in which case extS 1(d) = n(d) is a (trivial) fibration by
choice of 7. In both cases, ext$ n (d) is a (trivial) fibration. Hence the result.

The final sentence of the statement is an easy consequence; see Lemma 7.2 (i),
Corollary 7.6 and Remark A.17. O

9. FUNCTORS REFLECTING CODESCENT

In this section, we use the results of Sections 7 and 8 to move the codescent
property from a triple S, C, D to another.

We first see how the change of the category of values S can reflect codescent.
For the next statement, recall the terminology of A.15.
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Proposition 9.1. Let F': S — T :U be a Quillen adjunction between cofibrantly
generated model categories. Let (C,D) be a pair of small categories. Let X € S€
and ¢ € C.

(i) If F preserves weak equivalences and if X satisfies D-codescent at ¢, then
F o X also satisfies D-codescent at c.
(ii) If X is objectwise cofibrant and satisfies D-codescent at ¢, then F o X also
satisfies D-codescent at c.
(iii) If F reflects weak equivalences, then X satisfies D-codescent exactly where
FoX does.

Proof. Recall the notations introduced in Proposition 7.1, where it is proven that
the functor F¢: Us(C,D) — Uz (C,D) preserves cofibrant objects. Consider a
D-cofibrant approximation (4.1) n: X’ — X of X in Us(C, D). Consider the mor-
phism FCn: F¢X’ — FCX. Note that F¢X’ is D-cofibrant and let us check that
FCn is a D-weak equivalence in 7€. In cases (i) and (iii), this is clear. The same is
indeed true in case (ii), since F preserves weak equivalences between cofibrant ob-
jects (see Remark A.17). So, F¢n: F¢X' — FC¢X is a D-cofibrant approximation
of F¢X in Ur(C,D).

Let ¢ € C. By local flexibility of codescent 6.5, we know that X satisfies D-
codescent at c if and only if n(c) is a weak equivalence, and that FCX satisfies
D-codescent at ¢ if and only if FCn(c) = F(n(c)) is a weak equivalence. The three
stated results follow easily. |

Note that in (ii) above, it is enough for X to be DU {c}-objectwise cofibrant and
to satisfy D-codescent at c.

Remark 9.2. In real life, using weak invariance of codescent 6.10, we can always
replace a given X by a C-objectwise cofibrant Y which will satisfy D-codescent
exactly where X does. For such a Y, we can apply part (ii) above, without requiring
F to preserve weak equivalences, to get that F' oY satisfies D-codescent where X
does.

Example 9.3. The typical situation where we want to apply Proposition 9.1, is
when F' = || is the geometric realization, say, from simplicial sets to topological
spaces. This reflects weak equivalences by the very definition of weak equivalences
of simplicial sets. In other words, an X € sSets® will satisfy codescent exactly
where its realization |X| € Zop® does (and similarly “in the pointed situation”).

X 3k X

We now turn to the functor ®.: U(A, B) — U(C,D) induced by a morphism
®: (A,B) — (C,D) of pairs of small categories (see 7.3). For the rest of this
section, we fix a cofibrantly generated model category S.

Proposition 9.4. Let ®: (A, B) — (C,D) be a morphism of pairs of small cate-
gories, and fix an object a € A. Assume the following :

(a) D= (I)(B>;

(b) ®*®, preserves B-weak equivalences (see A.15);

(¢) ®*®, reflects {a}-weak equivalences (see A.15).

Consider a diagram'Y € SA. Then'Y satisfies B-codescent at a if and only if .Y
satisfies D-codescent at ®(a).
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Proof. By Proposition 7.5, the functor @, : U(A, B) — U(C, D) preserves cofibrant
objects. In fact it also preserves weak equivalences, as follows readily from (a), (b)
and Lemma 7.2. Let : Y/ — Y be a B-cofibrant approximation to Y in U(A, B)
(see 4.1). Then ®,n: .Y’ — .Y is a D-cofibrant approximation to ®,Y. It is
a weak equivalence at ®(a) if and only if ®*®,n(a) is a weak equivalence which,
in turn, amounts to n(a) being a weak equivalence, by hypothesis (c). The result
follows from local flexibility of codescent 6.5. O

Corollary 9.5 (Induction property for codescent).

Let (C, D) be a pair of small categories, and A C C a full subcategory containing D.
Consider a diagram Y € S and a € A. ThenY satisfies D-codescent at a if and
only if indi Y does.

Proof. The full inclusion (A, D) — (C,D) satisfies the hypotheses of Proposi-
tion 9.4, since resG o ind$ = id (see B.4 (vii)). O

X ok Xk

Next, we present another application of Proposition 9.4. Compare the first
part of Section 8, where we defined left glossiness to guarantee the existence of a
Quillen adjunction “backwards”, namely (®*,®,), cf. 8.6. Later, in 9.14, we will
see that this Quillen adjunction basically always preserves codescent. On the other
hand, the dual notion of right glossiness will be used for the adjunction “forwards”
(P, ®*), which is essentially always a Quillen adjunction, but does not always
preserve codescent. See the tableau in 9.17 below for a survey.

Definition 9.6. Let ®: (A,B) — (C,D) be a morphism of pairs. We shall say
that ® is right glossy if the following condition is satisfied : for every object b € B,
there is a set of morphisms in C

{ﬁj : (I)(b]) — (I)(b)}jer
all having target ®(b) and with various sources ®(b;), such that

(i) the objects b; also belong to B;

(ii) for every morphism a: ®(a) — ®(b) in C with a € A, there exists a unique
pair (j,7), with j an “index” in Fj, and  a morphism a — b; in A, such
that a = 8, o ®(), that is,

®(a) v o (b)

~ 7
N Ve

@i amby) ) B (GYER)
(b))

As for left glossiness, we point out that condition (ii) has to be verified for all a
in A, including those belonging to B.

Example 9.7. A full inclusion of pairs of small categories (A, B) — (C, D) (see 7.4)
is right glossy. It suffices to take for each b € B the set Fy, := {1}, with b; := b and
ﬁl = ldb

Example 9.8. Here is an “extreme” example again, showing that right glossiness
can be very far from fullness. Let C be a small category and let C’ be the correspond-
ing discrete subcategory (B.5). Then, the inclusion (C’,C") — (C,C) is right glossy.
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Indeed, it suffices to take for each object b € C’ the set Fy := ][ ., morc(c,b), with,
for every “index” j: ¢ —bin I, b; := c and 3; := j.

Remark 9.9. Let ®: (A,B) — (C, D) be a morphism of pairs of small categories.
Dually to Remark 8.4, one easily checks that for any b € B and for any functor
Y € 84, the obvious morphism

H Y(©b;) — colim Y(a)
JEF, (a,®(a) % (b)) € O\(b)

is an isomorphism, natural in Y.

Lemma 9.10. Let ®: (A,B) — (C,D) be a morphism of pairs of small cate-
gories. Assume that ® is right glossy. Then, for Y € SA and b € B, there is an
isomorphism
o0, Y(b)= [ Y®)).
JEFY

that is natural in'Y (where notations are kept as in Definition 9.6).

Proof. The proof is dual to the one of Lemma 8.5, using Definition B.2 for ®, and
the above Remark 9.9. 0

Definition 9.11. We say that a model category M has the coproduct property for
weak equivalences if for a set {fi}rex of weak equivalences in M, their coproduct
[rcx fr is a weak equivalence as well. If the converse is also true, we say that M
has the strong coproduct property for weak equivalences.

Remark 9.12. For example, any of the model categories Zop, sSets, Sp or Ch(R-mod)
(with both model structures) introduced in Appendix A has the strong coproduct
property for weak equivalences; for the category of spectra, see [16, Thm. 7.4 (ii)];
the other cases are easy.

Proposition 9.13 (Right glossy invariance of codescent).
Let ®©: (A, B) — (C,D) be a morphism of pairs of small categories, and let a € A
be an object. Assume the following :

(a) D= ®(B);

(b) @ is right glossy (see 9.6);

(c) ®*®, reflects {a}-weak equivalences (see A.15);

(d) S has the coproduct property for weak equivalences (see 9.11).
Consider a diagram Y € SA. Then Y satisfies B-codescent at a if and only if
.Y satisfies D-codescent at ®(a). In particular, assuming condition (c) for every

object a € AN B, the functor Y satisfies B-codescent if and only if ®.Y satisfies
D-codescent on P(A).

Proof. By (b), Lemma 9.10 applies. Combined with (d), this shows that ®*®, pre-
serves B-weak equivalences. So, with (a) & (c), all the hypotheses of Proposition 9.4
are satisfied and we get the result. O

k% ok

Finally, we discuss the case of the backward functor ®* associated to a “reason-
able” morphism of pairs ®: (A, B) — (C,D).
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Theorem 9.14 (Left glossy invariance of codescent).
Let : (A, B) — (C,D) be a morphism of pairs of small categories. Assume that
the following holds :

(a) D = B(B);
(b) @ is left glossy (see 8.1).

Let X € 8¢ and a € A. Then X satisfies D-codescent at ®(a) if and only if ®*X
satisfies B-codescent at a. In particular, X satisfies D-codescent on ®(A) if and
only if ®*X satisfies B-codescent.

Proof. From Theorem 8.6, we know that the functor ®*: U(C,D) — U(A, B)
preserves cofibrant objects. It also reflects weak equivalences (see 7.2 (iii) if neces-
sary). The result follows as above from local flexibility of codescent 6.5 by choosing
a D-cofibrant approximation to X in U(C, D), moving it via ®* to a B-cofibrant
approximation to ®*X in U(A, B) and checking whether it is a weak equivalence
at a € A. O

Remark 9.15. If fact, assuming that D = ®(B) as in the theorem, a closer look at
this proof shows that as soon as (®*, @) is a Quillen pair, the functor ®* reflects
codescent on A. Left glossiness is only used to guarantee that those functors do
form a Quillen pair (cf. 8.6).

Corollary 9.16 (Restriction property for codescent).

Let (C,D) be a pair of small categories and let A C C be a full subcategory con-
taining D. Let X € 8¢ and a € A. Then X satisfies D-codescent at a if and only
if resi\X does. In particular, X satisfies D-codescent on A if and only if resaX
satisfies D-codescent.

Proof. Apply left glossy invariance 9.14 to the full inclusion (A, D) — (C, D) which
is left glossy as we have seen in Example 8.2. O

Remark 9.17. It is worth making the following recapitulative observation on left
and right glossiness. Suppose that ®: (A, B) — (C, D) is a morphism of pairs of
small categories such that D = ®(B). Then, one has the following tableau:

(F,U) Is (F,U) a Quillen pair ? Whenever (F,U) is a Quillen pair,
does F reflect codescent on A7

((b*, (I)*) always (75) if ® is I'lght glOSSy7 (913)
but only conditionally®

(D*, D)) if ® is left glossy (9.14) always (9.15)

T see the exact conditions on S and ®*®P, in Proposition 9.13.
% % %
Now, we illustrate left absorbance, defined in 8.10, giving an analogue of Corol-

lary 9.16 without the assumption that D C A; this will turn to be extremely useful
later on (and will be strongly generalized in Theorem 11.7).
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Proposition 9.18. Let (A, B) — (C,D) be a full inclusion of pairs of small cat-
egories. Assume that A is left absorbant in C. Assume further that DN A = B.
Let X € 8¢ and a € A. Then X satisfies D-codescent at a if and only if resaX
satisfies B-codescent at a.

Proof. We know from Proposition 8.12 that resi‘ preserves weak equivalences and
cofibrant objects. As in the proof of Theorem 9.14, the result follows from local
flexibility of codescent 6.5. O

10. BASIC PROPERTIES OF CODESCENT

We collect in this section a series of simple results about codescent. These
will concern the cofibrant approximations (4.1) in Us(C,D) and some compati-
bility properties of codescent related to the notions of retract (A.4) and of weak

retract (A.21). Again, we fix a cofibrantly generated model category S of “values”
(see A.24).

We start with retracts, first showing that one can alter the subcategory D up to
essential equivalence or even up to retract equivalence (see 3.12 for both definitions).

Proposition 10.1 (Retract equivalence property for codescent).

Let (C,D) be a pair of small categories and let £ be another subset of C, which is
retract equivalent to D. A functor X € S€ satisfies D-codescent exactly where it
satisfies €-codescent.

Proof. By Proposition 3.13, an object X’ € S€ is D-cofibrant if and only if it is
E-cofibrant and a morphism 7: X’ — X is a D-weak equivalence if and only if it is
an £-weak equivalence. The result follows from local flexibility of codescent 6.5. O

The next result is a direct consequence (or can be proven directly).

Corollary 10.2. Let (C,D) be a pair of small categories. Then, an object X € S¢
satisfies D-codescent at every object in C that is a retract of an object of D. O

Proposition 10.3 (Weak retract invariance of codescent).

Let (C,D) be a pair of small categories. Let X be a C-weak retract of Y, that is, a
weak retract of Y in the model category U(C) (and not merely in U(C, D)), in the
sense of A.21. If Y satisfies D-codescent at some ¢ € C, then so does X.

Proof. Ifn: X — Y and n’: Y — X are such that 7’ o7 is a C-weak equivalence,
then so is Q% (n' on), by rigidity of cofibrant objects 6.1. By A.21, §§(’D(c) is a weak
equivalence, since it is a weak retract of the weak equivalence rf)C/’D (c). ([

X 3k Xk

The next property can prove very useful. It is reminiscent of standard results in
the framework of the Isomorphism Conjectures.

Proposition 10.4 (Zoom-out property for codescent).

Let C be a small category, and let D C € C C be subcategories. If for some c € C,
X satisfies D-codescent on € U{c}, then X satisfies €-codescent at c. In particular,
if X € SC satisfies D-codescent, then it satisfies £-codescent as well.
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Proof. There exists by assumption an £ U {c}-weak equivalence £: X' — X with
X' being D-cofibrant. By Proposition 3.14 (i), we know that X’ is also £-cofibrant,
hence the result using local flexibility of codescent 6.5. The rest follows from this
(or directly from global flexibility of codescent 6.6). |

X ok Xk

So far, we did not use an explicit description of the cofibrant replacement in
Us(C,D) and we will keep doing so, except in the forthcoming discussion and in
some examples below. This is possible thanks to local and global flexibilities of
codescent, 6.5 and 6.6, which allow us to move from one cofibrant approximation
to another. Unfolding the proof of the model structure of Us(C,D), we see that
the existence of the cofibrant replacement is given formally by applying the small
object argument to @ — X. In the special case where D = C and § = sSets, there
are more explicit (functorial) cofibrant approximations, as explained for instance
in [6, §§2.6-2.10]. More generally, the knowledge of a cofibrant approximation on
Us (D) can be transported to one on Us(C, D), as we now explain.

Proposition 10.5. Let (C,D) be a pair of small categories; suppose that D is full
inC. Let (Qp, (P) be a cofibrant approzimation (4.1) in the model category Us(D).
We define (9%, ¢¢P) on S€ as follows. For X € 8¢, we set

QCDX = indcD Qp res% X
and we let C)C(’D be given by the composition

. 1C D
indp Cres x X

96 ind$ res¢, X ————= X

<C,D

X

where ex denotes the counit, at X, of the adjunction (ind% , res% ); in other words,
< X Then, (Q% , ¢©P) is a cofibrant approzi-
mation in Us(C,D); it is functorial if so is (Qp , (P) (see 4.1).

Proof. This is immediate from Corollary 7.6 applied to (D,D) — (C,D) (D is
full) which guarantees that Q%X is D-cofibrant. To see that C)C(’D is a D-weak

C%D s the morphism adjoint to Cr’é

equivalence, simply use that the unit n: id — res% OindCD is an isomorphism
(see B.4 (vii)): res$, C)C(’D °onge x = (gs%X is a D-weak equivalence. O

Remark 10.6. Let D C £ C C be full inclusions of small categories. For d € D, let
us denote by ng S — 8¢ the left adjoint of the evaluation functor £4: S — S
(compare with the proof of Theorem 3.5). Suppose that I and J designate chosen
sets of generating cofibrations for S. Then, the corresponding sets of generating
cofibrations for Us(E, D) are, by virtue of Theorem 2.1,

5= 41 and  J5 = 4().
deD deD

If the reader really prefers the cofibrant replacement to mere approximations, he
could consider the following observation expressed using these notations:

indp(1p) = I% .
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This follows immediately from the fact that for every d € D we have ind$, (2 22 (€.
Unfortunately, one has only natural isomorphisms instead of equalities. It sounds
reasonable to think that the small object arguments for I3 and for IS, are therefore
compatible via the induction. We will not go into the details, because even if it has
a rigorous formulation this compatibility is not needed here, as already explained.

Remark 10.7. Given an arbitrary cofibrantly generated simplicial model category S,
we devote Part IT of the series [1] to the construction of explicit cofibrant approx-
imations in the model category Us(C, D), not merely those obtained by the small
object argument (since, in general, the latter tend to be formidable).

11. PRUNING

In this section, we explain how to prune away unnecessary data in C and D
without altering the codescent property of a given X € S¢ at a given object ¢ € C.
As before, S is a fixed cofibrantly generated model category (see A.24).

Since in this section we will often pass from a category to a subcategory, we
remind the reader of Convention 3.1, that unless otherwise mentioned a subcategory
merely given by its objects is meant as the full subcategory on those objects.

Proposition 11.1 (Covering property for codescent).

Let (C,D) be a pair of small categories and let {Colaca be a collection of full
subcategories of C, each of them containing D. Suppose that the C,’s form a covering
of C, i.e. obj(C) = U,c 4 0bj(Ca). Then, a diagram X € S€ satisfies D-codescent if

and only if resga X satisfies D-codescent for all a € A.

Proof. This is an immediate consequence of Corollary 9.16. O

X ok X

We can reduce the ambient category to the minimum, giving it the “shape of a
funnel” with D as base and one object ¢ € C as vertex.

Proposition 11.2 (Funneling Lemma).
Let (C,D) be a pair of small categories and let ¢ € C. A functor X € S€ satisfies
D-codescent at ¢ if and only if its restriction res%u{c} (X) satisfies D-codescent.

Proof. This follows directly from Corollary 9.16 applied to A := D U {c}. O

X ok Xk

We can also prune away in D all objects which do not map to ¢, as we now
explain.

Notation 11.3. Fix a (small) category C. Let D be a subset of C, and let ¢ € C.
We denote by D. the subset of D of those objects which have at least one morphism
to cin C, i.e.

D.:={de D’ morc(d,c) # @} .

Lemma 11.4. Let D be a full subset of a (small) category C, and ¢ € C. Then,
D. is left absorbant in D as defined in 8.10. Similarly, D.U{c} is left absorbant in
D U{c}, both D and D U {c} viewed as full subcategories of C.
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Proof. By composition, any object d € D having a morphism to some object having
a morphism to ¢, has itself a morphism to ¢. So much for D, and D. For the other
case, an object in D U {c} having a morphism to an object in D. U {c} is either ¢
itself or clearly belongs to D. by definition of the latter, or by the first part of the
proof. O

Theorem 11.5 (Pruning Lemma for objects).
Let (C,D) be a pair of small categories, and let ¢ € C. Then, for X € S, the
following properties are equivalent :

(i) X satisfies codescent at ¢ with respect to D ;

(ii) X satisfies codescent at ¢ with respect to D .

Proof. Consider the full inclusion of pairs of small categories

(D.U{c}, D) = (DU{c}, D).
By Lemma 11.4 and since clearly D N (D, U {c¢}) = D., this inclusion satisfies the
assumptions of Proposition 9.18. So, for any Y € SPY{¢} we know that Y satisfies
D-codescent at ¢ if and only if resgcuu{fj} Y satisfies D.-codescent at ¢. Apply this
result to Y = res%u{c} X. Since

u C — el
resDcU{{cc}} OreSpyfcr = I€Spufc} >
we have proven that resS, | (e} X satisfies D-codescent at ¢ if and only if res%cU (X

satisfies D.-codescent at c. These two statements are respectively equivalent to (i)
and (ii) by the Funneling Lemma 11.2. O

Corollary 11.6. Let (C,D) be a pair of small categories and let ¢ € C. Assume
that no object d € D possesses a morphism d — ¢ in C. Then, a functor X € S€
satisfies D-codescent at ¢ if and only if the morphism @ — X(c) in S is a weak
equivalence.

Proof. By the Pruning Lemma 11.5, X satisfies D-codescent at c¢ if and only if it
satisfies codescent at ¢ with respect to the empty subcategory. We conclude by
Example 4.4 (1). O

X 3k ok

Next, we see that the only important morphisms are those having their source
in D and that we can drop all other morphisms from C.

Theorem 11.7 (Pruning Lemma for morphisms).
Let (C,D) be a pair of small categories. Define as follows a category A with the
same objects as C, and with the sets of morphisms given by
morc(a,b) if a€D
mor 4(a,b) := < {id,} ifa gD and a=b
1%} ifagdD and a#b.
Then, this indeed defines a subcategory of C containing D as a left absorbant subset.
Moreover, for a functor X € S¢ and an object ¢ € C, the following are equivalent :

(i) X satisfies D-codescent at ¢ ;
(i) res§ X satisfies D-codescent at c.

In particular, X satisfies D-codescent if and only if resi X satisfies D-codescent.
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Proof. To check that A is really a subcategory of C as stated is straightforward and
left to the reader. Consider the functor ®: (A, D) — (C, D) given by the (possibly
non-full) inclusion. We claim that it satisfies the hypotheses of Theorem 9.14 on the
left glossy invariance. Condition (a) is clear and we are left to prove condition (b),
i.e. that ® is left glossy (see 8.1). This is done like in Example 8.2: for each d € D,
we take Eq := {1}, with dy := d and y :=idg. O

For instance, for ¢ € C~\ D, this shows that one can remove arbitrarily non-
identity endomorphisms of ¢; conversely, one can add endomorphisms of ¢ as long
as “X remains a functor”.

Note that the Pruning Lemma for morphisms 11.7 provides a (complicated)
solution to the exercise stated at the end of Example 4.5 (at least as far as the
second statement is concerned).

Remark 11.8. The Pruning Lemmas 11.5 and 11.7 give a clear “direction” to codes-
cent. Namely, codescent goes from D to C in the sense that only the morphisms out
of D to some given object ¢ will contribute to D-codescent at ¢ and, for instance,
not any of the morphisms from ¢ to an object of D, and in fact not any of the
morphisms out of ¢ whenever ¢ & D.

This conclusion might sound strange when compared to our earlier comment
(3.8) that the morphisms of D were not important but merely the underlying set
of objects obj(D). This remains undoubtedly true. What we say here is that in the
ambient category C, we can ignore the morphisms not taking their source in D.

X ok ok

To state an important and illustrating consequence of the Pruning Lemmas and
of the Funneling Lemma, we introduce a notation.

Notation 11.9. Let £ be a subcategory of a small category C, and let ¢ € C\.E.
We denote by € Y {c} the subcategory of C with obj(€) Il {c} as set of objects, and
with the following sets of morphisms:

more(a,b) if a#ec
morgvycy(a,b) :=  {id.} ifa=b=c
%] if a=c and b#c.

For example, when D is full and distinct from C, the category A occurring in the
statement of 11.7 is, in some obvious sense, a patching of the subcategories DV {c}
with ¢ running over the set obj(C\D).

Recall also Notation 11.3.

Theorem 11.10. Let (C,D) be a pair of small categories and consider ¢ € C\D.
Then a functor X € SC satisfies D-codescent at c if and only if res%cy{c} X satisfies

D.-codescent (at c).

Proof. By the Pruning Lemma for objects 11.5, the “codescent question” at ¢ for
the pair (C, D) is equivalent to that for (C,D.); by the Funneling Lemma 11.2, the
latter condition is in turn equivalent to the “codescent question” at c¢ for the pair
(D.U{c}, D.); finally, by the Pruning Lemma for morphisms 11.7, this is equivalent
to the “codescent question” (at ¢) for the pair (D. Y {c}, D.). O



32 PAUL BALMER AND MICHEL MATTHEY

It is sometimes possible to further prune away some data, using the retract
equivalence property for codescent 10.1, and the glossy invariances of codescent
9.13 and 9.14.

12. EXAMPLES

We give here a class of simple examples, most of which are variations on the
theme of Example 4.5. We let S be a cofibrantly generated model category. Recall
also Convention 3.1.

To start with, as an application of rigidity of codescending objects 6.3, we illus-
trate, by an example, the fact that one can not expect that all objects in S¢ satisfy
D-codescent (at least whenever S, C and D are not “too trivial”).

Example 12.1. Assume that there is a morphism f: s — s’ in § with s # &/,
which is not a weak equivalence. Suppose that D is left absorbant (8.10) in the
small category C and that D # C. (By the Pruning Lemma for morphisms 11.7, left
absorbance is no effective restriction.) Let X € S¢ be the constant diagram with
value 5. Let Y € S€ take the value s on D and s’ outside, with

ids  if « has source and target in D
Y(a):=<¢ f if a has source in D and target in C\D
idgs  if o has source and target in C\D,

for every morphism « in C. Define a morphism n: X — Y in S decrecing that
1 is ids on D and f outside. Then, 7 is a D-weak equivalence but not a C-weak
equivalence. By rigidity of codescending objects 6.3, at least one of X and Y does
not satisfy D-codescent. For example, if we choose s := @, then X satisfies D-
codescent and Y does not. For § := 7op,, one can take s’ := * and then, for D
empty, Y satisfies D-codescent and X does not (see Example 4.4 (1)).

X kX

Example 12.2. Consider the general situation of a small category with two objects
A
p TN
L A C T
C MC . ~ . N

B

with D := {d}, where A and B are arbitrary sets of morphisms from d to ¢ and
from c to d respectively, and M and N are arbitrary monoids of endomorphisms of
d and c respectively. Fix a diagram X € S¢. Combining the Funneling Lemma 11.2
and the Pruning Lemma for morphisms 11.7 (that is, applying Theorem 11.10), we
deduce that X satisfies D-codescent if and only if its restriction to the category

d*>c/\
MC 1d

does. Next, we discuss a special case in which the monoid M is reduced to the
minimum.
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Example 12.3. Consider the category

r~d *A> c -\
C = id; o : _ e id.
L, ——

with A denoting a non-empty set of morphisms from d to ¢, and let D := {d}. A

diagram X € S¢ is the same thing as a set {X(d) *e) X(c)}aeA of morphisms in
S with the same source and the same target, but without any further connection.
The model category U(D) identifies canonically with S. So, letting (Qs,£S) be
the cofibrant replacement in S, by Proposition 10.5, we have for X the cofibrant
approximation

exoind$ €5
&SP 05X = ind$ Qs res$ X = ind$ Qs X (d) i
Consider a diagram Y = Y(d) in S = SP. The comma categories D \, d and

D\.c (see B.1) are discrete with, respectively, one object, namely (d,idy), and |A|
objects, namely (d, a) with o € A. By B.2, we get canonical isomorphisms

. N . ~ . .C _ . ~
ind%, Y (d) = cglim Y(d) =Y and  ind$Y(c) cglim Y (d) a]E[A Y.
For ac € A, ind% Y () is the canonical morphism ¢ : Y — [ .4 Y corresponding

to the a-term, as easily verified. Unravelling the construction of the morphism
indCD 539(( 4)» one sees that the situation is as follows:

. {La}aeA
opX et QsX(d) _+ 7 Moeca@sX(d)
E .
Ci’DlD—weq - 5?{(d>i~ i(X(a)offf(d))a
{X(@)}aca
X X(d) &+~ X(c)

where the vertical morphism on the right-hand side is the one induced by the
universal property of the coproduct. It is equal to the composition

L. €3 (X(a))a
— > — s

(X () Off((d))a: [Maca@sX(d) [HoeaX(d)

So, by global flexibility of codescent 6.6, the functor X satisfies D-codescent if and
only if (X(a) o §§(d))a is a weak equivalence. Suppose that a coproduct of weak

X(c).

equivalences in S is a weak equivalence (compare 9.11). Then, by 2-out-of-3, we
deduce that

X € S€ satisfies D-codescent  iff HX(d) K@)a

acA

X(c) is a weq.

For instance, when A has two elements and S = 7op, the C-diagram

def ~ s
X = 1dk¥ * \a] * \_}d
16
does not satisfy D-codescent. The same diagram, but viewed as Zop,-valued, does
satisfy D-codescent, since then X is the initial object and is therefore D-cofibrant.
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Example 12.4. Let C be a small category and suppose that the full subcategory
D C C is such that obj(C) = DII {c.} with ¢, a terminal object in C. Now, we
apply Proposition 10.5 with (Qp, ¢P) denoting a cofibrant approximation (4.1) in
the model category Us (D). Using the description of the induction functor given in
B.2 and noticing that the comma category D\ ¢, is canonically isomorphic to D
viewed as a full subcategory of C, one obtains that

X € S€ satisfies D-codescent — iff cogm Opres§ X —> X(c) is a weg

where f1 is the canonical morphism (independently of the choice of (Qp , ¢P)). This
applies to the category
¢ = w(CEmeiTh
with D := {d} (recall Remark 4.6), giving another special case of Example 12.2.
* %k

Next, we give an example of left glossiness (see 8.1) for categories with two
objects. Again, this treats some particular cases of Example 12.2.

Example 12.5. Let M be a monoid and M’ < M a submonoid. Let A be a non-
empty right M-set, and A’ C A an M’'-subset. Consider the functor ®: A — C
given by

bi>a/\ P d4>6/\

M’ ° ° idg B —— MC ° 1d
*> ~

where A is depicted on the left and C on the right, and let B = {b} and D = {d}.
Then, ® is left-glossy if and only if there exists a subset L C M such that the two
maps

M xL—M, (mfl)—ml and A xL-—A (a,)—a-(
are bijections. For instance, suppose M := G is a group acting transitively on the
non-empty set A. Choose an element « € A, and take A" := {a}, M’ := Stabg(«a)

(the stabilizer of a in G) and choose for L any set of representatives of the right
G-orbits A/G. This fulfills the required conditions. Consequently, the inclusion

A

b P d — N
Stabg () (> e "> o idg L G ° . id,
k}f ~ — ~

is left glossy (and then, Example 12.4 can be applied). In all these cases, left glossy
invariance of codescent 9.14 applies to reflect codescent via ®* = resit.
* ok %

We pass to another type of examples.

Example 12.6. Let C be the “commutative-square-category”, that is, the category
presented by generators and relations as follows:

with Boa=pfod.

/\
\/
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First, we let £ := {e}. Applying the Funneling Lemma 11.2 and invoking Exam-
ple 4.5, we infer that

X € 8C€ satisfies E-codescent iff  X(a), X(a'), X(B) and X(B') are weq’s.

By 2-out-of-3, if suffices that three of these four morphisms are weak equivalences.

Now, we let D := {e,d,d’'} (as always, viewed as a full subcategory of C) and
set v := Ba. In [9, §10], the same model category structure U (D) on S is consid-
ered for this particular D (see Proposition 10.6 therein; in particular, an explicit
description of cofibrations is given). Let (Qp, £P) be the cofibrant replacement in
U(D). Consider a diagram X € S¢. By Propositions 10.5, one has

05X (c) = colim Qpres$, X (a).
a,a LN c) € D\

Let us denote by [d] the object (a,d) in D\, c¢. It is readily checked that the
category D\, c looks as follows:

o~ 2 15l = "
D\, c = S~
N [v] a\; ”

= idpgr)

Therefore, taking a colimit over it amounts to taking the obvious pushout. Follow-
ing [9, Prop. 10.7], this means that Q%X (c) is a homotopy push-out. Therefore,
X € 8C€ satisfies D-codescent if and only if X(c) is (weakly equivalent to) the ho-
motopy push-out of X(d) and X (d") over X(e).

Example 12.7. Let C be the “non-commutative-square-category” presented by
d
[ ]
/ X
C: . \ / . (without relations) .
a/ ./ ﬁ,

d

Let £ := {e} and suppose that a coproduct of weak equivalences in S is a weak
equivalence. Applying the Funneling Lemma 11.2 and invoking Example 12.3, we
see that a diagram X € S€ satisfies £-codescent if and only if X (a) and X (') as

X (Ba), X (B'a’)
well as the morphism X (e)[[X (e) ( )

X(c) are weak equivalences.

* %k %k

We end this series of examples by presenting an example of right glossiness,
where we suppose that the category of values S has the strong coproduct property
for weak equivalences (see 9.11).

Example 12.8. Consider a morphism of pairs ®: (A, B) — (C, D), with B = {b}
and D = {d}, depicted in the obvious way as

!’
N’Cz) A gQM’ L) N(\Col A g/\JVI
H \4 H \J
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We suppose that ® induces inclusions of N’; A’ and M’ in N, A and M respectively.
Assume that there exists a subset L C N such that the map L x N’ — N,
(4,n') — £-n’ is bijective, as for example if N and N’ are groups. Then, the
functor @ is right glossy. Indeed, it suffices to take as §;’s the elements of L (with
b; := b for each j) in Definition 9.6. Similarly, assume further that there exists a
subset K C M such that the map K x (A’ IITM') — AL M, (k,a’") — k-2’ is
bijective. Then, the functor ®, viewed as a morphism of pairs

o: (A, A) — (C,0),

is right glossy, as a similar argument shows. By Lemma 9.10, given a diagram
X € SA, we have a natural decomposition

"0, X (a) = [ X(a).
K

This implies that condition (c) of Proposition 9.13 is fulfilled; the other conditions
are already checked. As a consequence, the diagram X satisfies B-codescent if and
only if the induced diagram indi\ X satisfies D-codescent. This provides an example
of induction property for codescent, without the assumption that the subcategory
A be full in the ambient category C (compare with the induction property for
codescent 9.5).

13. THE HOMOTOPY CATEGORY OF Us(C, D)

Fix a cofibrantly generated model category S (see A.24). In this section, we
analyze the homotopy category of the model category U(C, D). We also reformu-
late the codescent property in the language of homotopy categories. Recall also
Convention 3.1.

Concerning the homotopy category of a model category and related topics, we re-
fer to [13, §§1.2-1.3] and to [12, §§ 8.3-8.5] (see also A.19, the subsequent paragraph
and A.20).

Notation 13.1. Let (C, D) be a pair of small categories. We denote by Hos(C, D)
the homotopy category of the model category U(C, D) introduced in 3.6, that is,
the localization of S¢ with respect to D-weak equivalences. We shall denote by [X]
the image of an X € S¢ in Hogs(C, D). When C = D, we also abbreviate Hogs(C,C)
by HOS (C)

Proposition 13.2. Let (A,B) — (C,D) be a full inclusion of pairs of small cat-
egories. Then, the restriction resa localizes at the level of homotopy categories to
yield a functor Res$: Hos(C,D) — Hos(A, B) given by the formula

Res§[X] = [resi‘ X]
for X € 8C, and which is part of an adjoint pair
Lind%: Hos(A,B) = Hos(C,D) :Res%,
with the functor Lindi being characterized by the formula
LindS (Y] = [ind%,(QAY)]
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forY € SA, where QY is the B-cofibrant replacement of Y in U(A, B). Moreover,

the unit of the adjunction is an isomorphism, i.e. n: id =, Resﬂ OLindi‘.
(The functor Lind$ was denoted by Znd< in the Introduction.)

Proof. The restriction localizes since it preserves weak equivalences; it is character-
ized by the formula indicated in the statement (see [13, Lem. 1.2.2 (i)]). For the rest
of the proof, we refer to A.20. The pair of adjoint functors of the statement is the
derived pair of the Quillen pair of Corollary 7.6. The localization Resi is then also
naturally isomorphic to the total right derived functor Rresi‘. On the other hand,
the total left derived functor Lindil is characterized by the given formula. Now,
recall that the unit id — I"esJC4 o indi is an isomorphism, see B.4 (vii). Unravelling
the construction of the derived adjunction (see for instance [13, Proof of Lemma
1.3.10]), one checks that the stated fact about the counit n follows. O

Remark 13.3. Some care is needed with these derived functors. It might happen
that the Quillen adjunction (F,U) is an equivalence of categories and that the
derived adjunction is not. As an exercise, the reader could look at the Quillen
adjunction given by the identity (!) itself, id: U(C,D) == U(C) :id, and unfold the
definition of the derived adjunction (see A.20). See also Theorem 13.9 below.

* ok %

Lemma 13.4. Let F: A — B be a functor admitting a right adjoint U: B — A.

Assume that the unit of the adjunction is an isomorphism, i.e. n: id =, UoF.
Given an object b € B, there exists an object a € A such that F(a) 2 b in B if and

only if the counit of the adjunction at b is an isomorphism, i.e. €,: FU(b) b
Proof. The condition is clearly sufficient, simply take a := U(b). Conversely, assume

that §: F(a) — b is an isomorphism in B for some object a € A. Denote by
a: a — U(b) the morphism that is adjoint to 3. We have commutative diagrams

Uu(p) F(a)

U(F(a)) —=U(b) F(a) — F(U(1))
a b

giving the usual connection between the adjunction, the unit and the counit (see [15,
Thm. IV.1.1, p. 82]). Now, by assumption, in the left-hand diagram, n, and U(f)
are isomorphisms, consequently, so is «: a — U(b). Using this in the right-hand
diagram, § and F(«) are isomorphisms and hence ¢, too. O

Theorem 13.5 (Codescent via homotopy categories).
Let (C,D) be a pair of small categories (consider D as full in C). Let
Lind%: Hogs(D) == Hos(C) :Res
be the adjunction of 13.2. Then, for a diagram X € S€, the following are equivalent :
(i) X satisfies D-codescent;
(ii) the image [X] of X in Hos(C) belongs up to isomorphism to the image of
the functor Lind%.
When (i) and (ii) hold, the isomorphism of (ii) can be realized for instance by the

o

counit of the above adjunction at [X], i.e. one has €[x): Lind% o ResS [X] — [X].
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Proof. The adjunction is a special case of the one of Proposition 13.2 applied to
the full inclusion (D, D) — (C,C). Consider the D-cofibrant replacement
R Qpresh, X — res, X
of res§, X in U(D). Applying ind% to it yields a D-cofibrant approximation

ind% €%

ind$, Qp res§, X ind$, res, X * - X,

where € is the counit of the adjunction (ind% , res% ), as we already saw in Propo-
sition 10.5 (D is full). By global flexibility of codescent 6.6, X satisfies D-codescent
if and only if the above morphism is a C-weak equivalence. By the very construc-
tion of the derived adjunction (again, see [13, Proof of Lemma 1.3.10]), the latter
is, in turn, equivalent to say that the counit efxj: Lind$ o Resh,[X] — [X] is an
isomorphism. One concludes via Lemma 13.4, since by Proposition 13.2, the unit
of the adjunction (Lind%, Res% ) is an isomorphism. O

Remark 13.6. We deduce that the notion of codescent does not depend on the choice
of the model structure U(C,D) on S€. The above statement can be done in the lan-
guage of Dwyer-Kan, Heller, Dugger and Hirschhorn. In this spirit, statement (ii)
in 13.5 can be taken as a definition of codescent. We did not choose this defini-
tion because it makes the notion of codescent at an object ¢ more complicated and
because condition (ii) is less concrete than our definition.

X ok Xk

The following is a sort of converse to the zoom-out property 10.4.

Proposition 13.7 (Iterating codescent).
Let C be a small category and let D C £ C C be subcategories. Let X € S¢ and let
c € C. Assume that the following hold :

(a) X € 8C satisfies E-codescent at c;

(b) resé X satisfies D-codescent at all objects of €. (see 11.3).
Then X € S satisfies D-codescent at c¢. In particular, if X satisfies £-codescent
and if res¢ X satisfies D-codescent, then X satisfies D-codescent.

Proof. By the Pruning Lemma for objects 11.5 and the Funneling Lemma 11.2, we
know that we can reduce the question to the following full subcategories of C:

D.Cc & Cc & U{c}.

In other words, it suffices to prove the second part of the statement, i.e. we can
assume that X satisfies £-codescent and that resg X satisfies D-codescent. Consider
the two successive adjunctions

Lind%, Lind$
HOS(D) — HOS(S) pa— HOS(C).

The explicit formula for Res given in the statement of Proposition 13.2 shows that
the composite of the right adjoints is Res% o Resg = ResCD . Therefore, we also have
a natural isomorphism of functors (cf. [15, Cor. IV.1.1, p. 85; Thm. IV.8.1, p. 103])

Lind$ o Lind%, 2 LindS, .
Now, the result follows readily from a triple application of Theorem 13.5; indeed,

[X] = Lindg Res&[X] 2 Lind§ ( Lind% Resh Resé[X]) = Lind%, Resh[X],
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where the first two isomorphisms come, respectively, from the facts that X satisfies
E-codescent and that resg X satisfies D-codescent. [l

Remark 13.8. Tt is also possible to give a direct proof of this result without using the
homotopy categories. We leave it to the motivated reader, as a good familiarizing
exercise.

X kX

Now, we provide a description of the homotopy category of Us(C, D).
Theorem 13.9. Let (C,D) be a pair of small categories. Then the adjunction
Lind%: Hos(D) == Hos(C, D) :Res%
is an equivalence of categories.

Proof. The adjunction is given by Proposition 13.2 applied to the full inclusion of
pairs (D,D) — (C,D). By the latter proposition, it only remains to prove that
the counit of the adjunction, e: Lind% ORes% — id, is an isomorphism. Recall
that a morphism in a model category becomes an isomorphism in the homotopy
category if and only if it is a weak equivalence (see [13, Thm. 1.2.10 (iv)]). Since
the weak equivalences on both U(C,D) and U(D) are the D-weak equivalences, it
follows easily that Res% detects isomorphisms. Applying this to the above counit
and remembering that the unit 7 of the adjunction is already known to be an
isomorphism, the result follows (recall the equality Res% €[X] © MResS, [X] = 1dRest [x]
for all [X] € Hos(D), by general properties of adjunctions: see [15, (8) on p. 82]).

O

Remark 13.10. In other words, we have constructed on S€ a model structure which
is Quillen equivalent to Hirschhorn’s model structure on SP. If, at this point, the
reader gets the impression that codescent is indeed easier than what it seemed in
Definition 4.3, then we have reached our goal! This notion should not be under-
estimated though: we will see in [2] that this nice and simple property is in fact
related to deep and central mathematical problems.

14. THE CODESCENT LOCUS

In this section, we observe that many statements can be very conveniently re-
formulated, using the notion of codescent locus, that we next introduce. This part
can be read completely independently of the rest of the paper, except for the Intro-
duction; for a more detailed account, the reader may quickly refer to 3.2-3.7 (for
the definition of the model category U(C,D)) and to 4.1-4.3 (for the definition of
D-codescent and of D-codescent at a given ¢ € C). This can serve as an index for
the whole paper.

We start by recalling Convention 3.1: by a subset of a small category, we mean
a subset of its class of objects; by a subcategory given by a set of objects without
further mention, we mean the corresponding full subcategory.

Definition 14.1. Let (C, D) be a pair of small categories. The D-codescent locus of
a functor X € S€ is the subset of those objects of C, where X satisfies D-codescent;
we denote it by Codp(X).
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For the terminology and notations used in the next statement, we indicate the
following references to the rest of the paper:

o closed under retracts (A.4 (i) and (ii));

. retract equivalent (3.12); see also essentially equivalent (3.12);
« res and ind (beginning of Appendix B and B.2);

« D, and & (11.3); D. Y {c} (11.9);

« C-weak equivalence (3.4 (ii));

o weak retract (A.21).

Proposition 14.2. Let (C,D) and (C, &) be pairs of small categories (see 3.2), and
consider an object X € S¢. The following properties hold :

(i) The set Codp(X) contains D and is closed under retracts.
) If D C £ C Codp(X), then Codp(X) C Codg(X) holds.
(iii) If & is retract equivalent to D, then Codg(X) = Codp(X).
(iv) The restriction resgodD(X) X satisfies D-codescent.
) The set Codp(X) is the union |Jobj(A) over all full subcategories A of C
such that resi‘X satisfies D-codescent.
(vi) One has Codp(X) =D UJ,ccp Codp, (res%ci{c} X).
(vii) Let A be a full subcategory of C containing D. Then, for an object Y € SA,
one has Codp(Y') = Codp(ind$ Y) Nobj(A).
(viii) IfY € S€ is C-weakly equivalent to X, then Codp(X) = Codp(Y).
(ix) If Y € 8C is a weak retract of X in U(C), then Codp( ) C Codp(X).
(x) If DC &€ CC, then {c € Code(X) |& C Codp(resg X)} C Codp(X).

Proof.

(i) is Corollary 10.2 (clearly, D C Codp(X)).

(ii) is the zoom-out property for codescent 10.4.

(iii) is the retract equivalence property for codescent 10.1.
(iv) follows from the restriction property for codescent 9.16.
(v) follows from the covering property for codescent 11.1.
(vi) follows from funneling and pruning, see Theorem 11.10.
(vii) is the induction property for codescent 9.5.

(viii) is the weak invariance of codescent 6.10.

(ix) is the weak retract invariance of codescent 10.3.

(x) is iterating codescent 13.7. (]

At this point, for the reader using this section as an index or as a survey, we
also refer to the Funneling Lemma 11.2 and to the Pruning Lemmas 11.5 and 11.7
in connection with (vi) above.

Remark 14.3. We point out that statement (v) in Proposition 14.2 tells that there
is a maximal full subcategory of C, where X satisfies D-codescent. On the other
hand, in general, there is no minimal (full, say) subcategory Dy of C such that X
satisfies Dy-codescent. For example, if D and & are essentially equivalent (see 3.12),
then X satisfies D-codescent exactly where it satisfies £-codescent (by the retract
equivalence property for codescent 10.1); however, as easy examples show, D and
& may well be non-empty and have no common object (see also Example 4.4 (1)
and (2)).

Proposition 9.1 can also be reformulated as follows, using the terminology of A.15
(the proof is clear).
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Proposition 14.4. Let F': § — T be a left Quillen functor between cofibrantly
generated model categories. Then, for X € SC, the following holds :

(i) If F preserves weak equivalences or if X is C-objectwise cofibrant, then we
have Codp(F o X) D Codp(X).
(ii) If F reflects weak equivalences, then Codp(F o X) = Codp(X) holds.

APPENDIX A. RECOLLECTION ON MODEL CATEGORIES

The following can be found in the original work of Quillen [18], whereas the
modern terminology is to be found for instance in [10], [12] and [13].

Here and in the body of the text, we try to give the definitions in such a way
that the non-specialist can get the feeling of those concepts; on the other hand, the
proofs are written so that the specialist can easily check the details.

Definition A.1. Let A be a category and let f: a — b and g: * — y be two
morphisms in 4. One says that f has the left lifting property with respect to g if
for every commutative (solid) diagram

_

u

a X
7

12k

7/

b

_—

in A (with w and v arbitrary), there exists a “lift” h: b — 2z making the above
diagram commute. In this case, g is of course said to have the right lifting property
with respect to f. Given a collection of morphisms K in A, we denote by LLP(K) the
collection of morphisms having the left lifting property with respect to all k € .
Dually, RLP(K) is the collection of morphisms having the right lifting property
with respect to all k € K.

Notation A.2. Let A be a category. We denote by arr(A) the category of ar-
rows of A, whose objects are morphisms a — a’ in A, whose morphisms are the
corresponding commutative squares in A, and with concatenation as composition.

Definition A.3. Given a category A, a functorial factorization (c, 3) consists of
a factorization of an arbitrary morphism f as f = 5(f) o a(f), in a functorial way
with respect to f, in the sense that o and 3 must be functors arr(A) — arr(A),
such that the source of § equals the target of «, as functors arr(4) — A.

Definition A.4. (i) Let A be a category. An object a of A is called a retract
of the object b € A, if there exist morphisms a: a — b and 8: b — a
such that o a =id,.

(ii) A subcategory A’ of a category A is called closed under retracts (in A), if
whenever a € A is a retract in A of some a’ € A’, then a belongs to A’ too.

(iii) A morphism f in a category B is a retract of the morphism g, if f is a
retract of ¢ in the category A := arr(B), in the sense of (i).

Before the next definition, we recall a few useful notions. A category is called
small if its underlying class of objects is a set. A small (co)limit is a (co)limit over
a small category. A category is complete (resp. cocomplete) if it admits all small
limits (resp. all small colimits).
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Definition A.5. A model category is a quadruple (M, Weq, Cof, Fib), where M is a
category, and Wegq, Cof and Fib are classes of morphisms, called weak equivalences,
cofibrations and fibrations respectively, and satisfying the following axioms:

(MC 1) The category M is complete and cocomplete.

(MC 2) The class of morphisms Weq satisfies the 2-out-of-3 property: given a
composition go f, if two out of f, g and go f are weak equivalences, then
so is the third.

(MC 3) The classes Weq, Cof and Fib are closed under retracts, that is, if f is a
retract of g, and if g belongs to one of those classes, so does f.

(MC 4) (a) Cof C LLP(Weq N Fib);

(b) Fib € RLP(Weq N Cof) .
(MC 5) (a) There exists a functorial factorization (a,3) such that, for every
morphism f in M, a(f) € Cof and B(f) € Weq N Fib.
(b) There exists a functorial factorization (,d) such that, for every
morphism f in M, v(f) € Weq N Cof and §(f) € Fib.

For simplicity, we generally write M for (M, Weq, Cof, Fib).

Definition A.6. Let M be a model category. A morphism in Weq N Cof (resp.
Weg N Fib) is called a trivial cofibration (resp. a trivial fibration).

We will denote an isomorphism in a category by “ =7 and a weak equivalence
in a model category by “—— ".

Note that a model category M being complete and cocomplete, it has an initial
object & and a terminal object * (in both cases, such an object is unique up to a
unique isomorphism, and, for convenience, we can once and for all fix one and put
the article “the” in front of it).

Definition A.7. An object X in a model category M is called cofibrant if the
morphism @ — X in M is a cofibration; it is called fibrant if the morphism
X — % in M is a fibration.

For the following three examples, we refer to [18] and to [13].

Example A.8. The category 7op of (all) topological spaces is a model category
with the classes Weq and Cof having the usual meaning, and with the Serre fibrations
forming the class Fib. The initial object is the empty space @ and the terminal
object is the point, * = pt. For this structure, every topological space is fibrant,
and among the cofibrant spaces are the CW-complexes. Similar results hold for the
category 7op, of pointed topological spaces (with all well-pointed CW-complexes
being cofibrant objects).

Example A.9. Let sSets := Sets®” be the category of simplicial sets. It has a
model category structure with weak equivalences being those morphisms which in-
duce a weak homotopy equivalence on the realization, cofibrations being monomor-
phisms (i.e. degreewise injections of sets), and fibrations being the Kan fibrations,
ie. the class RLP(J), where J := {A} — A"™|n > 0 and 0 < k < n}. In this
case, all simplicial sets are cofibrant, and the fibrant ones are precisely the Kan
complezxes. Similar results hold for the category sSets, of pointed simplicial sets.

Example A.10. Let R be a unital ring and let M := Ch(R-mod) be the category
of chain complexes of left R-modules. Then, M has two standard model category
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structures, both with Weq being the class of quasi-isomorphisms (isomorphism on
homology groups). For one of them, one takes for Fib the class of degreewise
epimorphisms and defines Cof := LLP(WegN Fib); in this case, every chain complex
is fibrant. For the other structure, Cof is the class of degreewise monomorphisms
and Fib := RLP(Weq N Cof ); here, every chain complex is cofibrant.

Example A.11. The category Sp of spectra (of pointed simplicial sets, say) has a
model category structure with weak equivalences being the 7;-isomorphisms, where
72 denotes the stable homotopy groups. We refer the reader to [4] for details on
the model structure on Sp.

Proposition A.12. Let M be a model category. The following holds :
(i) We have Cof = LLP(Weg N Fib) and Weg N Cof = LLP(Fib).

) We have Fib = RLP(Weq N Cof) and Weg N Fib = RLP(Cof).

ii) Any two of the classes Cof, Fib and Weq determine the third one.

) The class of cofibrations is closed under transfinite compositions, pushouts

and coproducts. The same is true for trivial cofibrations.

(v) The class of fibrations is closed under pullbacks and products. The same is
true for trivial fibrations.

Proof. See [12, Propositions 7.2.3, 7.2.4, 7.2.5, 7.2.7, 7.2.12 and 10.3.4]. 0

Definition-Notation A.13. Let M be a model category. For a given object X
in M, applying the functorial factorization (MC 5) (a) to the morphism @ — X,
one obtains a functor

M —arr(M), X+— (€x: QX — X),

with QX € M cofibrant and £x a trivial fibration; QX is called the cofibrant
replacement of X. Similarly, applying the functorial factorization (MC 5) (b) to
the morphism X — %, one gets a functor

M — art(M), X +— (¢x: X — RX),

with RX € M fibrant and ¢x a trivial cofibration; RX is called the fibrant re-
placement of X.

Remark A.14. The cofibrant replacement and the fibrant replacement functors
Q,R: M — M both preserve weak equivalences. This is an immediate conse-
quence of the 2-out-of-3 property of weak equivalences (MC 2).

X ok Xk

Definition A.15. For a functor ¥: M — A between model categories, we say
that

(i) ¥ preserves weak equivalences if the following holds: if a morphism 7 is a
weak equivalence in M, then ¥(n) is a weak equivalence in N

(ii) W detects weak equivalences if the following holds: if a morphism 7 is such
that ¥(n) is a weak equivalence in NV, then 7 is a weak equivalence in M;

(i) U reflects weak equivalences if the following holds: a morphism 7 is a weak
equivalence in M if and only if ¥(n) is a weak equivalence in N.

Similarly for the meaning of preserving, detecting or reflecting fibrations, and so on.
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Definition A.16. Given two model categories M and N and a pair of adjoint
functors

F-M—=N:U,
we say that it is a Quillen adjunction if the left adjoint F' preserves cofibrations
and trivial cofibrations (compare Remark A.17 below). In this situation, F is called

a left Quillen functor and U a right Quillen functor; one also says that F' and U
form a Quillen pair.

Remark A.17. A pair of adjoint functors F': M == N : U as above is a Quillen
adjunction if and only if the right adjoint U preserves fibrations and trivial fibra-
tions. See [13, §1.3.1] for details. A left Quillen functor always preserves cofibrant
objects, since it preserves the initial object and cofibrations; it also preserves weak
equivalences between cofibrant objects, by Ken Brown’s Lemma (see for instance
[13, Lem. 1.1.12]). Similarly, a right Quillen functor preserves fibrant objects and
weak equivalences between them.

The above adjoint pair (F,U) can be thought of as a morphism from the model
category M to the model category A. The basic example is the geometric realiza-
tion |-|: sSets — 7op which has the singular functor Sing: Top — sSets as right
adjoint.

* %k >k

Definition A.18. A localization of a category M with respect to a class of mor-
phisms W in M is a functor ¢: M — H to some other category H such that

(a) ¢(w) is an isomorphism in H for all w € W;

(b) ¢ is universal for property (a), that is, for every functor t: M — 7 to a
category where t(w) is an isomorphism for all w € W, there exists a unique
factorization

M——>T

7
7/
e 7 3
/7

H

As usual, when it exists, such a localization is unique, up to a unique isomorphism,
and we write M[W™1] :=H.

For the next result, we refer to [13, § 1.2, pp. 7-13] and to [12, §8.3, pp. 147-151]
for instance.

Proposition-Definition A.19. If M is a model category, then the localization
of M with respect to Weq ezxists; it is called the homotopy category of M, and is
denoted by

Ho(M) := M[Weq™!].

To construct Ho(M), consider the full subcategory M.; of M on those objects
which are both cofibrant and fibrant. There is an equivalence relation on each set
of morphisms in M.y such that Ho(M) can be realized as a quotient of M.¢ by
these relations. The functor ¢: M — Ho(M) is induced by the composite of the
fibrant and the cofibrant replacement functors. Again, see the details in [13, §1.2]
and in [12, §8.3].
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Proposition-Definition A.20. A Quillen adjunction F: M == N : U induces
a so-called derived adjunction

LF: Ho(M) = Ho(N) :RU

where the so-called total left derived functor LF and total right derived functor
RU are essentially defined to be F pre-composed with the cofibrant replacement in
M and U pre-composed with the fibrant replacement in N, respectively.

See details for instance in [13, § 1.3, pp. 13-22] (see in particular Definition 1.3.6
and Lemma 1.3.10 therein); see also [12, §§8.4-8.5, pp. 151-158].

X ok X

Remark A.21. Let M be a model category. We call a morphism f: X — Y in M
a weak retract of the morphism g: A — B, if there exist morphisms a: f — ¢
and §: g — f in arr(M) such that both the X- and the Y-component of fo« are
weak equivalences, as follows:

//——\

X—A——

l g f
Y

— B ——

\——./

~

<

The reader can prove as an exercise that if g is a weak equivalence, then so is f. To
do this, it suffices to consider the image diagram in the homotopy category. We shall
sometimes say that an object X is a weak retract of another object A, meaning that
id x is a weak retract of id 4, or equivalently that there exist morphisms n: X — A
and (: A — X such that ¢ o7 is a weak equivalence.

* ok Xk

The rest of this appendix, except for the definition of a cofibrantly generated
model category (in A.24 below), will only be needed in Section 2, so, the reader
tempted to rush through or even to skip that section may just have a rapid look
at part (iii) and (iv) of Definition A.24 and at Example A.26, and then directly
proceed to Appendix B. What we next recall is some terminology extracted directly
from [13, §2.1, pp. 28-29], without unfolding all set-theoretical details.

Definition A.22. Let A be a category and let K be a set of morphisms. A
morphism in A is called a relative K-cell complez if it is a transfinite composition
of pushouts of elements of K. We denote by K-cell the class of relative K-cell
complexes.

For the next definition, recall that an ordinal \ is called k-filtered, where k is
some cardinal, if it is a limit ordinal and if Ag C X is such that |Ag| < &, then
sup Ag < A.

Definition A.23. An object a in a category A is called small relative to a class
of morphisms IC if there exists a cardinal s such that for every s-filtered ordinal A
and for every A-sequence

Gy —ay —— ... ——ag — ...
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in A, with the morphism ag — agy; in K whenever 8+ 1 < A, the map of sets

colim mor 4(a, a mor 4(a, colima
olim mor 4(a, ag) — mor.a(a, colim az)
is a bijection. (More precisely, in this case, one says that a is k-small relative to
K.) In short, a morphism out of the object a to a “linear” colimit, say colimg ag,
is already — and essentially in a unique way — a morphism out of a to some ag.

Definition A.24. A model category (M, Weq, Cof, Fib) is called cofibrantly gener-
ated if there exist two sets of morphisms I and J such that:

(i) the domains of the morphisms in I are small relative to I-cell;
(ii) the domains of the morphisms in J are small relative to J-cell;
(iii) Fib=RLP(J);
(iv) Wegn Fib = RLP(I).
The (elements of the) sets I and J are called the generating cofibrations and the
generating trivial cofibrations respectively.

Remark A.25. Of course, if the domain of every morphism in I U J is merely small,
that is, small relative to the whole of M, then conditions (i) and (ii) trivially hold.

Examples A.26. The categories 7op, Top,, sSets, sSets,, Ch(R-mod) (with both
indicated model structures) and Sp of Examples A.8, A.9, A.10 and A.11 are cofi-
brantly generated model categories. This can also be found in [13], except for the
case of spectra, for which, as in A.11 above, we refer to Appendix A of [3] for a
more detailed discussion. As an illustration, for Zop, one can take

I:={S""'"<=D"|n>0} and J:={D" < D"x[0,1]|n>0}

(inclusion of the (n — 1)-sphere in the closed n-disk as its boundary, with S~! := &,
and, respectively, the inclusion at level 0).

X ok Xk

Definition A.27. For a category C and a class KC of morphisms in C, we set
cof(K) := LLP(RLP(K)) and fib(K) := RLP(LLP(K)).
It is a general fact that K-cell C cof(K) as follows immediately from A.12.

Theorem A.28 (Kan). Let C be a complete and cocomplete category. Suppose that
W is a class of morphisms in C, and that I and J are sets of morphisms in C. Then,
there is a cofibrantly generated model category structure on C with I as generating
cofibrations, J as generating trivial cofibrations, and W as weak equivalences if and
only if the following conditions are satisfied :

(K1) the class W has the 2-out-of-3 property and is closed under retracts;
) the domains of I are small relative to I-cell ;

3) the domains of J are small relative to J-cell ;

4) J-cell C W N cof(I);

5) RLP(J) Cc WNRLP(J);

6) f(J) or WNRLP(J) C RLP(]).

Proof. This is [13, Thm. 2.1.19] and also [12, Thm. 11.3.1]. O

either W N cof(I) C co
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APPENDIX B. LEFT AND RIGHT KAN EXTENSIONS

Fix a category S of “values” and denote by S the category of functors from a
small category A to §. We generally assume that S is complete and cocomplete.

Let ®: A — B be a functor between small categories. Consider the functor
P*: S8 — 84 X+—Xod.

In the case of an inclusion Incl: A < B of a (not necessarily full) subcategory, the
functor Incl® is just the usual restriction

resh = Incl*: ¥ — S84, X +—s XiA-

By general considerations, ®* has a left and a right adjoint. The left and right Kan
extensions ®, and ®, are explicit descriptions of these adjoints. Their definition
requires the use of so-called “comma categories”.

Definition B.1. Let ®: A — B be a functor between small categories and let
b € B. One defines the comma category ® \,b as follows. Its objects are the pairs
(a, B) consisting of an object a € A and a morphism §: ®(a) — b. A morphism
a: (a1,p1) — (ag,B2) is a morphism «: a3 — ag in A such that the following
diagram commutes in 5:

Dually, the comma category b\, ® consists of the pairs (a7 bﬁfl)(a)) and of the
morphisms «: (a1, 81) — (ag, f2) with a: a; — as, such that ®(«) o f; = Fs.

When & = Incl: A — B is an inclusion, we denote these two categories by A \b
and b\, A respectively.

Definition B.2. Let ®: A — B be a functor between small categories and let S
be a cocomplete category. For any Y € SA, the left Kan extension ®,Y € S8 of Y
is defined to be, for every b € B,

®.Y(b) := colim Y(a).
(a,2(a) 2 b) € b

This construction is functorial in b € B and in Y € SA. This gives a functor
P, SA — SB.
In the special case where ® = Incl: A — B is an inclusion, we shall denote by
indi :=Incl,: S* — SB
the induction from A to B (the notation is motivated by the analogy with repre-

sentation theory).

Definition B.3. Let ®: A — B be a functor between small categories and let S
be a complete category. For any Y € SA, the right Kan extension ®Y € SB of Y
is defined to be
DY (b) := lim Y(a)
(a.02 @) e\
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for any b € B. As before, this yields a functor
P SA — S8
In the special case where ® = Incl: A — B is an inclusion, we shall denote by
extﬁ = Incly: 84 — SB

the extension from A to B (this non-standard notation is motivated by the inter-
pretation of this functor as something extending the given data from A to B).

Lemma B.4. Let &: A — B be a functor between small categories and let S be
a category which is complete and cocomplete.
(i) The functor ®, is left adjoint to O*.
(ii) The functor @, is right adjoint to ®*.
(iii) Denote by @s and *s the initial and terminal objects of S respectively. Let
@ be the initial object of S* or 8B, which is Ds objectwise; and similarly
for the terminal object x of S* or SB. Then ®*(@) = @, ®*(x) = *,
D, () = & and Py(x) = * hold.
If U: B— C is a further functor into a small category C, then, we have :
(iv) (To®d)* = P* o U*
(v) (Tod), 2XVU,0d,
(Vl) (\I/ o] (b)| = \IJ! ] ‘b!
Furthermore, in case ® = Incl: A — B is a full inclusion, the unit n of the adjunc-
tion (indB , resﬁ) is an isomorphism :

(vii) n: id — res§ oindf .

Proof. See [15, Chapter 10]. Part (iii) follows from the fact that for any category
&, the objects @ and x, if they exist, are respectively the colimit and the limit of
the empty diagram with values in £. A left adjoint preserves colimits and a right
adjoint preserves limits. The proof of (vii) is straightforward and uses the fact that
A is full in B to see that the object (a,id,) is final in the comma category Incl\ a.
Hence the colimit on Incl\, a is simply the evaluation at a. O

For (not necessarily full) inclusions A < B — C of categories, note that part (iv)
of the lemma reads

res(jl = res% o resﬁ 5

a formula that will be used without further comment.

Definition B.5. We call a category C discrete if it is small and its only morphisms
are the identities (in other words, if C is “essentially a set”).

Remark B.6. Consider the special case where A = {x} is the discrete category with
only one object. A functor ®: A — B simply consists in the choice of an object
b:= ®(x) in B. Then, ®* = ev,, is the evaluation at b, and, its left adjoint ¢, := Dy,
which is a functor S = SA — SB, boils down to

ws) )= I s,
morg(b,c)

for each s € S and each ¢ € B. This also shows that A has to be full in B in
part (vii) of Lemma B.4.
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