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Abstract. We propose a definition of the Chow group of a rigid tensor tri-

angulated category. The basic idea is to allow “generalized” cycles, with non-

integral coefficients. The precise choice of relations is open to some fine-tuning.

Hypothesis 1. Let K be an essentially small tensor triangulated category. Let
us assume that its triangular spectrum in the sense of [1], Spc(K) =

{
P ⊂

K
∣∣P is prime

}
, is a noetherian topological space, i.e. that every open of Spc(K)

is quasi-compact. Let us also assume that K is rigid, as explained in [4] (or [2],
where this property was called strongly closed). These hypotheses allow us to use
the techniques of filtration of K by (generalized) dimension of the support.

Definition 2. As in [2, Def. 3.1], let us consider dim : Spc(K)−→Z ∪ {±∞} a
dimension function, meaning that P ⊆ Q =⇒ dim(P) ≤ dim(Q), with equality in
the finite range only if P = Q (i.e. P ⊆ Q and dim(P) = dim(Q) ∈ Z forces P = Q).

Examples are the Krull dimension of {P} in Spc(K), or the opposite of its Krull
codimension. Assuming dim(−) is clear from the context, we shall use the notation

Spc(K)(p) :=
{
P ∈ Spc(K)

∣∣ dim(P) = p
}
.

Remark 3. In my opinion, there is nothing conceptually remarkable about the free
abelian group on Spc(K)(p). Therefore I propose another definition of p-dimensional
cycles. This requires some preparation.

Definition 4. Recall from [3, § 4] that a rigid tensor triangulated category L is called
local if a⊗ b = 0 implies a = 0 or b = 0. Conceptually, this means that Spc(L) is a
local space, i.e. that Spc(L) has a unique closed point ∗ := 0 ⊂ L, which is prime
by assumption.

Example 5. For every prime P ∈ Spc(K), the following tensor triangulated category
is local in the above sense :

KP :=
(
K/P

)\
where K/P denotes the Verdier quotient and (−)\ the idempotent completion. We
call KP the local category at P. There is an obvious (localization) functor

q
P

: K�K/P ↪→ KP

composed of localization and idempotent completion. (The category KP can also
be understood as the strict filtered colimit of the K(U) over those open subsets
U ⊆ Spc(K) which contain P. See more in [4, § 2.2] if helpful.) We can identify

Spc(KP) with the subspace
{
Q ∈ Spc(K)

∣∣P ∈ {Q}} of Spc(K), hence the space
Spc(KP) remains noetherian.
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Definition 6. Assuming that L is local and that Spc(L) is noetherian, the open
complement of the unique closed point {∗} in Spc(L) is quasi-compact, i.e. {∗} is a
“Thomason (closed) subset”. Under the classification of thick ⊗-ideals of L, see [1],
this one-point subset corresponds to the minimal non-zero thick ⊗-ideal

Min(L) := L{∗} =
{
a ∈ L

∣∣ supp(a) ⊆ {∗}
}
.

These are the objects with minimal possible support (empty or a point).

Remark 7. Some comments are in order :

(1) This subcategory was called the subcategory of finite-length objects in [2] and
denoted FL(L). As far as I know, there is no reason for objects of Min(L)
to have finite-length (in the categorical sense that they admit a finite filtra-
tion with simple subquotients). The present notation, Min(L), is less biased
towards commutative algebra and therefore probably preferable. It is however
an interesting question to find some structure theorems about Min(L).

(2) As the previous comment suggests, if we take L = Kb(R – proj) the category
of perfect complexes for R noetherian and local, then L is local and Min(L) is
the subcategory of perfect complexes with finite-length homology.

(3) One can of course consider Min(L) even if ∗ is not Thomason but in that case
it would just be the zero subcategory 0 = L∅.

Definition 8. Let p ∈ Z. We define the group of generalized p-cycles to be

Zp(K) :=
⊕

P∈Spc(K)(p)

K0

(
Min(KP)

)
,

where K0 is the Grothendieck K-group (the quotient of the monoid of isomorphism
classes [a] of objects under ⊕, by the submonoid of those [a] + [Σb] + [c] for which
there exists a distinguished triangle a→ b→ c→ Σa).

Out of nostalgia for usual cycles, a generalized p-cycle can be written
∑

P λP ·P
or
∑

P λP · {P}, for λP ∈ K0

(
Min(KP)

)
. This is a purely notational choice. The

non-trivial point is that we allow coefficients λP to live in other abelian groups
than Z, namely the Grothendieck groups of the minimal categories at every P.

Example 9. Let X be a (topologically) noetherian scheme and K = Dperf(X) the
derived category of perfect complexes, whose spectrum Spc(K) ∼= X recovers the
underlying space of X. Let dim(−) be the (opposite of the) Krull (co)dimension.
Then we recover the usual p-dimensional (resp. (−p)-codimensional) cycles. Indeed,

we have by Thomason that KP
∼= Kb(OX,x – proj) if P ∈ Spc(K) corresponds to

x ∈ X. The reason why integral coefficients suffice over regular schemes is that the
group homomorphism defined by alternate sum of length of homology groups

K0

(
Min(Kb(OX,x – proj))

)
−→Z ,

is an isomorphism if X is regular (at x). However, in general, the left-hand group
could be tricky, as discussed for instance in Roberts-Srinivas [6].

Now to the relations. There might be several definitions of relations. The most
flexible and most obvious one is the following.

Definition 10. For a (specialization) closed subset Y ⊂ Spc(K), we set dim(Y ) =
sup

{
dim(P)

∣∣P ∈ Y } and consider the filtration · · · ⊂ K(p) ⊂ K(p+1) ⊂ · · · ⊂ K

by dimension of support

K(p) :=
{
a ∈ K

∣∣ dim(supp(a)) ≤ p
}
.
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By [2, Thm. 3.24], localization induces an equivalence

(11) (K(p)/K(p−1))
\ ∼−→

∐
P∈Spc(K)(p)

Min(KP)

and consequently Zp(K) ∼= K0

(
(K(p)/K(p−1))

\
)
. Note that this definition of Zp(K)

does not need Spc(K) being noetherian. It also allows the definition of the p-
boundaries Bp(K) as the image in Zp(K) of Ker

(
K0(K(p)) → K0(K(p+1))

)
. In

other words we have the diagram with exact rows

Ker(ι) // //

����

K0(K(p))
ι //

��

K0(K(p+1))

Bp(K) // // Zp(K) // // CHp(K)

in which we define CHp(K) := Zp(K)/Bp(K) to be the quotient of p-cycles by p-
boundaries. These groups could be called the (K-theoretic) Chow groups of p-cycles
in K, with respect to the chosen dimension function dim.

Remark 12. The above Ker(ι) is an ad hoc replacement for the maybe more natural
image of K1(K(p+1)/K(p)) by a connecting homomorphism. The reason for the
above definition is that triangulated categories do not behave well with higher K-
theory. However, with this definition, it is not too hard to check that CHp(K) =

CHp(X) when X is a regular scheme and K = Dperf(X). See more in Klein [5].

It is however tempting to give another definition of p-boundaries, closer to the
classical ideas of equivalence of p-cycles by means of divisors of rational functions
on (p+ 1)-dimensional varieties. We need a preparation.

Lemma 13. Let a ∈ K(p+1) be an object with support of dimension at most p+1 and

let γ : a
∼→ a be an automorphism in K(p+1)/K(p). Choose a fraction a

α−→b β←− a
in K(p+1) representing γ, so that cone(α) and cone(β) both belong to K(p). Then

the difference [cone(α)] − [cone(β)] in K0(K(p)) belongs to Ker
(
ι : K0(K(p)) →

K0(Kp+1)
)

and is independent of the choice of α and β.

Proof. This is an immediate verification : In K0(K(p+1)), we have [cone(α)] =
[b] − [a] = [cone(β)], hence the first statement. Independence on the choice of the
fraction up to amplification by a morphism s : b → b′ with cone in K(p) follows
by the octahedron axiom : [cone(sα)] = [cone(s)] + [cone(α)] and [cone(sβ)] =
[cone(s)] + [cone(β)], so [cone(sα)]− [cone(sβ)] = [cone(α)]− [cone(β)]. �

Definition 14. Let a ∈ K(p+1) and let γ : a
∼→ a be an automorphism in K(p+1)/K(p).

Choose a fraction a
α−→b β←− a in K(p+1) representing γ, and let

div(a
γ→ a) = [q(cone(α))]− [q(cone(β))] ∈ Bp(K)

where q : K(p) → (K(p)/K(p−1))
\ is the canonical functor. We might call this

element the divisor of γ : a
∼→ a. This generalized p-cycle is a p-boundary by

construction.

Remark 15. Of course, in view of the equivalence (11), we can also write

div(γ) =
∑

P∈Spc(K)(p)

[q
P

(cone(α))]− [q
P

(cone(β))]
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where q
P

: K−→KP is the localization and where γ = (a
α−→b β←− a) as before.

The above formula for the divisor might look more familiar to the reader.

Remark 16. A priori, there might be more p-boundaries than the ones coming from
the above divisors div(γ). This means that one might have a different Chow group
CH′p(K) defined as the quotient of Zp(K) by the subgroup generated by those div(γ).

This group CH′p(K) would surject the group CHp(K) of Definition 10. However,

in the case of K = Dperf(X) for a (nice) regular scheme X, it might well be that
CH′p coincides with CHp because all relations coming from K1 seem to be captured
by divisors. This point requires further investigation and we refer the interested
reader to the forthcoming [5].
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