TENSOR TRIANGULAR CHOW GROUPS

PAUL BALMER

ABSTRACT. We propose a definition of the Chow group of a rigid tensor tri-
angulated category. The basic idea is to allow “generalized” cycles, with non-
integral coefficients. The precise choice of relations is open to some fine-tuning.

Hypothesis 1. Let X be an essentially small tensor triangulated category. Let
us assume that its triangular spectrum in the sense of [1], Spc(X) = {P C
X ’ P is prime }, is a noetherian topological space, i.e. that every open of Spc(X)
is quasi-compact. Let us also assume that X is rigid, as explained in [4] (or [2],
where this property was called strongly closed). These hypotheses allow us to use
the techniques of filtration of X by (generalized) dimension of the support.

Definition 2. As in [2, Def.3.1], let us consider dim : Spc(X) —Z U {£o0} a
dimension function, meaning that P C Q = dim(P) < dim(Q), with equality in
the finite range only if P = Q (i.e. P C Q and dim(P) = dim(Q) € Z forces P = Q).
Examples are the Krull dimension of {P} in Spc(X), or the opposite of its Krull
codimension. Assuming dim(—) is clear from the context, we shall use the notation

Spe(K) ) == { P € Spe(K) | dim(P) =p }.

Remark 3. In my opinion, there is nothing conceptually remarkable about the free
abelian group on Spc(X) . Therefore I propose another definition of p-dimensional
cycles. This requires some preparation.

Definition 4. Recall from [3, § 4] that a rigid tensor triangulated category £ is called
local if a ® b = 0 implies a = 0 or b = 0. Conceptually, this means that Spc(£) is a
local space, i.e. that Spc(£) has a unique closed point * := 0 C £, which is prime
by assumption.

Ezample 5. For every prime P € Spc(X), the following tensor triangulated category
is local in the above sense:

K = (K/P)"
where K /P denotes the Verdier quotient and (—)* the idempotent completion. We
call Xy the local category at P. There is an obvious (localization) functor

qp K—->XK/P— Kp

composed of localization and idempotent completion. (The category Ko can also
be understood as the strict filtered colimit of the K(U) over those open subsets
U C Spc(X) which contain P. See more in [4, §2.2] if helpful.) We can identify
Spc(Xp) with the subspace { Q € Spe(K) | P € {Q} } of Spc(X), hence the space
Spe(X) remains noetherian.
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Definition 6. Assuming that £ is local and that Spc(£L) is noetherian, the open
complement of the unique closed point {*} in Spc(£L) is quasi-compact, i.e. {*} is a
“Thomason (closed) subset”. Under the classification of thick ®-ideals of £, see [1],
this one-point subset corresponds to the minimal non-zero thick ®-ideal

Min(£) := L,y = {a € £ ] supp(a) C {*} }.
These are the objects with minimal possible support (empty or a point).

Remark 7. Some comments are in order :

(1) This subcategory was called the subcategory of finite-length objects in [2] and
denoted FL(L). As far as I know, there is no reason for objects of Min(£L)
to have finite-length (in the categorical sense that they admit a finite filtra-
tion with simple subquotients). The present notation, Min(£), is less biased
towards commutative algebra and therefore probably preferable. It is however
an interesting question to find some structure theorems about Min(£).

(2) As the previous comment suggests, if we take £ = KP(R—proj) the category
of perfect complexes for R noetherian and local, then £ is local and Min(£) is
the subcategory of perfect complexes with finite-length homology.

(3) One can of course consider Min(£) even if * is not Thomason but in that case
it would just be the zero subcategory 0 = L.

Definition 8. Let p € Z. We define the group of generalized p-cycles to be

Zp(X) = P  Ko(Min(Xy)),
PeSpc(K) (p)

where K is the Grothendieck K-group (the quotient of the monoid of isomorphism
classes [a] of objects under @, by the submonoid of those [a] 4+ [2b] + [¢] for which
there exists a distinguished triangle a — b — ¢ — 3a).

Out of nostalgia for usual cycles, a generalized p-cycle can be written ), Ap - P
or Yp Ap - {P}, for \p € Ko(Min(Xyp)). This is a purely notational choice. The
non-trivial point is that we allow coefficients Ap to live in other abelian groups
than Z, namely the Grothendieck groups of the minimal categories at every P.

Ezample 9. Let X be a (topologically) noetherian scheme and X = DP*'(X) the
derived category of perfect complexes, whose spectrum Spc(X) = X recovers the
underlying space of X. Let dim(—) be the (opposite of the) Krull (co)dimension.
Then we recover the usual p-dimensional (resp. (—p)-codimensional) cycles. Indeed,
we have by Thomason that Kp = Kb(OX’mfproj) if P € Spc(X) corresponds to
x € X. The reason why integral coefficients suffice over regular schemes is that the
group homomorphism defined by alternate sum of length of homology groups

Ko (Min(K"(Ox , —proj))) — Z
is an isomorphism if X is regular (at x). However, in general, the left-hand group
could be tricky, as discussed for instance in Roberts-Srinivas [6].

Now to the relations. There might be several definitions of relations. The most
flexible and most obvious one is the following.

Definition 10. For a (specialization) closed subset Y C Spec(X), we set dim(Y) =
sup { dim(P) | P € Y } and consider the filtration -+ C K, C Kpi1y C -+- C K
by dimension of support

Kp) :={a € X| dim(supp(a)) <p}.
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By [2, Thm. 3.24], localization induces an equivalence

(11) K/ Kp-p)— [ Min(Xo)

PeSpe(XK) (p)
and consequently Z,(X) = Ko ((X,)/K(p—1))"). Note that this definition of Z,(X)
does not need Spc(X) being noetherian. It also allows the definition of the p-
boundaries By(X) as the image in Z,(XK) of Ker (Ko(K()) — Ko(Kp+1))). In
other words we have the diagram with exact rows

Ker(t) > KO(K(p)) — KO(K(IJ-H))

o

B, (X) Zp(X) CH,,(X)

in which we define CH,(X) := Z,(X)/B,(X) to be the quotient of p-cycles by p-
boundaries. These groups could be called the (K -theoretic) Chow groups of p-cycles
in K, with respect to the chosen dimension function dim.

Remark 12. The above Ker(¢) is an ad hoc replacement for the maybe more natural
image of K1(X41)/X(p)) by a connecting homomorphism. The reason for the
above definition is that triangulated categories do not behave well with higher K-
theory. However, with this definition, it is not too hard to check that CH,(X) =
CH,(X) when X is a regular scheme and K = DP"{(X). See more in Klein [5].

It is however tempting to give another definition of p-boundaries, closer to the

classical ideas of equivalence of p-cycles by means of divisors of rational functions
on (p + 1)-dimensional varieties. We need a preparation.

Lemma 13. Leta € K,41) be an object with support of dimension at most p+1 and

let v:a = a be an automorphism in Kp+1)/Kp). Choose a fraction a-%b 2 q
in K(p41) representing v, so that cone(a) and cone(B) both belong to K,y. Then
the difference [cone(a)] — [cone(B)] in Ko(K(y)) belongs to Ker (v : Ko(K)) —
Ko(Xp+1)) and is independent of the choice of a and .

Proof. This is an immediate verification: In Ko(X(,41)), we have [cone(a)] =
[b] — [a] = [cone(B)], hence the first statement. Independence on the choice of the
fraction up to amplification by a morphism s : b — b’ with cone in X, follows
by the octahedron axiom: [cone(sa)] = [cone(s)] + [cone(w)] and [cone(sf)] =
[cone(s)] + [cone(B)], so [cone(sa)] — [cone(sf)] = [cone(a)] — [cone(B)]. O

Definition 14. Let a € X, 1) andlet v : a 5 abe an automorphism in Kp+1)/Kp)-
Choose a fraction a——b L oain K (p+1) representing v, and let
div(a 2 a) = [g(cone(a))] — [q(cone(B))] € B,(X)

where ¢ : K, — (K /Kp—1))? is the canonical functor. We might call this

element the divisor of v : a =+ a. This generalized p-cycle is a p-boundary by
construction.

Remark 15. Of course, in view of the equivalence (11), we can also write

div(y) = Y lgp(cone(a))] — [g, (cone(B))]

PeSpe(K) ()



4 PAUL BALMER

where ¢, : K —> Ky is the localization and where v = (a-23b L a) as before.
The above formula for the divisor might look more familiar to the reader.

Remark 16. A priori, there might be more p-boundaries than the ones coming from
the above divisors div(7y). This means that one might have a different Chow group
CH,,(X) defined as the quotient of Z,(X) by the subgroup generated by those div(y).
This group CH;(IK) would surject the group CH,(X) of Definition 10. However,

in the case of X = DP*(X) for a (nice) regular scheme X, it might well be that
CH; coincides with CH,, because all relations coming from K; seem to be captured
by divisors. This point requires further investigation and we refer the interested
reader to the forthcoming [5].
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