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Abstract. Let G be a finite group and k be a field of characteristic p. We show how
to glue Rickard idempotent modules for a pair of open subsets of the cohomology variety
along an automorphism for their intersection. The result is an endotrivial module. An
interesting aspect of the construction is that we end up constructing finite dimensional
endotrivial modules using infinite dimensional Rickard idempotent modules. We prove that
this construction produces a subgroup of finite index in the group of endotrivial modules.
More generally, we also show how to glue any pair of kG-modules.
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Introduction

Suppose that G is a finite group and k is a field of characteristic p > 0. The endotrivial
kG-modules are the elements of the Picard group of invertible objects in the stable category
of kG-modules. They form an important subgroup of the group of all self equivalences of
the stable category. In addition, endotrivial modules play a significant role in the block
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theory and modular representation theory of G. There is now a complete classification of
endotrivial modules in the case that the group G is a p-group; see [11, 12]. For the most
part, the endotrivial modules over a p-group are all Heller shifts of the trivial module. In
the cases where there are unusual endotrivial modules, various constructions for the exotic
examples exist.

In this paper we investigate another construction of endotrivial modules, which is not lim-
ited to p-groups. The method uses infinite dimensional techniques, based on a construction
of Balmer and Favi [3], to produce finite dimensional endotrivial modules. We analyse the
new method by comparing it to one of the two constructions of Carlson [11]. We show that
the “cohomological pushout” method of [11] is a “gluing” in the sense of [3].

Geometrically, the “gluing” construction can be interpreted as taking the patching data
for an invertible sheaf over the variety associated to the cohomology ring H∗(G, k) and trans-
lating these data into patching data for infinite dimensional Rickard idempotent modules.
The results are finite dimensional endotrivial modules. The significance of the idempotent
modules is that each one we use is naturally isomorphic to the trivial module in a particular
localisation associated to the patching data of the stable category. Note that there are prob-
lems with trying to do the patching with more than two open sets, but fortunately using
two open sets already produces enough modules to generate a subgroup of finite index in
the group of endotrivial modules.

In Sections 1 and 2, we present background material, definitions and notation on stable
categories and on endotrivial modules. One notable result is that an invertible object in the
stable category of all (not just finitely generated) kG-modules must be the direct sum of
a finitely generated endotrivial module and a projective module. In Section 3, we give the
fundamentals of localisation and verify that the inclusion functor of a localised category of
finitely generated modules is fully faithful into the corresponding localised category of all
kG-modules. The gluing process is introduced and defined in Section 4. There it is shown
that the “cohomological pushouts” of [11] are in fact gluings. In the two Sections that
follow, we recall some facts about Rickard’s idempotent modules and show how they can be
used to glue not necessarily finitely generated modules, via an appropriate weak pullback.
In Section 7, we unfold this construction when the two glued modules are both the trivial
module k, and we verify that the modules so constructed are endotrivial and coincide with
the collection of modules which can be constructed by the pushout method of [11].

Sections 8 and 9 include some explicit calculations. The main question is what modules
actually are constructed from a gluing or weak pullback along a chosen automorphism of an
idempotent module. We answer the question first for groups of rank 2, and then illustrate
the process with some specific automorphisms in the case of the Klein four group and the
dihedral group of order eight. In particular, we emphasize that the explicit modules we
construct in these examples are not new, although our construction sheds new light.

In Section 10, we prove directly that the endotrivial modules, constructed from idempotent
modules using the gluing method, give rise to a subgroup of finite index in the group of
endotrivial modules. The final section is devoted to a variation on the construction of
Section 7, using endomorphisms instead of automorphisms. In an earlier version of the
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paper this method was used for the proof of the main theorem of Section 10, and may still
be of some interest even though it is no longer essential for the main results of the paper.

1. Stable categories and support varieties

Throughout the paper we let G denote a finite group and k a field of characteristic p > 0.
If M is a kG-module, let Ω(M) denote the kernel of a projective cover P � M of M.
Likewise, let Ω−1(M) be the cokernel of an injective hull M � Q. Recall that a kG-module
is projective if and only if it is injective. So for any n ∈ Z, we write Ωn(M) for the appropriate
iteration of Ω or Ω−1 applied to M .

Recall that the stable module category StMod (kG) is the additive quotient of the category
Mod (kG) of all (left) kG-modules by the subcategory of projective modules. Explicitly, the
category StMod (kG) has as objects the kG-modules, not necessarily finitely generated, and
as morphisms the groups:

HomkG(M,N) :=
HomkG(M,N)

PHomkG(M,N)

where PHomkG(M,N) is the subgroup of those kG-homomorphisms which factor through
a projective module (which we can always choose to be the injective envelope of M or
projective cover of N). The category StMod (kG) is triangulated with suspension functor
Σ = Ω−1, the inverse of the Heller functor Ω. The category StMod (kG) carries a tensor
structure given by M ⊗N = M ⊗k N with G acting diagonally.

We assume the reader has some minimal knowledge of triangulated categories in general,
and at least of StMod (kG), as can be acquired in [5, 9, 23].

We denote by stmod (kG) the full subcategory of StMod (kG) on those M which are iso-
morphic in StMod (kG) to a finitely generated module. In fact, stmod (kG) is precisely
the subcategory of compact objects of StMod (kG) (an object X is said to be compact if
homomorphisms out of it distribute over direct sums, in the sense that the natural map⊕

α Hom(X, Yα)→ Hom(X,
⊕

α Yα) is an isomorphism). This category stmod (kG) is equiv-
alent to its more usual description as the additive quotient of the category mod(kG) of
finitely generated kG-modules by the subcategory proj(kG) of projective objects.

The Krull-Schmidt Theorem holds for kG-modules. So, working in StMod (kG) simply
consists in forgetting projective summands. The statement “M ∼= N in StMod (kG)” means
M ⊕ (proj) ∼= N ⊕ (proj) in the usual notation. We systematically drop the “⊕ (proj)”
in the sequel since this summand vanishes in our triangulated categories. For instance,
for M ∈ StMod (kG), the statement “M is finitely generated” should be understood as
M ∈ stmod (kG), i.e., M ∼= M0 ⊕ (proj) with M0 finitely generated.

The projective support variety of G over the field k is the projective variety (or rather the
scheme)

VG = ProjH∗(G, k).

In general, if R is a graded commutative k-algebra, we define ProjR to be the scheme whose
underlying space is the set of homogeneous prime ideals of R not containing the maximal
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ideal m = R+ generated by elements of positive degree, with the Zariski topology. So if a is
a homogeneous ideal in R then V(a) is the closed set {p ∈ ProjR | p ⊇ a}.

If p ∈ ProjR then we write Rp for the homogeneous localisation whose elements of degree
n are the quotients x/y with y 6∈ p and deg x − deg y = n. The degree zero part of this
localisation gives the stalk OX,p of the structure sheaf OX of X = ProjR (see Hartshorne
[16] §II.2 for further details).

Every module M has a support variety VG(M) ⊆ VG. When M is finitely generated,
VG(M) is the closed set VG(M) = V(a) defined by the ideal a = AnnH∗(G,k)(Ext∗kG(M,M)),
where H∗(G, k) = Ext∗kG(k, k) acts on Ext∗kG(M,M) in the natural way. (See for example
[4], Chapter 5.) When M is not finitely generated, see [6].

The assignment M 7→ VG(M) satisfies a few easy rules (see [9]). In the language of [2], the
support variety VG ∼= Spc(stmod (kG)) is the spectrum of the tensor triangulated category
stmod (kG). This allows us to use the gluing technique of [3], which we briefly recall in
Section 4.

We shall use Quillen’s Dimension Theorem [19, 20], which says that

VG =
⋃
E

res∗G,E(VE)

where the union is over a set of representatives of the maximal elementary abelian p-
subgroups of G. In particular, any image res∗G,E(VE), for E a maximal elementary abelian
p-subgroup, is a component of the variety ProjH∗(G, k). Moreover, we have that if ζ ∈
H∗(G, k) is an element whose restriction to every elementary abelian p-subgroup is zero,
then ζ is nilpotent.

Example 1.1. We warn the reader that the generators of H∗(G, k) are usually not all in
the same degree, so that the usual intuitions from projective geometry might fail. Here is
an example of this phenomenon.

Let p ≥ 5 be a prime, let G be the semidirect product (Z/p)3 o Σ3, with the permutation
action, and let k be a field of characteristic p. Then

H∗(G, k) = k[x2, x4, x6]⊗ Λ(y1, y3, y5)

where the subscript indicates the degree of the generator and Λ(· · · ) denotes an exterior
algebra. So H∗(G, k) modulo its radical is a polynomial ring k[x2, x4, x6], and ProjH∗(G, k)
is equal to Proj k[x2, x4, x6] as a variety (though not as a scheme because of the nilpotent
part).

We claim that the variety Proj k[x2, x4, x6] is singular. To see this, observe that the coordi-
nate ring for the affine patch x4 6= 0 is generated by u = x2

2/x4, v = x2
6/x

3
4 and w = x2x6/x

2
4,

which satisfy the relation uv = w2. So there is a singularity at the point u = v = w = 0 of
this patch, which is the projective point (0 : 1 : 0).

Example 1.2. In the case of an elementary abelian p-group G = (Z/p)r, ProjH∗(G, k) is
projective space Pr−1(k). In this case, Dade’s Theorem [14] states that every endotrivial
module is isomorphic to Ωnk for some n ∈ Z. This can be compared with the invertible
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sheaves on projective space: every invertible sheaf on Pr−1(k) is isomorphic to O(n) for
some n ∈ Z, see for instance Hartshorne [16, Corollary II.6.17].

2. Endotrivial modules

Endotrivial modules and endopermutation modules were first named in [14] by Dade who
showed that the sources (in the context of the theory of vertices and sources) of irreducible
module for p-nilpotent groups are endopermutation. In addition, the classes of endotrivial
modules modulo projective modules make up the Picard group of invertible modules in
stmod (kG) as well as playing an important role in block theory. In this section we give
some discussion of endotrivial modules and end with a proof that any invertible object in
StMod (kG) is actually an endotrivial module in stmod (kG).

As originally defined, a finitely generated module is endotrivial if its k-endomorphism ring
is isomorphic in stmod (kG) to the trivial module. That is, M is endotrivial if

Homk(M,M) ∼= k ⊕ P

for some projective module P . Since for any finitely generated kG-modules M and N ,
Homk(M,N) ∼= M∗⊗N , it is equivalent to say that M is endotrivial if M∗⊗M is isomorphic
to the trivial module in stmod (kG). A complete classification of the endotrivial modules
for a p-group was finally completed in [11, 12]. The answer briefly is that the Picard group
of endotrivial modules has no torsion unless G is cyclic or p = 2 and G is a quaternion
or semi-dihedral group. Moreover, the torsion free part of the group is generated by Ω(k)
unless G has at least two conjugacy classes of maximal elementary abelian subgroups and
at least one of the classes has rank 2. This last fact which was first proved by Alperin [1]
for p-groups, holds for any finite group.

Of relevance for this paper is a construction in [11]. We should emphasize that there are
actually two methods for constructing endotrivial module given in that paper. The first
method, which we might call the “sectional” method creates endotrivial module as sections
U/V where U and V are very carefully chosen submodules

{0} ⊆ V ⊆ U ⊆ Ωn(k).

The choice of U and V is dictated by a somewhat complicated formula determined by the
structure of the cohomology ring H∗(G, k). Every endotrivial module for a p-group can be
constructed using the sectional method.

Of interest in this paper is the second method, which we call the “cohomological-pushout”
method. It requires finding an element in H∗(G, k) which has nontrivial restriction to the
center of a Sylow p-subgroup of G, and then taking a pushout along a homomorphism whose
existence is guaranteed by the support variety of the corresponding Carlson module. The
method is described in Section 4 (see Diagram (4.1)) of this paper, where we prove that
the construction is a gluing. It is important to note that not every endotrivial module can
be obtained by this method. Specifically, we do not get any of the torsion modules for the
quaternion or semi-dihedral groups and there are a few elements of infinite order that we
don’t get (see Example 8.2 of loc. cit.). On the other hand, the method is guaranteed to
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produce generators for a subgroup of finite index of the group of endotrivial modules. And
most importantly, it is applicable to all finite groups, not just p-groups.

We end the section with the promised result on the finite generation of endotrivial modules.

Theorem 2.1. Suppose that a module M ∈ T = StMod (kG) is invertible in the sense that
there exists a module N with M ⊗ N ∼= k in T. Then M and N belong to stmod (kG) and
N ∼= M∗ in T.

Proof. The assumptionM⊗N ∼= k implies thatM⊗− : T → T is an equivalence of categories,
with inverse N ⊗−. So, for any object Y in T, we have an isomorphism, natural in Y :

HomT(k,N ⊗ Y ) ∼= HomT(M,M ⊗N ⊗ Y ) ∼= HomT(M,Y )

using successively the fact that M ⊗ − is an equivalence and the assumption M ⊗ N ∼= k.
Naturality implies in particular that if Y ↪→ M is a submodule, the following diagram
commutes (ignore 1M , f , g and h which appear later in the proof):

g ∈ HomT(k,N ⊗ Y )
∼= //

��

HomT(M,Y ) 3 h

��
f ∈ HomT(k,N ⊗M)

∼= // HomT(M,M) 3 1M .

(2.1)

Now take the identity 1M ∈ HomT(M,M). There is a morphism f : k → N ⊗M which
maps to 1M . Since k is finitely generated, we can find a finitely generated submodule Y ⊆M

such that f factors as k
g−→N ⊗ Y −→N ⊗M . Pushing this element g ∈ HomT(k,N ⊗ Y )

into HomT(M,Y ), we find a morphism h : M → Y which maps to 1M , i.e., h is a section of
the inclusion Y ↪→M in T. This means that M is a direct summand of Y ∈ stmod (kG) and
so M ∈ stmod (kG).

The isomorphism N ∼= M∗ is well known: the category stmod (kG) is closed symmetric
monoidal and so any invertible object has its dual as inverse. See if necessary [17, Proposition
A.2.8]. �

Remark 2.2. Alternatively to the above direct proof, one can use [17, Proposition A.2.8] at
the cost of checking that StMod (kG) satisfies the hypotheses of loc. cit. and that stmod (kG)
consists exactly of the compact objects of StMod (kG). These facts are of independent
interest.

3. U-isomorphisms and localisation

In this section we establish a few basic facts and notations concerned with localisations. In
particular, we show that the functor on the localised subcategories, induced by the inclusion
stmod � StMod is fully faithful (see 3.8).
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Definition 3.1. Let W ⊆ VG be a closed subset. Consider the following subcategories
of StMod (kG):

CW ⊆ C⊕W

∩ ∩

stmod (kG) ⊆ StMod (kG),

where CW is the full subcategory of stmod (kG) consisting of those objects whose support is
contained in W . Note that CW is a ⊗-ideal thick subcategory of stmod (kG). The category
C⊕W is the subcategory of StMod (kG) generated by CW in any of the following equivalent
senses:

(1) C⊕W is the smallest triangulated subcategory of StMod (kG) containing CW and closed
under arbitrary coproducts (hence the notation, although CqW would be more precise).

(2) C⊕W is the subcategory of StMod (kG) of those objects which are filtered colimits in
Mod (kG) of objects of CW . (In the notation of [21, § 5, Theorem 5.17], C⊕W = C

→
W .)

(3) C⊕W is the subcategory of StMod (kG) consisting of those modules M which have the
property that any morphism L→M with L finitely generated, factors through some
object of CW . (This is equivalent to the above by [5, Theorem 5.3].)

It follows from [21, Prop. 5.9] that C⊕W is a ⊗-ideal in StMod (kG).

Definition 3.2. Given a morphism s in StMod (kG) and an open subset U ⊆ VG, we shall
say that s is a U-isomorphism if the cone of s belongs to C⊕W where W = VG r U is the
closed complement of U . For example, the morphism εW : k → F (W ) of Theorem 5.1 below
is a (prototypical) U -isomorphism. Also note that since C⊕W is a ⊗-ideal, we have that
for every U -isomorphism s : M → N and for every object L ∈ StMod (kG), the morphism
L⊗ s : L⊗M → L⊗N is again a U -isomorphism, for its cone is L⊗ cone(s) ∈ C⊕W .

The following is an easy application of the octahedral axiom (see [3, Lemma 1.13]):

Proposition 3.3. Consider, in a triangulated category, a distinguished triangle as follows:

X1

(
f
g

)
−−−→ X2 ⊕X3

(h j )−−−→ X4
`−→ ΣX1.

Then cone(f) ∼= cone(j) and cone(g) ∼= cone(h). In particular, in the case of StMod (kG)
and of U ⊆ VG open, the morphism f is a U-isomorphism if and only if j is.

Definition 3.4. It is useful to say that a square

X1

f //

−g ��

X2

h��
X3 j

// X4

is a weak pullback if there exists a distinguished triangle as in the above statement, for some
morphism ` : X4 → ΣX1, which will always remain of little relevance in the sequel. It is
easy to check that X1 has the property of the pullback of X2 and X3 above X4, except
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for the uniqueness of the corner morphism (hence the “weak”). Similarly, this square is
automatically a weak push-out.

We want to invert the U -isomorphisms, both in stmod (kG) and in StMod (kG). Roughly
speaking, one can understand the resulting categories as the parts of stmod (kG) and of
StMod (kG) which “lie over U”, or equivalently, which survive after “killing” all objects
which are supported on the closed complement of U . For the convenience of the reader, we
recall some standard facts about localisations of triangulated categories.

Definition 3.5. We say that

J // j // K
q // // L

is an exact sequence of triangulated categories if J ⊆ K is a thick subcategory of K (i.e., for
X, Y ∈ K, X ⊕ Y ∈ J implies X ∈ J) and if

L = K/J

is the quotient of K by J. The latter means that the functor q is the universal functor out
of K which sends J to zero: q ◦ j = 0. Equivalently, L can be constructed as a Verdier
localisation, see [22], as follows. Consider S the class of those morphisms s : X → Y in
K whose cone belongs to J. Then L = S−1K is the localisation of K with respect to the
morphisms of S, i.e., the target of the universal functor out of K which maps morphisms of
S to isomorphisms.

Explicitly, we have a calculus of fractions. By this we mean that L = S−1K can be
constructed as having the same objects as K and morphisms between two objects X and

Y being equivalence classes of left fractions X
s←−Z f−→Y where s ∈ S. Two fractions are

declared equivalent if they have a common amplification X
s s′←−Z ′ f s

′
−→Y for s′ : Z ′ → Z in S.

Equivalently, we can work with classes of right fractions X
g−→W

t←−Y with t ∈ S. (The
passage from left to right fractions is made by means of weak pushouts and weak pullbacks;
see Proposition 3.3.)

The functor q : K→ S−1K is the identity on objects and sends a morphism f : X → Y to

the class of the fraction X
1←−X f−→Y . A morphism f : X → Y becomes zero in S−1K if

and only if there exists an s : Z → X in S such that f s = 0 or equivalently if there exists
t ∈ S such that t f = 0. A morphism f : X → Y becomes an isomorphism in S−1K if and
only if its cone belongs to J. The subcategory J is exactly the kernel of q.

Notation 3.6. Let us give short names to the various subcategories and Verdier localisations
of the stable category which will appear below. We abbreviate:

T := StMod (kG) and C := stmod (kG)

and for any closed W ⊆ VG with open complement U = VG rW :

TW := C⊕W (see Definition 3.1)

C(U) := C/CW = stmod (kG)/CW

T(U) := T/TW = StMod (kG)/C⊕W .
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In other words, C(U) and T(U) are the Verdier localisations with respect to U -isomorphisms
of C and T respectively. We have the following commutative diagram of functors:

CW // //
� _

��

C // //
� _

��

C(U)
� _

��
TW // // T // // T(U).

The rows are exact sequences of triangulated categories (Definition 3.5) and the left-hand
first two vertical functors are the (fully faithful) inclusions of subcategories. The right-hand
functor is the induced functor, which is fully faithful, as we now check.

Lemma 3.7. Consider a full inclusion of triangulated categories K ⊆ K̄ and classes of
morphisms S ⊆ K and S̄ ⊆ K̄ such that S ⊆ S̄. The induced functor S−1K→ S̄−1K̄ is fully
faithful if the following condition holds: for any morphism s : Z̄ → X in S̄ with X ∈ K,
there exists a morphism t : Z → Z̄ with Z ∈ K and st ∈ S.

Proof. This is an easy exercise on calculus of fractions. The condition implies that any

fraction X
s←− Z̄ f−→Y with X, Y ∈ K but with Z̄ ∈ K̄ can be amplified into a fraction

X
st←−Z ft−→Y with Z ∈ K. This proves S−1K → S̄−1K̄ full. The condition also implies

that if f ◦ s = 0 for some morphism f : X → Y in K and for some morphism s ∈ S̄, one has
f ◦ (st) = 0 with this time st ∈ S. This proves S−1K→ S̄−1K̄ faithful. �

Proposition 3.8. Let W ⊆ VG be a closed subset with open complement U . The canonical
functor C(U)−→T(U) is fully faithful.

Proof. Let us check the condition of Lemma 3.7 for K = C, K̄ = T and S and S̄ the respective
classes of U -isomorphisms. Let s : Z̄ → X be a U -isomorphism, i.e., a morphism whose cone
belongs to TW , and assume that X ∈ C, i.e., X is finitely generated. Consider a distinguished
triangle:

Z̄
s−→ X

s1−−→ Ȳ
s2−−→ ΣZ̄.

The object Ȳ := cone(s) belongs to TW by hypothesis. By Property (3) of TW = C⊕W in Def-

inition 3.1, the morphism s1 factors via some object Y ∈ CW , say s1 = u v : X
v−→Y

u−→ Ȳ .
Let us write this in the middle square of the following diagram:

Z
v0 //

∃ t
���
�
� X

v // Y
v2 //

u

��

ΣZ

Σt
���
�
�

Z̄
s // X

s1 // Ȳ
s2 // ΣZ̄,

where we also complete v into a distinguished triangle (first row). Let t : Z → Z̄ be a
fill-in map as above. Of course, Z is finitely generated since Y and X are, and we have
cone(st) = cone(v0) = Y ∈ CW , i.e., the map st is a U -isomorphism as desired. �
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4. Gluing finitely generated modules

In this section we define the gluing process and show that the cohomological-pushout
method of [11, § 4.5] is a gluing. For the entire section, assume that we have an open
covering

VG = U1 ∪ U2

of the projective support variety. We contemplate the following commutative diagram of
localisations of triangulated categories (see Notations 3.6):

M ∈ C = stmod (kG) //

��

C(U1) 3M1

��
M2 ∈ C(U2) // C(U1 ∩ U2) M1

∼= M2

The objects M , M1, M2 are the ones of the following definition.

Definition 4.1. Consider two objects M1,M2 ∈ stmod (kG) for i = 1, 2 (though we think

Mi ∈ C(Ui) as above). Suppose that we have an isomorphism σ : M1

∼=→ M2 in C(U1 ∩ U2).
A gluing of M1 and M2 along the isomorphism σ is an object of stmod (kG) which is locally
isomorphic to M1 and M2 in a compatible way with σ. That is, a gluing along σ is a triple
(M,σ1, σ2) where M is an object of C and

σ1 : M
∼=→M1 and σ2 : M

∼=→M2

are two isomorphisms in C(U1) and C(U2) respectively, such that the following diagram

M1

σ

��

M

σ1
99ssssss

σ2 %%KKKKKK

M2

commutes in C(U1 ∩ U2). Such a gluing always exists in C and is unique up to isomorphism
by [3, Corollary 5.10].

Applying this to M1 = k and M2 = k, we obtain [3, Theorem 6.7], which is as follows.

Theorem 4.2 (Balmer-Favi). Consider Pic(C) = Tk(G) the group of finitely generated en-
dotrivial kG-modules, i.e., the group of invertible objects in C = stmod (kG) with respect to ⊗.
Denote by Gm(U1 ∩ U2) := AutC(U1∩U2)(k) the group of automorphisms of k in C(U1 ∩ U2).
Gluing two copies of k along an automorphism α ∈ Gm(U1 ∩ U2) defines a group homomor-
phism δ : Gm(U1 ∩ U2)→ Pic(C).

Remark 4.3. Observe that we can glue all sorts of objects M1 and M2, not necessarily copies
of k, and not only endotrivial modules. Even for the construction of endotrivial modules, it
can be interesting to glue Ω`k and Ωmk along an isomorphism over U1 ∩ U2. We illustrate
this situation below.
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We end the Section, with a proof that the construction [11, § 4.5] is indeed a gluing
construction. For the setting, suppose that G has at least two conjugacy classes of maximal
elementary abelian p-subgroups and that at least one of these is a class of maximal elementary
abelian subgroups of rank 2 (order p2). Then the center Z of a Sylow p-subgroup of G must
be cyclic. Choose a homogeneous element ζ ∈ Hm(G, k) with the property that ζ restricts
to a non-nilpotent element of H∗(Z, k). Consider a morphism ζ : Ωmk → k in stmod (kG),
representing the cohomology element ζ. Recall that the Carlson module Lζ is defined by

completing to a triangle Lζ → Ωmk
ζ−→ k in stmod (kG), and that VG(Lζ) is the closed set

V(ζ) determined by the ideal (ζ). See [9] for further details.
With the assumptions on G and ζ (and only with these assumptions), we know that
V(ζ) = W1 ∪ W2 decomposes into two disjoint non-empty closed subsets W1 ∩ W2 = ∅,
which is the only property we need for this construction. By [8] there is an analogous
decomposition of the module Lζ ∼= L1 ⊕ L2 with the support of Li being Wi for i = 1, 2. In
other words, we have an exact sequence:

0 −→ L1 ⊕ L2
( υ1 υ2 )−−−−→ Ωmk

ζ−−→ k −→ 0.

Theorem 4.5 of [11] says that the module N obtained by the following push-out (marked p):

0

��

0

��
L2

( 0
1 )

��

L2

υ2

��
0 // Lζ

( υ1 υ2 )
//

( 1 0 )

��

p

Ωmk
ζ

//

ρ

��

k // 0

0 // L1 ρ υ1

//

��

N σ1

//

��

k // 0

0 0

(4.1)

is endotrivial. In triangular terms, N ∼= cone(υ2). Of particular interest are the morphisms
σ1 and ρ which appear in the above diagram and which satisfy σ1 ρ = ζ.

Theorem 4.4. Consider the open complements Ui = VGrWi of the above closed subsets Wi,
for i = 1, 2. We have by assumption an open covering VG = U1 ∪ U2. With the above
notations, the module N is the gluing (Definition 4.1) of k and Ωmk along the isomorphism

ζ−1 : k
∼=→ Ωmk in C(U1 ∩ U2).

Proof. The exact sequences of diagram (4.1) yield corresponding triangles in stmod (kG).
Since VG(Lζ) = W1 ∪W2, the morphism ζ : Ωm(k) → k is a U1 ∩ U2-isomorphism (Defini-
tion 3.2), i.e., ζ is an isomorphism in C(U1 ∩ U2). So, the statement makes sense. Since
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VG(Li) = Wi for i = 1, 2, we see that σ1 : N → k is a U1-isomorphism and that ρ : Ωmk → N

is a U2-isomorphism. Let us define σ2 := ρ−1 : N
∼=→ Ωm(k) in C(U2). These are the desired

isomorphisms σ1 : N
∼=→ k in C(U1) and σ2 : N

∼=→ Ωmk in C(U2). By (4.1), we have σ1 ρ = ζ.
In C(U1 ∩ U2), these three morphisms are isomorphisms by the above comments and hence
the relation σ1 ρ = ζ yields ζ−1σ1 = ρ−1 = σ2:

k

ζ−1

��

N

σ1
77ooooooooo

σ2
&&NNNNNNN

Ωm(k).

This shows that N is the gluing of k and Ωm(k) along ζ−1, as in Definition 4.1. �

5. Rickard’s idempotent modules

In this section, we recall some basic facts about idempotent modules. The definition, which
is really an existence theorem is a part of the following.

Theorem 5.1 (Rickard [21]). Suppose that W is a closed subset of VG.

(1) There exist two kG-modules E(W ) and F (W ) and a distinguished triangle

E(W )
ηW−−→ k

εW−−→ F (W )
θW−−→ ΣE(W )

in StMod (kG) such that E(W ) ∈ C⊕W and such that F (W ) is C⊕W -local, i.e.,

Hom(X,F (W )) = 0

for any X ∈ C⊕W .
(2) For any object M ∈ StMod (kG), the morphism M ⊗ ηW : M ⊗E(W )→M ⊗ k ∼= M

is the universal morphism from an object of C⊕W to M , and dually M ⊗ εW is the
universal morphism from M to a C⊕W -local object. (In particular, M ⊗ F (W ) is
C⊕W -local.)

(3) If W1,W2 ⊆ VG are closed subsets, then there are unique isomorphisms

E(W1 ∩W2) ∼= E(W1)⊗ E(W2) and F (W1 ∪W2) ∼= F (W1)⊗ F (W2)

such that ηW1∩W2 = ηW1 ⊗ ηW2 and such that εW1∪W2 = εW1 ⊗ εW2. In particular
E(W )⊗E(W ) ∼= E(W ) and F (W )⊗F (W ) ∼= F (W ) (hence the name “idempotent”
modules). Moreover, there exists two Mayer–Vietoris triangles

E(W1 ∩W2) −→ E(W1)⊕ E(W2) −→ E(W1 ∪W2) −→ ΣE(W1 ∩W2) (5.1)

F (W1 ∩W2) −→ F (W1)⊕ F (W2) −→ F (W1 ∪W2) −→ ΣF (W1 ∩W2) (5.2)

The proof is Rickard’s beautiful insight. The picky reader might observe that the key
Lemma 4.2 in [21], is not correctly proved, and might even be incorrect as stated. With the
same notation, the conclusion of that Lemma should be corrected to read: Then there is a
distinguished triangle

X ′ → hocolimYi → hocolimZi → Σ(X ′)
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for some object X ′ which fits into a distinguished triangle
⊕

iXi →
⊕

iXi → X ′ →
⊕

i ΣXi.
The problem is that X ′ might not be hocolimXi. The proof of this statement is exactly
the one given by Rickard in loc. cit.(Note that Verdier’s result does not control the third
morphism.) This Lemma is the starting point of the construction of idempotent modules and
the reader can check that the above formulation suffices to prove the other statements of [21].
In particular, in the proof of Proposition 5.4, loc. cit., EC(X) might not be hocolim(Ai) but
still belongs to C⊕. The proof of Proposition 5.5, loc. cit., remains the same.

Rickard’s idempotent modules are extremely useful in that they allow the description of
morphisms in the localisation T(U) in terms of usual morphisms in the stable category T.

Proposition 5.2. Let W ⊆ VG be a closed subset with open complement U . Let M,N ∈
T = StMod (kG). We have an isomorphism

HomT(M,N ⊗ F (W ))
∼=→ HomT(U)(M,N ⊗ F (W ))

given by the localisation functor T → T(U).

Proof. This is a general fact coming from the situation guaranteed by Rickard’s Theorem 5.1.
In fact, the functor −⊗ F (W ) maps T to the subcategory of TW -local objects and is a left
adjoint to the inclusion of TW -local objects in T. Then, the functor from TW -local objects
to T/TW is an equivalence, or equivalently, one can realise the localisation functor as the
functor −⊗ F (W ). Let us translate this in down-to-earth terms.

The key property of TW -local objects like F (W ) or N ⊗F (W ) is the following: Let F ∈ T

be a TW -local object and let t : F → X be a U -isomorphism from our F to some object X.
Then t is a split monomorphism. This is immediate from a distinguished triangle over t:

F
t // X

t1 //

∃r
dd q_M cone(t)

t2=0 // ΣF.

By definition of F being TW -local, the morphism t2 must be zero because cone(t) ∈ TW . So,
there exists r : X → F such that rt = 1.

With this in hand, the isomorphism of the statement is easy to prove. Let F = N⊗F (W ).

Any right fraction M
g−→X

t←−F can be amplified by a retraction r : X → F as above,

giving the equivalent fraction M
rg−→F

1←−F , that is a morphism coming from T. Injectivity
is proved similarly: if tf = 0 then f = r t f = 0. �

Corollary 5.3. Let W ⊆ VG be closed with open complement U and let M,N ∈ T. Then

HomT

(
M ⊗ F (W ), N ⊗ F (W )

) ∼= HomT(U)(M,N) .

This isomorphism maps α : M⊗F (W )→ N⊗F (W ) to (N⊗εW )−1 ◦α◦(M⊗εW ) : M → N
in T(U). In particular, this isomorphism respects the composition operation and therefore,
if we denote by Isom ⊆ Hom the subsets of isomorphisms, we have an induced bijection

IsomT

(
M ⊗ F (W ), N ⊗ F (W )

) ∼= IsomT(U)(M,N) .
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Proof. From Proposition 5.2, we know that localisation yields an isomorphism between
HomT(M ⊗ F (W ), N ⊗ F (W )) and HomT(U)(M ⊗ F (W ), N ⊗ F (W )). In the latter group,
we can replace M ⊗ F (W ) by M and N ⊗ F (W ) by N , since they are isomorphic in T(U)
via M⊗εW and N⊗εW respectively. The isomorphism is exactly as announced in the state-
ment. Hence it preserves composition. Therefore invertible elements, i.e., isomorphisms, are
also preserved. �

Corollary 5.4. Let W ⊆ VG be a closed subset with open complement U . Then

EndT

(
F (W )

) ∼= EndC(U)(k) and AutT

(
F (W )

) ∼= AutC(U)(k)

and these bijections send α : F (W )→ F (W ) onto ε−1
W α εW : k → k in C(U).

Proof. Apply Corollary 5.3 to M1 = M2 = k ∈ C and replace HomT(U) by HomC(U) using the
fact that C(U) ↪→ T(U) is fully faithful by Proposition 3.8. �

Remark 5.5. It is known (see for example Benson and Gnacadja [7, §5.2]) that the endo-
morphism rings of Rickard idempotent modules are graded commutative.

Here is a useful example of the endomorphism ring of an idempotent module corresponding
to a principal closed subset of VG.

Proposition 5.6. Let ζ ∈ Hd(G, k) be a homogeneous element and consider the closed
subset W = VG(ζ) ⊆ VG with open complement U . Then EndT(F (W )) is isomorphic to
(H∗(G, k)[ζ−1])0, the degree zero part of the cohomology ring localised at ζ. Via Corollary 5.4,

a fraction η
ζi

for η ∈ Hdi(G, k) corresponds to the fraction k
ζi←− Ωdik

η−→ k in C(U).

Proof. See Rickard [21, § 6] or Friedlander and Pevtsova [15, Prop. 7.4]. �

Remark 5.7. Let U ′ ⊆ U ⊆ VG be open subsets with closed complements W ′ ⊃ W
respectively. Note that C⊕W ⊆ C⊕W ′ and that therefore U -isomorphisms are U ′-isomorphisms.
Consider the induced localisation functor T(U)→ T(U ′). For any pair of objects M,N ∈ T,
the induced homomorphism HomT(U)(M,N)→ HomT(U ′)(M,N) gives a homomorphism

HomT(M ⊗ F (W ), N ⊗ F (W ))−→HomT(M ⊗ F (W ′), N ⊗ F (W ′))

by Corollary 5.3. This homomorphism can simply be described as follows(
M ⊗ F (W )

α−→ N ⊗ F (W )
)
7−→

(
M ⊗ F (W ′)

α⊗F (W ′)−−−−−→ N ⊗ F (W ′)
)

using the identification F (W )⊗ F (W ′) ∼= F (W ′) of Theorem 5.1. This verification is left to
the reader. See [21].

6. Gluing arbitrary modules

We now explain how to glue any pair of not necessarily finitely generated kG-modules.
At this stage, always assuming VG = U1 ∪ U2, we abandon stmod (kG) (in the right-hand
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diagram below) and consider instead the left-hand commutative diagram of localisations of
larger triangulated categories (see Notation 3.6):

T = StMod (kG) //

��

T(U1)

��
T(U2) // T(U1 ∩ U2)

C = stmod (kG) //

��

C(U1)

��
C(U2) // C(U1 ∩ U2) .

The definition of a gluing M ∈ T of two objects M1 ∈ T(U1) and M2 ∈ T(U2) along an

isomorphism σ : M1

∼=→ M2 in T(U1 ∩ U2) is exactly the same as in Definition 4.1, except of
course that we allow M to live in the big category T. Before proving existence and uniqueness
of the gluing, let us unfold what happens to Rickard’s idempotent modules in this situation.

Let us denote by W1 = VG r U1 and W2 = VG r U2 the closed complements of the two
open subsets covering VG. By assumption, we have that W1 ∩W2 = ∅. Hence, CW1∩W2 =
0 = C⊕W1∩W2

. So we get from Theorem 5.1 that E(W1 ∩W2) = 0 and that F (W1 ∩W2) = k,
as well as a Mayer–Vietoris distinguished triangle

k

(
ε1
−ε2

)
−−−−→ F (W1)⊕ F (W2)

( ε12 ε21 )−−−−−−→ F (W1 ∪W2)
γ−−→ Σk, (6.1)

where the first two morphisms εi are the εWi
of Theorem 5.1 and where ε12 and ε21 are

characterised by the commutativity of the following diagram:

k
ε1 //

ε2

��

εW1∪W2

LLLLL

&&LLLLL

F (W1)

ε12

��
F (W2) ε21

// F (W1 ∪W2) .

(6.2)

In the notation of [21, Def., p. 164], ε12 = εW1,W1∪W2 and ε21 = εW2,W1∪W2 , or, using idempo-
tence, ε12 = ε2⊗F (W1) and ε21 = ε1⊗F (W2). It will sometimes be convenient to abbreviate
ε := εW1∪W2 .

So, returning to our gluing problem, let M1 and M2 be objects of T (thought of as objects

of T(U1) and T(U2) respectively) and let σ : M1

∼=→M2 be an isomorphism in T(U1 ∩U2). By

Corollary 5.3, there exists an isomorphism α : M1 ⊗ F (W1 ∪W2)
∼=→M2 ⊗ F (W1 ∪W2) in T

such that the following diagram of isomorphisms commutes in T(U1 ∩ U2):

M1
σ //

M1⊗ε
��

M2

M2⊗ε
��

M1 ⊗ F (W1 ∪W2) α
// M2 ⊗ F (W1 ∪W2) .

(6.3)

Using this isomorphism α, we can now give our main construction.
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Definition 6.1. Let M1,M2 ∈ T and let α : M1 ⊗ F (W1 ∪W2)
∼=→M2 ⊗ F (W1 ∪W2) be an

isomorphism in T. Consider the following morphism:

(M1 ⊗ F (W1))⊕ (M2 ⊗ F (W2))
( α◦(M1⊗ε12) M2⊗ε21 )
−−−−−−−−−−−−−−−−→M2 ⊗ F (W1 ∪W2)

and complete it into a distinguished triangle:

Xα

(
εα1
−εα2

)
−−−−→ (M1 ⊗ F (W1))⊕ (M2 ⊗ F (W2))

(α◦(M1⊗ε12) M2⊗ε21 )−−−−−−−−−−−−−−→M2 ⊗ F (W1 ∪W2)
γα−→ ΣXα

for some object Xα ∈ T and morphisms εα1 , εα2 and γα as above. (In this notation, we only
indicate dependence on α but not on M1 and M2, nor on W1 and W2, for obvious reasons.)

Note that the module Xα is only well-defined up to (non-unique) isomorphism.

Remark 6.2. We have the following weak pullback (Definition 3.4):

Xα

εα1 //

εα2
��

M1 ⊗ F (W1)

α◦(M1⊗ε12)
��

M2 ⊗ F (W2)
M2⊗ε21

// M2 ⊗ F (W1 ∪W2) .

(6.4)

Indeed, this characterises Xα, as we shall see in Lemma 6.5. The reader might prefer the
following more symmetric “square”:

Xαεα1

rreeeeeeeeeeeeeeeeeeeee
εα2

,,YYYYYYYYYYYYYYYYYYYYY

M1 ⊗ F (W1)
M1⊗ε12

++XXXXXXXXXXXX
M2 ⊗ F (W2)

M2⊗ε21
ssffffffffffff

M1 ⊗ F (W1 ∪W2)
α−→
∼
M2 ⊗ F (W1 ∪W2)

Lemma 6.3. Recall the notion of U-isomorphism from Definition 3.2.

(1) The morphism ε12 is a U2-isomorphism and ε21 is a U1-isomorphism.

(2) For every objects M1,M2 ∈ T and every isomorphism α : M1 ⊗ F (W1 ∪ W2)
∼=→

M2 ⊗ F (W1 ∪W2), the morphism εαi is a Ui-isomorphism for i = 1, 2.

Proof. We know that εi is a Ui-isomorphism by Theorem 5.1 and the statement for ε12 and
ε21 follows by Proposition 3.3 and the Mayer–Vietoris triangle (6.1). The second part of
the statement is a consequence of the same Proposition and the distinguished triangle of
Definition 6.1. Recall from Definition 3.1 that M1 ⊗ ε12 is still a U1-isomorphism. �

Proposition 6.4. We have C⊕W1
∩ C⊕W2

= 0. In particular, if a morphism f : L → M in
StMod (kG) is both a U1-isomorphism and a U2-isomorphism, then f is an isomorphism.

Proof. Let N ∈ C⊕Wi
for i = 1, 2. Then N ⊗ F (Wi) = 0. (This follows from Theorem 5.1

or can be found explicitly as [21, Proposition 5.15].) A fortiori, N ⊗ F (W1 ∪W2) = N ⊗
F (W1)⊗ F (W2) = 0. But then, tensoring N with the Mayer–Vietoris triangle (6.1), we see
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that N = N ⊗ k = 0, as claimed. This proves the first statement. The second follows from
the first since cone(f) ∈ C⊕W1

∩ C⊕W2
. �

Lemma 6.5. Let M1,M2 ∈ T and let α : M1 ⊗ F (W1 ∪W2)
∼=→ M2 ⊗ F (W1 ∪W2) be an

isomorphism. Consider a commutative square

X
f1 //

f2
��

M1 ⊗ F (W1)

α◦(M1⊗ε12)
��

M2 ⊗ F (W2)
M2⊗ε21

// M2 ⊗ F (W1 ∪W2).

Then the following conditions are equivalent:

(1) The above square is a weak pullback (see Definition 3.4).
(2) fi is a Ui-isomorphism for i = 1, 2.

When these conditions hold, the module X is isomorphic to the Xα of Definition 6.1.

Proof. If the square is a weak pullback, Proposition 3.3 insures that f1 is a U1-isomorphism
since ε21 is a U1-isomorphism by Lemma 6.3. Similarly, f2 is a U2-isomorphism.

Conversely, suppose that fi is a Ui-isomorphism for i = 1, 2, and construct the weak
pullback Xα (see Remark 6.2):

X f1

))

f2

&&

f

((QQQQQQQQ

Xα

εα1 //

εα2
��

M1 ⊗ F (W1)

α◦(M1⊗ε12)
��

M2 ⊗ F (W2)
M2⊗ε21

// M2 ⊗ F (W1 ∪W2) .

Since the outer diagram commutes, there exists a corner morphism f : X → Xα making
the whole diagram commute. This is the weak pullback property. By Lemma 6.3, εαi is a
Ui-isomorphism for i = 1, 2. By two-out-of-three, we see that f is a Ui-isomorphism as well,
for i = 1, 2. Hence, by Proposition 6.4, f is an isomorphism. �

Theorem 6.6. Let M1,M2 ∈ T and let α : M1 ⊗ F (W1 ∪ W2)
∼=→ M2 ⊗ F (W1 ∪ W2) be

an isomorphism, which corresponds, via Corollary 5.3, to an isomorphism σ : M1

∼=→ M2 in
T(U1∩U2). Then the object Xα constructed in Definition 6.1 is a gluing of M1 and M2 along
the isomorphism σ. Moreover, this gluing is unique up to isomorphism in T.

Proof. Recall from Corollary 5.3 that in T(U1 ∩U2), we have σ = (M2 ⊗ ε)−1 ◦ α ◦ (M1 ⊗ ε),
where ε = εW1∪W2 , as presented in Diagram (6.3).
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Let us first check that Xα is indeed a gluing. For i = 1, 2, define the isomorphisms

σi : Xα

∼=→Mi in T(Ui) by σi := (Mi ⊗ εi)−1 ◦ εαi

Xα

σi

))

εαi

// Mi ⊗ F (Wi) Mi .Mi⊗εi
oo

Recall from Lemma 6.3 that εi and εαi are Ui-isomorphisms, hence Mi ⊗ εi as well. Recall
that we have two commutative Diagrams (6.2) and (6.4) in T which are respectively:

(6.2) :

k
ε1 //

ε2

��

ε

&&NNNNNNNNNNNNN F (W1)

ε12
��

F (W2) ε21
// F (W1 ∪W2)

and (6.4) :

Xα

εα1 //

εα2
��

M1 ⊗ F (W1)

α◦(M1⊗ε12)

��
M2 ⊗ F (W2)

M2⊗ε21
// M2 ⊗ F (W1 ∪W2)

and all morphisms in sight are (U1 ∩ U2)-isomorphisms by Lemma 6.3. Now we compute in
T(U1 ∩ U2) using the commutativity of the above squares:

σ σ1
def
= (M2 ⊗ ε)−1 α (M1 ⊗ ε) (M1 ⊗ ε1)−1 εα1

(6.2)
= (M2 ⊗ ε)−1 α (M1 ⊗ ε12) εα1 =

(6.4)
= (M2 ⊗ ε)−1 (M2 ⊗ ε21) εα2

(6.2)
= (M2 ⊗ ε2)−1 εα2

def
= σ2.

This proves that (Xα, σ1, σ2) is a gluing of M1 and M2 along σ.

Let us now turn to uniqueness. Let (X, τ1, τ2) be another gluing of M1 and M2 along

σ, that is, τi : X
∼=→ Mi in T(Ui) for i = 1, 2 and σ ◦ τ1 = τ2 in T(U1 ∩ U2). Consider the

morphisms (Mi ⊗ εi) ◦ τi : X → Mi ⊗ F (Wi) in T(Ui) for i = 1, 2. By Proposition 5.2,
there exit two morphisms fi : X → Mi ⊗ F (Wi), i = 1, 2, which give the above morphisms
(Mi ⊗ εi) ◦ τi under localisation, i.e., such that the following diagram commutes in T(Ui):

X

τi

))

fi

// Mi ⊗ F (Wi) Mi .Mi⊗εi
oo

In particular, it is immediate that fi is a Ui-isomorphism. We now want to apply Lemma 6.5
to the triple (X, f1, f2):

X
f1 //

f2
��

M1 ⊗ F (W1)

α◦(M1⊗ε12)
��

M2 ⊗ F (W2)
M2⊗ε21

// M2 ⊗ F (W1 ∪W2).

We have already checked condition (2) of that Lemma and it only remains to check that
the above square really commutes. To see this, note that the lower right object, the target
of both compositions, is of the form (· · · ) ⊗ F (W1 ∪W2). So, using Proposition 5.3, it is
enough to check the commutativity of that square in the localisation T(U1 ∩ U2). There, it



GLUING kG-MODULES 19

becomes easy, for it exactly amounts to the condition στ1 = τ2 , as can be readily verified
using Diagram (6.2) again. �

Corollary 6.7. Let M ∈ T = StMod (kG) and suppose that M is finitely generated on U1

and U2, that is, M is isomorphic in T(Ui) to an object of C(Ui) ⊆ T(Ui) for i = 1, 2. Then
M is finitely generated, that is, M is isomorphic to an object of C = stmod (kG).

Proof. Consider Mi ∈ C(Ui) and σi : M
∼=→ Mi in C(Ui) for i = 1, 2. Define the isomorphism

σ = σ2 σ
−1
1 : M1

∼=→ M2 in C(U1 ∩ U2) – here we use Proposition 3.8. Then, obviously, M is
the gluing of M1 and M2 along σ in T. As already mentioned, we know from [3, Cor. 5.10]
that the gluing is possible in C, that is, there exists a gluing M ′ ∈ C of M1 and M2 along σ.
Since the gluing is unique in the big category T, we must have M ∼= M ′. �

7. A gluing construction of endotrivial modules

We now unfold the general gluing construction of Section 6 in the special case of

M1 = M2 = k .

The outcome, in that case, is an endotrivial (finitely generated) module. As before, we
assume that we have an open covering VG = U1 ∪ U2 of the projective support variety and
we denote by Wi = VG r Ui the closed complements i = 1, 2. Here, Definition 6.1 becomes:

Definition 7.1. Let α ∈ AutT(F (W1 ∪W2)) be an automorphism of F (W1 ∪W2) in T =
StMod (kG), i.e., a unit in EndkG(F (W1 ∪W2)). Consider the morphism

F (W1)⊕ F (W2)
(α◦ε12 ε21 )−−−−−−−→ F (W1 ∪W2)

which differs from the middle map of the Mayer-Vietoris triangle (6.1), only in that we twist
the first component by the automorphism α. Completing this morphism to a distinguished
triangle defines a module Xα and morphisms εα1 , ε2 and γα as follows:

Xα

(
εα1
−εα2

)
−−−−→ F (W1)⊕ F (W2)

(α ε12 ε21 )−−−−−−−→ F (W1 ∪W2)
γα−→ ΣXα. (7.1)

As before, the module Xα is only well-defined up to (non-unique) isomorphism. We shall
only be interested in the isomorphism class of Xα in StMod (kG). If α : k → k is the identity
then the Mayer–Vietoris triangle (6.1) shows that XId

∼= k. It should also be pointed out
that the definition of Xα depends on the ordering of the two disjoint closed subsets W1 and
W2 of the support variety. In 7.6 we see what happens if we interchange W1 and W2.

Remark 7.2. As in Remark 6.2, we have a weak pullback:

Xα

εα1 //

εα2
��

F (W1)

α ε12
��

F (W2) ε21
// F (W1 ∪W2) ,

(7.2)
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which characterises Xα, by Lemma 6.5. Taking two automorphisms α and β, we can tensor
the above square with the similar square for β. Using idempotence (Theorem 5.1), we get

Xα ⊗Xβ

εα1⊗ε
β
1 //

εα2⊗ε
β
2

��

F (W1)

αβ ε12
��

F (W2) ε21
// F (W1 ∪W2) .

By Lemma 6.5 (2), the latter square is a weak pullback and therefore Xα ⊗Xβ
∼= Xαβ. In

particular Xα ⊗Xα−1
∼= k and Theorem 2.1 forces Xα to belong to stmod (kG), i.e., Xα is a

finitely generated endotrivial module. We give another proof of these facts below.

Theorem 7.3. Let α ∈ EndkG(F (W1 ∪W2)) be an automorphism in StMod (kG). Then the
module Xα of Definition 7.1 is isomorphic in StMod (kG) to a finite dimensional endotrivial
module, that is, Xα ∈ C = stmod (kG).

Moreover, if σ ∈ AutC(U1∩U2)(k) is the automorphism of k over U1∩U2 corresponding to α
(see Corollary 5.4), then the module Xα ∈ stmod (kG) is a gluing (Definition 4.1) of two

copies of k along the isomorphism σ : k
∼=→ k in C(U1 ∩ U2).

Proof. We already know by Theorem 6.6, applied to M1 = M2 = k, that Xα is a gluing of
two copies of k along σ in the big category T. Corollary 6.7 tells us that Xα ∈ stmod (kG). It
is endotrivial because it is locally endotrivial. That is, the evaluation map (Xα)∗ ⊗Xα → k
is an isomorphism in C(Ui) for i = 1, 2, hence is an isomorphism in C (its cone has empty
support). Another proof of the latter fact was given in Remark 7.2 above. (Alternatively,
see [3, Lem. 6.2].) �

We now have the following dictionary with the terminology of [3]:

Corollary 7.4. Consider Tk(G) = Pic(C), the group of finitely generated endotrivial kG-
modules, i.e., the group of invertible objects in C = stmod (kG) with respect to ⊗. Consider
the map ξ : AutT(F (W1∪W2))−→Tk(G) given by the above construction, α 7→ Xα. Consider
the homomorphism δ : Gm(U1 ∩ U2) = AutC(U1∩U2)(k) → Pic(C) of Theorem 4.2. Then the
two maps ξ and δ are equal. More precisely, the following diagram commutes:

AutT(F (W1 ∪W2))

ξ
��

(Cor. 5.4)

∼ Gm(U1 ∩ U2)

δ
��

Tk(G) Pic(C).

In particular, if α and β are two invertible elements in EndkG(F (W1 ∪W2)) then

Xα ⊗Xβ
∼= Xα◦β .

Proof. This is simply a condensed form of the previous results. Note that ξ is a homomor-
phism because δ is already known to be one, hence Xα⊗Xβ

∼= Xα◦β. (We sketched a direct
proof of the latter in Remark 7.2.) �
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Corollary 7.5. Let α ∈ EndkG(F (W1∪W2)) be an automorphism. Then Xα
∼= k is trivial if

and only if there exists automorphisms αi ∈ EndkG(F (Wi)) for i = 1, 2 such that α = α1⊗α2

under the identification F (W1 ∪W2) ∼= F (W1)⊗ F (W2).

Proof. Transcribe in modular representation theoretic terms the exactness of the sequence

· · · −→Gm(U1)⊕Gm(U2)−→Gm(U1 ∩ U2)
δ−→Pic(stmod (kG))

established in [3, Thm. 6.7] as part of the Mayer-Vietoris long exact sequence. �

Remark 7.6. The definition of Xα (Definition 7.1) is not symmetric in the two closed
subsets W1 and W2 and this might lead to some confusion. Strictly speaking, we should write
Xα = X(α,W1,W2). Switching the order of W1 and W2 inverts the module Xα (i.e., gives
the dual (Xα)∗ instead). This can be easily checked, for instance from the gluing property
of Theorem 7.3, which says that the following left-hand diagram commutes in C(U1 ∩ U2):

k

σ

��

Xα

σ1
99rrrrrr

σ2 %%LLLLLL

k

=⇒

k

σ−1

��

Xα

σ2
99rrrrrr

σ1 %%LLLLLL

k .

Hence the right-hand diagram commutes as well and by Theorem 7.3 again but applied to
(W2 , W1), we obtain X(α−1,W2,W1) = Xα which implies X(α,W2,W1) = Xα−1 = (Xα)∗.

Remark 7.7. Of course, the definition of Xα given in Definition 7.1 also makes sense if
α ∈ EndkG(F (W1∪W2)) is a non-invertible endomorphism. The problem is that the module
Xα will not be endotrivial in general. Take for instance α = 0. Then we have (α ε12 ε21) =
(0 ε21) : F (W1)⊕ F (W2)→ F (W1 ∪W2), and the defining triangle (7.1) becomes:

F (W1)⊕ (E(W1)⊗F (W2))

(
1 0
0 ηW1

⊗1

)
−−−−−−−→ F (W1)⊕F (W2)

( 0 ε21 )−−−−→ F (W1 ∪W2)

(
0

θW1
⊗1

)
−−−−−−→ Σ(...).

To see that this triangle is distinguished, apply −⊗F (W2) to the original triangle for E(W1)
and F (W1), from Theorem 5.1 (1), and then add the trivial triangle

F (W1)
1−→F (W1)−→ 0−→ΣF (W1).

So, the module X0 is F (W1)⊕
(
E(W1)⊗F (W2)

)
which is not even in stmod (kG) in general.

Remark 7.8. There is an extreme situation where our construction produces an endotrivial
module for any endomorphism α, even the most trivial α = 0. Namely, this happens if
W1 = ∅. Indeed, in that case, F (W1) = k and the weak pullback (7.2) becomes:

Xα

εα1 //

εα2
��

k

∀α
��

F (W2) F (W2) ,

which forces εα1 : Xα

∼=→ k to be an isomorphism. This rather trivial remark will be useful at
the end of the paper.
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8. First example: Rank two

Suppose that ζ1 and ζ2 are elements of Hn(G, k) such that VG(ζ1)∩VG(ζ2) = ∅. Note that
this implies that Hn(G, k) is a finitely generated module over k[ζ1, ζ2], so that it has Krull
dimension two, which by Quillen’s Dimension Theorem forces the group G to have p-rank
two. If p > 2, then it also requires that ζ1 and ζ2 have even degree, as otherwise ζ1 and ζ2 are
nilpotent. In particular, ζ1 and ζ2 must commute with each other. Letting W1 = VG(ζ1) and
W2 = VG(ζ2), we are in precisely the situation of Section 7. Note that W1 ∪W2 = VG(ζ1 ζ2).

The endomorphism ring EndkG(F (W1)) consists of the degree zero elements of the locali-
sation H∗(G, k)[ζ−1

1 ] by Proposition 5.6, and similarly for F (W2) and H∗(G, k)[ζ−1
2 ] and for

F (W1 ∪W2) and H∗(G, k)[ζ−1
1 ζ−1

2 ].
The element ζ2/ζ1 ∈ (H∗(G, k)[ζ−1

1 ])0 ∼= EndkG(F (W1)) is not invertible, but it becomes
invertible inH∗(G, k)[ζ−1

1 ζ−1
2 ] with inverse ζ1/ζ2. So it is an automorphism of F (W1∪W2) and

is a candidate for α in the construction of our module Xα (Definition 7.1). Note however that
we can consider other automorphisms of F (W1 ∪W2). This particular α = ζ1/ζ2 is in some
sense the “trivial” choice since ζ1 and ζ2 are precisely the defining equations of W1 = VG(ζ1)
and W2 = VG(ζ2). In Section 9, we shall consider an example with another α.

Proposition 8.1. With the above notation, the module Xζ1/ζ2 is isomorphic to Σnk = Ω−nk.

Proof. It is clear that each ζi : k → Σnk is a Ui-isomorphism (Definition 3.2) since its cone
is a shift of the Carlson module Lζi which has support exactly Wi (see [4]). Let σi =

(ζi)
−1 : Σnk

∼=→ k be the inverse isomorphism in the localisation C(Ui). In the final localisation
C(U1 ∩ U2), the following diagram obviously commutes:

k

ζ1/ζ2

��
Σnk

σ1
88pppppp

σ2 &&NNNNNN

k.

In the language of [3], this means that Σnk is the gluing of two copies of k along the
automorphism ζ1/ζ2 ∈ AutC(U1∩U2)(k), i.e., we have Xα = Σnk by Theorem 7.3. �

It is also possible to prove the previous proposition by describing the idempotent modules,
F (W1), F (W2) and F (W1 ∪W2), as colimits, giving the various morphisms ε1 , ε2 , ε12 , ε21

as maps on the colimits, and then making the distinguished triangle (7.1) explicit. However,
the proof using the gluing technique that we have given here is considerably shorter.

Example 8.2. We unfold our construction of the endotrivial modules with a very explicit
example in the case of the fours group G = 〈g, h〉 ∼= (Z/2)2 over a field k of characteristic
two. We have H∗(G, k) = k[x, y] with deg(x) = deg(y) = 1. Here, the basis x, y of
H1(G, k) is dual to the basis g− 1, h− 1 of H1(G, k) ∼= J(kG)/J2(kG). The support variety
is VG = Proj k[x, y] = P1(k). Let W1 = VG(x), W2 = VG(y), the zero loci of x and y
respectively. We use the open covering by the two affine sets Ui = VG rWi, i = 1, 2 defined
by x and y, with intersection U1 ∩ U2 = VG r VG(xy) and union U1 ∪ U2 = VG. The module
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Fx = F (W1) is represented by the following diagram:

·g−1
�����

· h−1
��<<<

· ·
Fx =

·
<<< ·

<<< ·
999

·
���

·
���

·
���

1 y/x y2/x2

. . .

Here, we have labeled basis elements of the socle of Fx with the corresponding elements of
HomkG(k, Fx), namely degree zero elements of H∗(G, k)[x−1]. Similarly, we have

Fy = . . .

·
<<< ·

<<< ·
<<<��� ·

���
·

���
·

x2/y2 x/y 1

Fxy = . . .

·
<<< ·

<<< ·
<<< ·

999��� ·
���

·
���

·
���

x/y 1 y/x

. . .

The maps ε12 : Fx −→ Fxy and ε21 : Fy −→ Fxy correspond to the obvious inclusions of
diagrams.

The endomorphism ring of Fxy consists of the degree zero elements of H∗(G, k)[x−1y−1]
by Proposition 5.6. So x/y is an automorphism with inverse y/x. The action of x/y on Fxy
is a shift one place to the left, while y/x is a shift one place to the right. Let α = x/y. Then
we have a diagram

Fx

(x/y) ε12
��

Fy ε21
// Fxy

Since the sum of the two maps is surjective, the weak pullback of this diagram is the same
as the ordinary pullback, namely the submodule corresponding to the intersection of the
subdiagrams. This gives the diagram

·
<<<

·
���

·
x/y 1

for Xα
∼= Ω−1(k), in accordance with Proposition 8.1. On the other hand, if we use the

endomorphism α−1 = y/x, then the subdiagrams do not intersect, and the weak pullback
is not the same as the pullback. We must add a projective to make the sum of the maps
surjective, and then take the pullback to obtain Xα−1

∼= Ω(k).

9. Second example: The dihedral group D8

In this section we discuss the example of the dihedral group G = D8 over a field k of char-
acteristic two. The arguments that we use here are a model for what appears inSection 10.

The cohomology ring of G has the form

H∗(G, k) = k[x, y, z]/(xy)

where deg(x) = deg(y) = 1 and deg(z) = 2. Consider ζ1 = x2 +y2 +z and ζ2 = z in H2(G, k)
and define W1 = VG(ζ1) and W2 = VG(ζ2) as in Section 8. We claim that W1 ∩W2 = ∅.
Indeed, a homogenous prime ideal p of H∗(G, k) = k[x, y, z]/(xy) containing x2 + y2 and z
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necessarily contains x, y and z (it contains xy = 0 hence x or y hence both since it contains
x2 +y2). But then p contains the maximal ideal (x, y, z) which is exluded in Proj (H∗(G, k)).
So, we have the open covering necessary for our construction of endotrivial modules of the
form Xα as in Section 7

VG = U1 ∪ U2

where Ui = VGrWi for i = 1, 2. Now we want to produce an automorphism α of F (W1∪W2)
in a more subtle way than in Section 8, that is, different from ζ1/ζ2 = (x2 + y2 + z)/z.

Because (x2 + z)(y2 + z) = (x2 + y2 + z) z in H∗(G, k), we have that

x2 + z

x2 + y2 + z
.
y2 + z

z
= 1

in H∗(G, k)[(x2 + y2 + z)−1z−1] = H∗(G, k)[(ζ1ζ2)−1]. So (y2 + z)/z is invertible in this
localisation with inverse (x2 + z)/(x2 + y2 + z).

As before we use the notation Fu = F (VG(u)), where u ∈ H∗(G, k). We set α = (y2 +z)/z,
so that Xα is the weak pullback

Xα
//

��

Fx2+y2+z

y2+z
z

ε12
��

Fz
ε21 // F(x2+y2+z)z

We can characterize the endotrivial module Xα by restricting it to the two subgroups
isomorphic to Z/2×Z/2 and by applying Proposition 8.1. On one of these subgroups, H1, x
restricts to zero and y does not, and on the other, H2, y restricts to zero and x does not. The
element z restricts to the product of the remaining two nonzero elements of H1(H1,F2) ∼= F2

2

and of H1(H2,F2) ∼= F2
2. So the restriction of α to H2 is the identity element, while on

H1 it is a ratio of two degree-two elements with no common factor, and is the same as the
restriction of ζ1/ζ2 = (x2 + y2 + z)/z. So Xα↓H2

∼= k while Xα↓H1 is isomorphic to Ω−2k
by Proposition 8.1. This module Xα is one of two well known five dimensional endotrivial
modules, and has the following diagram:

·
��� <<<

<<<

· ·
·
·

See [9] for more details on the diagrams.

10. The rank of the group of endotrivial modules

Assume throughout this section that the p-rank of G is at least 2. We demonstrate that
the construction of Section 7 yields a sufficiency of modules to generate a subgroup of finite
index in the group T (G) of endotrivial kG-modules. Hence, we have another proof of the rank
of the torsion free subgroup of T (G). The rank was first obtained in [1], though Alperin’s
original proof was only meant to apply to the case that G is a p-group. The determination
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of the rank of T (G) in [11] is valid for all finite groups. The proof given here follows roughly
the lines of that one, and like that proof, it relies heavily on the context for the problem laid
out and proved in [1]. Specifically, we have the following.

By [1], there exists a collection E1, . . . , En of elementary abelian subgroups with the
property that

(1) Every Ei has p-rank 2,
(2) If G has p-rank 2, then the subgroups E1, . . . , En are a complete set of representatives

of the conjugacy classes of maximal elementary abelian p-subgroups of G, and
(3) If G has p-rank greater than 2, then E1, . . . , En−1 is a complete set of representatives

of the conjugacy classes of maximal elementary abelian p-subgroups of G of rank 2,
En is normal in a Sylow p-subgroup of G, and En is conjugate to a subgroup of any
maximal elementary abelian p-subgroup of G that has p-rank greater than 2.

Notice here that if G has no maximal elementary abelian p-subgroup of p-rank 2, then n = 1.
The above result is explained in more detail in [12, (2.2)]. While it is proved for p-groups,

the extensions to general finite groups is straightforward.

Proposition 10.1. (See [18] or [12].) The kernel of the product of the restriction maps
n∏
i=1

resG,Ei : T (G) −→
n∏
i=1

T (Ei)

is finite.

Our object is to give a new proof that the rank of T (G) is the number n of subgroups in
the list E1, . . . , En. To this end, it is only necessary to show that the image of the product of
the restriction maps has finite index in

∏n
i=1 T (Ei) ∼= Zn (for E elementary abelian p-group

of rank at least 2, we know from Dade’s Theorem [14] that Z
∼=→ T (E) via m 7→ Ωmk for

instance). Since obviously
∏

resG,Ei(Ω
1k) = (1, . . . , 1) ∈ Zn, it is enough for us to prove the

following.

Theorem 10.2. For each i = 1, . . . , n − 1, there exists a number d and an endotrivial
kG-module M = M(Ei) with the property that resG,Ei(M) ∼= Ω−dk in StMod (kEi) while
resG,Ej(M) ∼= k in StMod (kEj) for 1 ≤ j ≤ n and j 6= i.

Therefore the classes of the modules Ωk,M(E1), . . . ,M(En−1) generate a subgroup of finite
index in the group of endotrivial modules.

We first need the following result.

Lemma 10.3. Suppose that G is a finite group that has at least two classes of maximal
elementary abelian p-subgroups and has a maximal elementary abelian p-subgroup of rank 2.
Let r be the p-rank of G. Let E1, . . . , En be the subgroups of G, defined as above. Then there
exists a number d and elements z, y1, y2, x3, . . . , xr in Hd(G, k) such that the following hold.

(1) resG,Z(z) 6= 0 where Z is the center of a Sylow p-subgroup of G.
(2) y1y2 = 0 and moreover resG,E1(y2) = 0 and resG,E(y1) = 0 for E any maximal

elementary abelian p-subgroup which is not conjugate to E1.
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(3) The set {resG,E1(z), resG,E1(y1)} is a system of parameters for the ring H∗(E1, k).
(4) For j = 2, . . . , n, the set {resG,Ej(z), resG,Ej(y2)} is a system of parameters for the

ring H∗(Ej, k).
(5) For any maximal elementary abelian p-subgroup E of rank s > 2, the set

{resG,E(z), resG,E(y2), resG,E(x3), . . . resG,E(xs)}

is a system of parameters for the ring H∗(E, k).

Proof. Notice first that the hypotheses on G require that the center Z of a Sylow p-subgroup
of G be cyclic. It is a straightforward exercise in the application of Quillen’s Dimension
Theorem [19, 20] (recalled in Section 1) to find elements which satisfy all of the restriction
conditions on systems of parameters and on the structure of varieties. The process can be
described as follows.

For any elementary abelian p-subgroup E let JE denote the ideal
√

Kernel resG,E. Then
JE is a prime ideal because the ring H∗(E, k)/(RadH∗(E, k)) is an integral domain. By
Quillen’s Dimension Theorem, the minimal prime ideals are the ideals JE where E is a
maximal elementary abelian subgroup. The first element, z is chosen so that z is not in JZ .
Now the second element y1 is chosen to be in the intersection of all JE for E not conjugate
to a subgroup of E1, but y1 not in JE1 . In addition we want the two elements resG,E1(z) and
resG,E1(y1) to be a system of parameters for H∗(E1, k) which means that resG,E1(y1) can not
be contained in any of the finite number of maximal ideals that contain resG,E1(z). We can
find such an element y1 by the following process. Let E be a maximal elementary abelian
p-subgroup which is not conjugate to E1. Choose a homogeneous element yE in JE such that
resG,E1(yE) is not contained in any of the maximal ideals that contain resG,E1(z). Quillen’s
Theorem guarantees that we can do this. Now let y1 be the product of the yE where E
runs through a set of representatives of the conjugacy classes of maximal elementary abelian
subgroups that are not conjugate to E1. Then, y1 satisfies the properties (2) and (3) of the
lemma.

Now for the element y2 we can proceed as follows. For each elementary abelian subgroup
E of rank 2, which contains Z and is not conjugate to E1, choose a homogeneous element uE
with the properties that uE ∈ JF for every elementary abelian subgroup F which has rank 2,
contains Z and which is not conjugate to E. Also we want that resG,E(uE) is not in any of the
finite number of maximal ideals of H∗(E, k) that contain resG,E(z). This is accomplished
exactly as in the previous paragraph. Next, it should be noticed that umE has the same
properties. Hence, there is a number d such that for every elementary abelian subgroup E
of rank 2, containing Z and not conjugate to E1, there is such an element uE in Hd(G, k)
having the properties specificied above. So finally, let y2 be the sum of the elements uE
where E runs through a set of representatives of the conjugacy classes of elementary abelian
subgroup of G having rank 2, containing Z and not conjugate to E1.

By the construction, the elements y1 and y2 satisfy conditions (2), (3) and (4) except
possibly for the requirement that y1y2 = 0. However, we do know that resG,E(y1y2) = 0 for
every maximal elementary abelian subgroup E of G. Hence, by Quillen’s Theorem, y1y2 is
in the Jacobson radical of H∗(G, k) and hence is nilpotent. So there is some m such that



GLUING kG-MODULES 27

(y1y2)m = 0. We can now check that the elements z, ym1 and ym2 satisfy all of the first four
conditions of the lemma.

The elements x3, . . . , xr can be chosen to satisfy the required condition (5), by similar
arguments. We leave this part of the proof to the reader. �

Proof of Theorem 10.2. Without loss of generality, we can assume that i, in the theorem, is
equal to one. We can assume that G satisfies the hypotheses, and hence also the conclusion,
of Lemma 10.3. So, let z, y1, y2, x3, . . . , xr be as in Lemma 10.3.

We are going to construct an endotrivial module Xα as in Definition 7.1, for which we
need to define two closed subsets W1,W2 of VG and an automorphism α : F (W1 ∪W2) →
F (W1 ∪W2). We set

W1 = VG(z) ∩ res∗G,E1
(VE1)

W2 = VG(y1) .

Note that W1 ∩ W2 = ∅ because resG,E1(z), resG,E1(y1) is a system of parameters in
H∗(E1, k) by Lemma 10.3 (3). Observe also that W2 contains all components of VG(k)
except res∗G,E1

(VE1), by Lemma 10.3 (2). In addition, the intersection of W1 ∪ W2 with
res∗G,E1

(VE1) is a finite set of points.
Of particular interest to us is the fact that W1 ∪W2 contains both closed subsets VG(y1)

and VG(z). We use this fact to prove the following.

Lemma 10.4. The element y1/z is an automorphism of F (W1 ∪W2).

Proof. If k
ε−→ F is a Rickard idempotent then the induced map

End∗kG(F )
ε∗−→ Hom∗kG(k, F ) = Ĥ∗(G,F )

is an isomorphism. Furthermore, if k
ε−→ F

ε′−→ F ′ are Rickard idempotents then we have a
commutative diagram

End∗kG(F )
ε′∗ //

ε∗∼=
��

Hom∗kG(F, F ′)

ε∗∼=
��

End∗kG(F ′)
(ε′)∗

∼=
oo

(ε′ε)∗

∼=
wwnnnnnnnnnnnn

Ĥ∗(G,F )
ε′∗ // Ĥ∗(G,F ′)

If x, y ∈ End∗kG(F ), let (ε′)∗(x) = ε′∗(u) and (ε′)∗(y) = ε′∗(v), i.e., xε′ = ε′u and yε′ =
ε′v. Then (ε′)∗(xy) = xyε′ = xε′v = ε′uv = ε′∗(uv). It follows that (ε′)∗(ε′∗)

−1 is a ring
homomorphism.

Apply this to the Rickard idempotents k
ε2−→F (W2)

ε21−→F (W1 ∪ W2). We know from
Proposition 5.6 that End∗kG(F (W2)) is the localization of H∗(G, k) obtained by inverting y1.
It follows that y1 is invertible in End∗kG(F (W2)), and hence applying the argument above,
it is invertible in End∗kG(F (W1 ∪ W2)). Likewise, for the cohomology element z, we have
homomorphisms k−→F (VG(z))−→F (W1 ∪ W2), and using the same argument we have
that z is invertible in End∗kG(F (W1 ∪ W2)). Finally, we recall that the ring of ordinary
endomorphisms of F (W1 ∪W2) is End0

kG(F (W1 ∪W2)). �
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Returning to the proof of the theorem, we define the automorphism

α := y1/z ∈ Aut(F (W1 ∪W2))

and we define a module Xα as in Definition 7.1. By Theorem 7.3, Xα is a finite dimensional
endotrivial module. We have a weak pullback diagram

Xα

εα1 //

εα2
��

F (W1)

α ε12
��

F (W2) ε21
// F (W1 ∪W2) ,

(10.1)

as in Remark 7.2. With the notation of Remark 7.6, we have that Xα = X(α , W1 , W2).
It remains only to identify Xα in terms of its restrictions to elementary abelian subgroups.

Let E ⊆ G be a maximal elementary abelian p-subgroup of G. Suppose first that E is not
conjugate to E1. Then (res∗G,E)−1(W2) = VE and consequently (res∗G,E)−1(W1) = ∅. So, the
restriction of Diagram (10.1) to E is a weak pullback square as in Remark 7.8. Therefore
the restriction of Xα to E is isomorphic to the trivial module k.

Suppose on the other hand that E = E1 is conjugate to E1. Then by Proposition 8.1,
the restriction of Xα to E is isomorphic to Σdk = Ω−dk. This completes the proof of the
theorem. �

11. Gluing along endomorphisms

The reader may note that the construction in the proof of Theorem 10.2 is significantly
different from the proofs in the examples of Sections 8 and 9 where the closed sets W1 and
W2 that are chosen are hypersurfaces. This is still the situation if the group G has p-rank 2.
However, if G has larger p-rank, then the set W1 is a finite union of points, thus having
higher codimension. Even here it is possible to prove Theorem 10.2 using hypersurfaces
defined by cohomology elements, but to do so we must glue along endomorphisms rather
than automorphisms. We end the paper with a brief discussion of how such a gluing can be
proved. As this is not essential for the main theorems of the paper, we leave many of the
details to the reader. In an earlier version of this paper, Theorem 10.2 was proved using the
methods in this section.

Let us recall the general Mayer-Vietoris situation of Sections 4, 6 and 7, that is, we assume
that we have an open covering of the projective support variety

VG = U1 ∪ U2

and we denote by W1 = VG r U1 and W2 = VG r U2 the closed complements.

Our quest, initiated in Remark 7.7, is to find good conditions under which the gluing

automorphism α : k
∼=→ k on U1 ∩ U2 could be replaced by a general endomorphism, in our

original construction of Xα in Definition 7.1. We already gave a rather trivial answer to this
question in Remark 7.8 when W1 = ∅.



GLUING kG-MODULES 29

Definition 11.1. Let β ∈ EndT(F (W1)) be an endomorphism of F (W1) in T = StMod (kG).

Define an object X̃β in T and two morphisms ε̃β1 and ε̃β2 by the following weak pullback
(Definition 3.4):

X̃β

ε̃β1 //

ε̃β2
��

F (W1)

β

��

k ε1
// F (W1) ,

(11.1)

which should be compared to (7.2). Equivalently, we have a distinguished triangle:

X̃β

(
ε̃β1
−ε̃β2

)
−−−−−→ F (W1)⊕ k (β ε1 )−−−−→ F (W1) −→ ΣX̃β . (11.2)

Proposition 11.2. Let β be an endomorphism of F (W1) in T and assume that it becomes
an isomorphism on U1 ∩ U2. Let α ∈ AutT(F (W1 ∪W2)) be the restriction of β. Then the
object X̃β of Definition 11.1 is isomorphic to the endotrivial module Xα of Definition 7.1.

Proof. By Remark 5.7, the hypothesis that the localisation of β is equal to α boils down to
the commutativity of the following diagram in T :

F (W1)
β //

ε12
��

F (W1)

ε12
��

F (W1 ∪W2) α

∼= // F (W1 ∪W2) .

(11.3)

By Lemma 6.3, the morphism ε12 is a U2-isomorphism and so is α of course. From this,
we deduce by two-out-of-three that β is a U2-isomorphism. Therefore, by Proposition 3.3
applied to the distinguished triangle (11.2), the morphism ε̃β2 is also a U2-isomorphism. By

the same proposition for the same triangle, since ε1 is a U1-isomorphism, so is ε̃β1 . We now

have two isomorphisms in T(U1) and T(U2) respectively, σ1 := ε−1
1 ◦ ε̃

β
1 and σ2 := ε̃β2 .

σ1 : X̃β

ε̃β1−→ F (W1)
ε1←− k and σ2 : X̃β

ε̃β2−→ k .

Computing in T(U1 ∩ U2), where all morphisms in sight become isomorphisms, we have

σ2 ◦ σ−1
1

def
= ε̃β2 ◦ (ε̃β1 )−1 ◦ ε1

(11.1)
= ε−1

1 ◦ β ◦ ε1
(11.3)
= (ε12ε1)−1 ◦ α ◦ (ε12ε1) =: σ .

Since ε12 ε1 = εW1∪W2 : k → F (W1 ∪ W2) by (6.2), the above morphism σ : k → k is the
automorphism of k in C(U1 ∩ U2) which corresponds to α ∈ AutT(F (W1 ∪W2)), see Corol-
lary 5.4. So, we have proved that the object X̃β is isomorphic to k on U1 and on U2, via the

isomorphisms σ1 and σ2 respectively, and we have σ2 ◦ σ−1
1 = σ. This means that X̃β is the

gluing of two copies of k along σ. But we already know from Theorem 7.3 that this gluing
is Xα. Therefore, X̃β

∼= Xα by uniqueness of the gluing. �
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We now combine the above modified construction with the trivial Remark 7.8, to get the
following statement. The final construction applies even when the p-rank of G is greater
than two. For the sake of clarity, we repeat all hypotheses.

Corollary 11.3. Let G be a finite group and let W1,W2 ⊆ VG be disjoint closed subsets of its
support variety. Let γ : F (W1∪W2)→ F (W1∪W2) be an endomorphism in T = StMod (kG).

Define an object X̂γ ∈ StMod (kG) and two morphisms ε̂γ1 and ε̂γ2 by the following weak
pullback (Def. 3.4):

X̂γ

ε̂γ1 //

ε̂γ2
��

F (W1)

γ ε12

��
F (W2) ε21

// F (W1 ∪W2) .

(11.4)

Let W3 ⊂ VG be another closed subset, disjoint from W1. Suppose that for every maximal
elementary abelian p-subgroup E ⊆ G, at least one of the following two conditions holds true:

(1) W1 ∩ res∗G,E(VE) = ∅.
(2) W2 ∩ res∗G,E(VE) = ∅ and, if we denote by W ′

i the preimage of Wi in VE via the
map res∗G,E : VE → VG for i = 1, 3, the morphism resG,E(γ) : F (W ′

1) → F (W ′
1) is a

U-isomorphism (Def. 3.2) where U is the open VE r (W ′
1 ∪W ′

3) in VE.

Then X̂γ is an endotrivial kG-module.
Its restriction to a subgroup E ⊆ G as above is trivial if E satisfies Condition (1). If

E satisfies Condition (2), the restriction resG,E(X̂γ) is isomorphic to the kE-module Xα

obtained from Definition 7.1 for the group E, for the disjoint closed subsets W ′
1 and W ′

3

of VE and for the automorphism α := resG,E(γ)⊗ F (W ′
3) ∈ AutStMod (kE)

(
F (W ′

1 ∪W ′
3)
)
.

Proof. Let us restrict the weak pulback of the statement to a maximal elementary abelian
p-subgroup E ⊆ G. Assume first that E satisfies Condition (1) then it is clear that

resG,E(X̂γ) ∼= k (see Remark 7.8). On the other hand, suppose that E satisfies Condi-
tion (2). Note that we then have resG,E(F (W2)) = k. The restriction to E of the weak
pullback (11.4) is isomorphic to

resG,E(X̂γ) //

��

F (W ′
1)

resG,E(γ)

��

k ε1
// F (W ′

1) .

So, resG,E(X̂γ) is a module of the form X̃resG,E(γ) as in Definition 11.1, applied to the group E,
to the endomorphism β = resG,E(γ), and to the open covering of VE given by the comple-
ments of W ′

1 and W ′
3, which are obviously disjoint since W1 ∩W3 = ∅. Proposition 11.2

shows that this kE-module is endotrivial and coincides with the announced module Xα.
We have proved that resG,E(X̂γ) is endotrivial for all E ⊆ G as above. This is indeed

enough by the following folklore result. �
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Proposition 11.4. Let M ∈ StMod (kG) such that the restriction of M to every (maximal)
elementary abelian p-subgroup of G is finitely generated (resp. endotrivial), then so is M .

Proof. Use Chouinard’s Theorem [13] and Frobenius reciprocity to show that the modules
induced from elementary abelian subgroups generate the stable module category, see more
in [10]. Then use Frobenius reciprocity again to see that an object in the stable category is
compact if and only if its restriction to every elementary abelian subgroup is compact. �

Remark 11.5. To prove Theorem 10.2 using this Corollary 11.3, we set W1 = VG(z) ∩
res∗G,E1

(VE1), W2 = VG(z) ∩
⋃
E∈E res∗G,E(VE), where E is the family of maximal elementary

abelian p-subgroups E which are not conjugate to E1, and finally we set W3 = VG(y1).
Note that W2 ⊆ W3 and that W1 and W3 are called W1 and W2 in the proof of 10.2. The
endomorphism of F (W1 ∪W2) that we use is y1/z which becomes an automorphism when
restricted to F (W1 ∪W3), as we have observed.

References

[1] J. L. Alperin, A construction of endo-permutation modules, J. Group Theory 4 (2001), 3–10.
[2] P. Balmer, The spectrum of prime ideals in tensor triangulated categories, J. Reine & Angew. Math.

588 (2005), 149–168.
[3] P. Balmer and G. Favi, Gluing techniques in triangular geometry, Q. J. Math. 58 (2007), 415–441.
[4] D. J. Benson, Representations and Cohomology II: Cohomology of groups and modules, Cambridge

Studies in Advanced Mathematics, vol. 31, Cambridge University Press, 1991 (paperback reprint 1998).
[5] D. J. Benson, J. F. Carlson, and J. Rickard, Complexity and varieties for infinitely generated modules,

I, Math. Proc. Camb. Phil. Soc. 118 (1995), 223–243.
[6] , Complexity and varieties for infinitely generated modules, II, Math. Proc. Camb. Phil. Soc.

120 (1996), 597–615.
[7] D. J. Benson and G. Ph. Gnacadja, Phantom maps and purity in modular representation theory, I,

Fundamenta Mathematicae 161 (1999), 37–91.
[8] J. F. Carlson, The variety of an indecomposable module is connected, Invent. Math., 77 (1984), 291–299.
[9] , Modules and Group Algebras, Lectures in Mathematics, ETH Zürich, Birkhäuser, 1996.
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