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Abstract. We propose a construction of affine space (or “polynomial rings”)

over a triangulated category, in the context of stable derivators.

Dedicated to Chuck Weibel on the occasion of his 65th birthday

Introduction.

Among their various incarnations throughout mathematics, triangulated cate-
gories play an important role in algebraic geometry as derived categories of schemes,
beginning with Grothendieck’s foundational work, see [Gro60] or [Har66].

In fact, the Grothendieck-Verdier formalism by means of distinguished trian-
gles [Ver96, Nee01] can be considered as the lightest axiomatization of stable ho-
motopy theory available on the market. Heavier approaches can involve model
categories, dg-enrichments, ∞-categories, etc. The simplicity of triangulated cate-
gories presents advantages in terms of versatility and applications. For instance we
expect most readers, way beyond algebraic geometers, to have some acquaintance
with triangulated categories. On the other hand, this light axiomatic can also be
a weakness, notably when it comes to producing new triangulated categories out
of old ones. For example, the triangular structure is sufficient to describe Zariski
localization [TT90, Nee92], or even étale extensions [Bal14], but there is no known
construction, purely in terms of triangulated categories, that would describe the
derived category of affine space An

X out of the derived category of X. This is the
problem we want to address.

The goal of this short note is to highlight a straightforward and elementary way
to construct affine space if one uses the formalism of derivators. (See Theorem 5.)

Currently, derivators are nowhere as well-known as triangulated categories and
it is fair to assume that very few of our readers really know what a derivator is.
The non-masochistic reader will even appreciate that the derivator solution to the
above affine space problem is essentially trivial, a further indication of the beauty
of this theory. We hope that our observation will serve as a modest additional
incentive for some readers to use the axiomatic of Grothendieck derivators [Gro91],
or the closely related approach of Heller [Hel88].

Our observation also opens the door to an A1-homotopic investigation of deriva-
tors, which will be the subject of further work.
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A glimpse at derivators.

The idea behind derivators is simple. Suppose that your triangulated category
of interest, say D, is the homotopy category D = Ho(M) of some “model” M,
by which we mean that D can be obtained from M by inverting a reasonable
class of maps, called weak-equivalences. For instance M could be the category of
complexes of R-modules, with quasi-isomorphisms as weak-equivalences. Then for
any small category I, the category of functors MI from I to M (a. k. a. I-shaped
diagrams in M) should also yield a homotopy category by inverting objectwise
weak-equivalences:

(1) D(I) := Ho(MI) .

This approach requires some care but if the word “model” is given a precise mean-
ing, it works, see [Hel88, p.2-3] or [Gro13, p.2]. Now, if I = e is the final category
with one object and one identity morphism, then D(e) = D is the category we
started from, since Me = M. For another example, if I = [1] = {• → •} is the cate-
gory with two objects and one non-identity morphism, then D([1]) = Ho(Arr(M)) is
the homotopy category of arrows (refining the category Arr(Ho(M)) of arrows in D,
which is never triangulated unless D = 0); and similarly for other categories I.

This collection of homotopy categories D(I) = Ho(MI), indexed over all small
categories I, varies functorially in I, because every functor u : I → J induces a
functor u∗ : D(J) → D(I) via precomposition with u. Also, every natural trans-
formation α : u → v between functors u, v : I → J induces a natural transforma-
tion α∗ : u∗ → v∗; so in technical terms, D is a strict 2-functor

D : Catop,-−→CAT

from the 2-category of small categories Cat to the (big) 2-category CAT of all cate-
gories (the “op” indicates that D reverses direction of 1-morphisms, u 7→ u∗).

Independently of the existence of a model M as above, an arbitrary strict 2-
functor D : Catop,-−→CAT is called a pre-derivator and the category D(e) is called
the base of the prederivator D.

Actual derivators are pre-derivators satisfying a few axioms giving them some
spine. In addition to [Gro91], contemporary literature offers several good sources to
learn the precise axioms, see for instance the detailed treatment in Groth [Gro13] or
a shorter account in Cisinski-Neeman [CN08, § 1]. We shall not repeat the axioms
in this short note, since our focus is more towards constructing new derivators out
of old ones, but we would like to point out that these axioms are relatively simple.
Moreover, if D is stable, then its values D(I) have natural triangulations that are
moreover compatible in the sense that the functors u∗ are triangulated functors.

Of course, we have a derivator extending the derived category of a ring:

Theorem 2 (Grothendieck). Let R be a ring and consider the category of chain
complexes M = Ch(R-Mod) with weak-equivalences the quasi-isomorphisms. Then
formula (1) defines a derivator that we shall denote by Der(R-Mod). Its base is the
usual derived category D(R-Mod).

References about the above are given in Remark 10 below.

Statement of the result.

For our purpose, we only need one basic technique from derivator theory:
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Definition 3. Given a fixed small category L, we can shift a derivator D by L and
obtain a new derivator DL defined by DL(I) = D(L× I).

More precisely, DL is the composite 2-functor Catop,-
L×−−→ Catop,-

D−→CAT. The
fact that this prederivator DL remains a derivator is not completely trivial but it
is a useful part of the elementary theory, see [Gro13, Theorem 1.31].

Now, we want to follow the intuition that a module over a polynomial ring R[T ]
is just an R-module together with a chosen R-linear endomorphism corresponding
to the action of T . Of course, once T acts on an R-module then Tn also acts for
all n ∈ N. Consider, therefore, the loop category

(4) N = • Ndd

which has a single object with endomorphism monoid N = ({0, 1, 2, 3, . . .},+).

Theorem 5. Let R be a ring and let D = Der(R-Mod) be the derivator extending
the derived category of R (Thm. 2). Then there exists a canonical and natural iso-
morphism of derivators between Der(R[T ]-Mod) and the derivator DN obtained by
shifting Der(R-Mod) by the loop category N, which is moreover a “strong equiva-
lence.” Of course, there is also a similar canonical and natural isomorphism between
Der(R[T1, . . . , Tn]-Mod) and DNn

.

The word “strong” in the statement refers to the notion of “strong equivalence”
of derivators due to Muro and Raptis [MR14, Def. 3.3.2]. Evaluation at the terminal
category I = e, that is, on the base categories, explains the title:

Corollary 6. If D = Der(R-Mod) is the derivator extending the derived category
of R, then D(Nn) is the derived category of R[T1, . . . , Tn] for any n ≥ 1. �

The proof.

Let R be a ring, N = • Ndd be the loop category (4). The starting point is
the well-known canonical isomorphism of categories

(7) (R-Mod)N ∼= R[T ]-Mod .

It maps a functor A : N→ R-Mod to the R[T ]-module which is A(•) as R-module,
on which T acts as A(1 : • → •) : A(•) → A(•); and it maps a natural trans-
formation A → A′ to the associated morphism at the single object •. In the
other direction, one associates to an R[T ]-module M the functor which takes the
value M (or rather its restriction as an R-module) at the unique object • and maps
any morphism n : • → • in N to the morphism (Tn · −) : M → M ; the natural
transformation associated to a morphism M →M ′ is the obvious one.

The plan is now to pass this isomorphism (7) through the construction of the
associated derivators, “taking out” the exponent N as we go. From now on, the
shifting category N can be replaced by any small category L.

Lemma 8. Let L be a small category and A be an abelian category. There is a
canonical isomorphism of categories

(Ch(A))L ' Ch(AL)

If we define weak-equivalences in (Ch(A))L to be quasi-isomorphisms objectwise
on L, and weak-equivalences in Ch(AL) are quasi-isomorphisms for the abelian
category AL, then this canonical isomorphism preserves weak-equivalences.
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Proof. Let Z≤ be the category associated to the poset Z, that is, with one object
for each integer and one morphism n → m whenever n ≤ m. Both (Ch(A))L

and Ch(AL) can be visualized as subcategories of (L× Z≤)-shaped diagrams in A

where the composition of two consecutive morphisms in the Z≤-direction is 0. Since
kernels and cokernels in AL are computed objectwise on L, weak-equivalences on
both sides are morphisms which, objectwise on L, are quasi-isomorphisms in A. �

Definition 9. Let M be a category and W be a class of morphisms in M that we
call “weak-equivalences.” For example, M might be a model category or Wald-
hausen category and W could be the weak equivalences determined by the model
category or Waldhausen structure. Given a small category I, we equip MI with
the objectwise weak-equivalences WI , as above. We say that the pair (M,W) in-
duces a derivator if, for every small category I, the localization MI [(WI)−1] of MI

with respect to WI is a category and more importantly if the induced prederivator
I 7→ MI [(WI)−1] is a derivator. In that case we denote the derivator induced by
(M,W) as

HO(M,W) : Catop,-−→CAT .

Remark 10. In this language, Theorem 2 says that (M = Ch(R-Mod),W = {q-isos})
induces a derivator. One way to demonstrate this is to put a Quillen model struc-
ture on Ch(R-Mod) and apply Cisinski’s result [Cis03, Theorem 1], which says that
every model category induces a derivator via formula (1). In fact, as long as the
weak-equivalences are fixed, one can play with different model structures on MI to
ensure in turn that for any functor u : I → J , u∗ : MJ → MI is a left or a right
Quillen functor, thus obtaining the right and left adjoints to u∗ (required as part
of the definition of derivator) as derived functors themselves. Alternatively, every
Grothendieck abelian category A also induces a derivator via formula (1), using
the pair (M = Ch(A),W = {q-isos}); see [Gro91, Chap.III, p.10] where the case
A = R-Mod is explicitly given.

Proposition 11. Let M be a category with a class W of weak-equivalences and let
L be a small category. Suppose that (M,W) induces a derivator in the sense of
Definition 9 and let D = HO(M,W). Then (ML,WL) induces a derivator, and we
have a natural isomorphism of derivators HO(ML,WL) ∼= DL, which is moreover
a strong equivalence.

Proof. We have a natural isomorphism (ML)I ∼= ML×I by the categorical exponen-
tial law. Moreover the respective weak-equivalences (WL)I and WL×I in the two
categories are preserved by this isomorphism. Hence the condition for (ML,WL)
to induce a derivator follows from the corresponding hypothesis on (M,W).

For a given I, the values of the derivators HO(ML,WL) and DL are

HO(ML,WL)(I) = (ML)I [((WL)I)−1] and DL(I) = ML×I [(WL×I)−1]

respectively. These categories are isomorphic by the above discussion, hence the
derivators are isomorphic. Moreover, these isomorphisms assemble to strict mor-
phisms of derivators and therefore define strongly equivalent derivators in the sense
of [MR14], as the specialized reader will directly verify. �

Proof of Theorem 5. We have (R-Mod)N ∼= R[T ]-Mod by (7), from which we get
the isomorphism of derivator-defining (Def. 9) pairs

(
Ch(R[T ]-Mod) , {q.isos}

) ∼=
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Ch(R-Mod) , {q.isos}

)N
by Lemma 8. Then Proposition 11 gives us the statement

about the associated derivators. The case of R[T1, . . . , Tn] follows by induction. �

Remark 12. We do not use that R is commutative and the result probably holds
in broader generality. We leave such variations to the interested reader and only
quickly outline the scheme case, at the referee’s suggestion.

The scheme case.

Let X be a quasi-compact and separated scheme. We can associate a derivator
to X by DX(I) = D(Qcoh(X)I), where Qcoh(X) denotes the category of quasi-
coherent OX -modules. As Qcoh(X) is a Grothendieck abelian category, this is a
stable derivator. If X was not separated but only quasi-separated, the appropriate
“derived category” of X would be the derived category of OX -modules with quasi-
coherent homology. Under our assumption that X is separated, this coincides with
the above. This mild restriction is irrelevant for the point we want to make.

Proposition 13. We have an isomorphism of categories Qcoh(A1
X) ∼= Qcoh(X)N.

Proof. This is a global analogue of the affine case (7), from which it follows by
Zariski descent. Indeed, if {Ui = SpecAi} is an open cover of X, then {A1

Ui
=

SpecAi[t]} form an open cover of A1
X . The obvious functor Qcoh(A1

X)→ Qcoh(X)N

restricts to the canonical isomorphism (7) on each open Ui, on each double inter-
section (for gluing data), and on each triple intersection (for cocycle condition).
The result follows by direct inspection. �

The category of quasi-coherent sheaves on X is Grothendieck abelian, so we
may apply Lemma 8 and Proposition 11 as in the proof of Theorem 5 to obtain
the isomorphism of derivators (DX)N ∼= DA1

X
. On base categories, this isomorphism

describes the derived category of A1
X as DX(N).
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