Unavoidable patterns in long strings of symbols

Kirby A. Baker

UCLA

March 19, 2001

I. Axel Thue and square-free words.

Work with a finite alphabet Γ .

A *word* is a nonempty string of symbols from Γ .

 Γ^+ is the set of all finite words from Γ .

A word w is square-free if w has no repeated block. For example, banana is not square-free.

Theorem (Thue). If $|\Gamma| = 3$ there are infinitely many square-free words.

Ex. 02012021020121012021020...

Equivalently: There exists an infinite squarefree word from Γ .

If $|\Gamma| = 2$? No, 010 can't be continued.

On $\Gamma_4 = \{0, 1, 2, 3\}$, an easy construction of an infinite square-free word:

Let
$$\varphi$$
 be the substitution
$$\begin{cases} 0 \mapsto 01 \\ 1 \mapsto 21 \\ 2 \mapsto 03 \\ 3 \mapsto 23 \end{cases}$$

Start from 0 and iterate:

0 01 0121 01210321 0121032101230321

The "union" of these images is an infinite word Ω .

In terms of semigroups: φ determines endomorphisms $\varphi: \Gamma_4^+ \to \Gamma_4^+$ and $\varphi: \Gamma^\omega \to \Gamma^\omega$. Here $\omega = \{0, 1, 2, \dots\}$.

The infinite word is a fixed point in Γ^{ω} .

Proof of square-freeness of $\Omega = 01210321012303210121032301230321...$

Suppose $\Omega = \cdots XX \ldots$, where X is some block.

Choose X to have minimum possible length.

Observe that the symbols in Ω alternate evenodd.

Case 1: X starts with an even symbol.

Then we can pull back via φ by taking a preimage, to get a shorter squared block.

Observe that the even symbols 0,2 alternate.

Case 2: X starts with an odd symbol. We can shift left one position to obtain Case 1. \square

II. Avoiding or encountering a pattern

Let $\Sigma = \{a, b, \dots, z\}$ be a second alphabet, used to express patterns.

For example, we say that Ω (as above) avoids the pattern word xx, while $02\underbrace{012021}_{X}\underbrace{012021}_{X}\underbrace{02}$ encounters xx

For a word α To encounter xyx means that α has blocks $\cdots XYX \cdots$.

Similarly, for α to encounter xyxzxyx means that α has blocks $\cdots XYXZXYX\cdots$.

III. Avoidable and unavoidable words

Given a pattern such as xx, xyx, xyxzxyx, we can ask:

Does there exist a finite alphabet Γ and an infinite word α on Γ avoiding the pattern?

Ex. 1:
$$xx$$
? Yes, $|\Gamma| = 3$ (Thue)

We say xx is an avoidable pattern.

Ex. 2:
$$xyx$$
? No, some symbol repeats, say 0, and then α would have $\cdots 0 \cdots 0 \cdots$, giving $\cdots \underbrace{0}_{X} \underbrace{\cdots}_{Y} \underbrace{0}_{X} \cdots$

We say xyx is an unavoidable pattern.

Ex. 3: *xyxzxyx*?

Unavoidable.

Ex. 4: xyxzyxy? Fact: Avoidable.

IV. Conditions for avoidability?

Sufficient conditions: A pattern word \boldsymbol{w} is avoidable if

(1) Each letter of w appears at least two times: abcacb

(2)
$$w \in \Sigma^+$$
, $|\Sigma| = k$, $|w| \ge 2^k$.

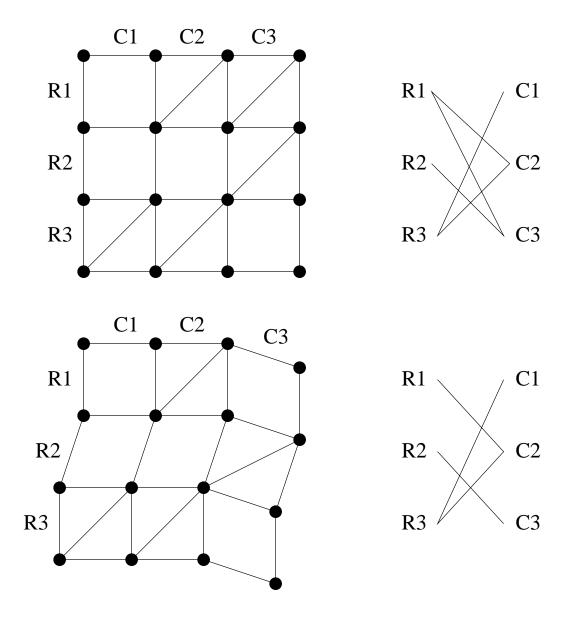
babcabab

(3) The adjacency graph of w is connected: abcacb

Say "w is locked".

In this case Ω on four symbols avoids w (KB-McNulty-Taylor).

?? Connection with rigid/flexible planar frameworks?



Theorem: The framework is rigid if and only if the row/column graph is connected.

A necessary and sufficient condition for avoidability

(Zimin; Bean-Ehrenfeucht-McNulty):

- (4) w is avoidable if and only if you can't reach the empty word by a sequence of steps from among these two options:
- (i) merging two letters
- (ii) erasing a letter whose two occurrences in the adjacency graph are in separate components.

		X	X
Ex. 1. $xyxzxyx$? Graph is	aph is	У	y
		Z	Z
Can delete x , leaving yzy , c	, graph	у	y
3 9 · 9		Z	Z

Now delete y, then z, so unavoidable.

Ex. 2.
$$xyxzyxy$$
? Graph is y y z z

Try deleting x , get $yzyy$, graph z z

The yy will prevent reduction to empty. Other routes also fail.

So yxyzyxy is avoidable.

Also,

(5) w is avoidable if and only if w does not encounter one of the Zimin words x, xyx, xyx, xyx, xyx, ...,

or better, $w_1 = x_1$ and $w_{n+1} = w_n x_{n+1} w_n$.

V. k-avoidability

Means: Avoidability by an infinite word from Γ with $|\Gamma| = k$.

Do examples of the following kind exist?

1. w is 2-avoidable but 1-unavoidable?

Yes, xxx (Thue)

2. w is 3-avoidable but 2-unavoidable?

Yes, xx (Thue)

3. w is 4-avoidable but 3-unavoidable?

Yes, KB-McNulty-Taylor:

 $w_{\wedge} = ab \ x \ bc \ y \ ca \ z \ ac \ u \ cb.$

4. w is 5-avoidable but 4-unavoidable?

Not known.

If it exists, see Ω !

For convenience, say the *index* of an avoidable pattern word is the least alphabet size on which it is avoidable. Thus xx has index 3, w_{Δ} has index 4.

(Say that an *un*avoidable pattern word has index ∞ .)

So have seen examples of pattern words of indices 2, 3, 4.

Any simpler version with index 4?

Yes, abcadacb has index 4.

Why is w_{Δ} 4-avoidable?

Locked:

aa

b

c

 \mathbf{X} \mathbf{X}

y

Z

W W

Why is w_{Δ} 3-unavoidable?

Later.

VI. Formulas

The idea:

To say " α encounters the formula $aba \wedge bab$ " means that there are blocks A,B such that α has $\cdots ABA \cdots$ somewhere and also $\cdots BAB \cdots$ somewhere.

In general:

A (conjunctive) formula has the form $f = w_1 \wedge \cdots \wedge w_k$, $w_i \in \Sigma^+$.

Say α encounters f if there is a homomorphism $\mu: \Sigma^+ \to \Gamma^+$ such that each $\mu(w_i)$ is a factor of α .

Otherwise, say α avoids f.

Definition. For a pattern word $w = a_1 \cdots a_n$, the dissociation of w, denoted D(w), is the formula obtained by replacing each uniquely occurring letter by \wedge .

$$Ex. \ w = abacbab \Rightarrow D(w) = aba \wedge bab.$$

Proposition. w and D(w) have the same index.

Proof. Let's show w is k-unavoidable $\Leftrightarrow D(w)$ is k-unavoidable.

For \Rightarrow : Trivial, since D(w) encounters w.

For \Leftarrow : On Γ_k , D(w) avoids at most a finite number of words, so there is some N such that D(w) encounters all Γ -words of length N.

Given an infinite word α on k symbols, chop it into blocks of lengths alternating between N and 1.

$$\alpha = \underbrace{\cdots}_{N} \underbrace{\cdots}_{1} \underbrace{\cdots}_{N} \underbrace{\cdots}_{1} \text{ etc.}$$

D(w) encounters each N-block in one of finitely many ways.

Thus there are infinitely many separated N-blocks having identical encounters with D(w).

Patch parts of these together into an encounter of w with α . \square

Applications:

(1) xyxzxyx?

Same as $xyx \wedge xyx$, or simply xyx, which is the same as $x \wedge x$, which is the same as x: unavoidable.

(2) $w_{\Delta} = ab \ x \ bc \ y \ ca \ z \ ac \ u \ cb$?

Same as $ab \wedge bc \wedge ca \wedge ac \wedge cb$.

To check 3-unavoidability of w_{Δ} directly by computer is difficult or impossible, since can get words up to length 100 or more avoiding w_{Δ} .

To check 3-unavoidability of D(w) is easy; square-free and maximum length avoiding is 7.

Words avoiding a given pattern formula

Contrasts:

(1) xx is easy to avoid on 3 symbols.

The number of words of length n avoiding xx grows exponentially with n.

(2) w_{Δ} is just barely avoidable on 4 symbols.

The number of words of length n avoiding w_{Δ} grows polynomially with n.

They look pretty much like Ω but with garbage on the front.

If take bi-infinite words, no garbage.

 $\cdots 01210321012303210121032301230321 \cdots$ or

··· 02320132023101320232013102310132 ··· or

Key endomorphisms:

For
$$|\Gamma| = 2$$
, have Thue-Morse:
$$\begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10 \end{cases}$$

Generates infinite word avoiding xxx.

For
$$|\Gamma| = 3$$
, have
$$\begin{cases} 0 \mapsto 012 \\ 1 \mapsto 02 \\ 2 \mapsto 1 \end{cases}$$

Generates infinite word avoiding xx.

For
$$|\Gamma|=4$$
, have φ :
$$\begin{cases} 0\mapsto 01\\ 1\mapsto 21\\ 2\mapsto 03\\ 3\mapsto 23 \end{cases}$$

Generates infinite word avoiding all locked words and formulas.

These are minimal in numbers of image elements, but beyond that they seem to play a key role in some sense not yet understood.

Some names:

- A. I. Zimin
- D. Bean, A. Ehrenfeucht, G. McNulty
- M. Sapir, applications to varieties of semigroups and Burnside problem.
- J. Cassaigne thesis—classified all pattern words on 3 letters
- J. Currie—cash problems

Current work: R. Clark – formulas on 3, 4 letters

Introductory References:

M. V. Sapir, *Combinatorics on Words*, Birkhauser (to appear)

- J. Currie, *Open problems in pattern avoidance*, Amer. Math. Monthly 100 (1993), 790-793.
- J. Currie, web page
 http://www.uwinnipeg.ca/~currie/wordtext.html