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Research was conducted to test a new automatic design methodology for nonlin-
ear controllers that can be used when an accurate conventional computer model
exists for the plant (the nonlinear system which is to be controlled). The real-time
recurrent learning algorithm was employed to train an artificial neural network
to perform an unknown nonlinear control function which obtains the desired be-
havior from the plant. Two different methods are employed to compute partial
derivatives for the real-time recurrent learning algorithm. Derivative arithmetic
was used to compute the partial derivatives of the state variables at the next time
step with respect to the state and control variables at the current time step. The
backward error propagation algorithm was used to compute the partial deriva-
tives of the control variables with respect to the current state variables and the
control system parameters which are simply the network biases and connection

weights.

The methodology was applied in the design of a flight test maneuver au-

Xiv



topilot for high performance fighter aircraft. An artificial neural controller was
installed in a realistic computer flight simulator and trained to fly coordinated 2
g turns while maintaining altitude and airspeed. It should be possible to teach
an artificial neural controller to fly almost any standard flight test maneuver but
training would probably require considerable engineering insight and knowledge
of the system to configure the network and learning algorithm. Of course, this
compromises the ultimate goal which is to completely automate the controller

design process.
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CHAPTER 1

Introduction

The objective of this research is to automate the design of nonlinear controllers
for nonlinear systems. Computers are already used extensively in conventional
controller design[Lew92] to assist the design engineer with some of the more te-
dious computational tasks. Automation of the entire design process is limited
mostly to linear controllers for linear systems for which there is a large and ele-
gant body of control theory. But because there is no comprehensive theory for
nonlinear systems[NP], engineers are forced to invent ad hoc designs to control
nonlinear systems. These designs usually require extensive testing then consider-
able refinement and adjustment in order to obtain acceptable performance while

maintaining stability and reliability.

1.1 Problem

It isn’t always possible to derive an expression which describes the control func-
tion for a nonlinear system analytically. The system is often described by a
nonlinear differential equation, & = f(z,u), which implies the simultaneous so-
lution of a system of nonlinear equations for the control inputs, u, required to
produce the desired rate of change, &, in the state variables, x. The desired
rates of change are determined in turn by solving the differential equation begin-

ning with some initial state and terminating in the desired state some time later.



Usually, only numerical solutions are possible.

1.2 Approach

One solution is to approximate the control function by a universal model with
many adjustable parameters. This so-called black box approach requires no ex-
plicit knowledge of the control function. If we know how to change the parame-
ters to improve control over the system, they can be adjusted incrementally until
satisfactory behavior is obtained. This is precisely the approach that we have
taken except that we avoid the time and expense of computation required for
the more complicated universal models and restrict ourselves to those universal
models which are artificial neural networks. The adjustable parameters in an
artificial neural network are the biases and connection weights, and the process

of estimating these parameters is called learning.

The idea of using universal models is not new but only became practical with
the advent of high speed digital computers which could be used for parameter
estimation. After fast, powerful computers became widely available around 1980,
thousands of new artificial neural network applications appeared in the literature.
The fact that these successes represent only a tiny fraction of attempts received
little attention. Researchers seldom report their failures. They simply continue
to search until they find a problem which they can solve. The methodology seems
to work well for simple “toy” problems[NW90] and quasi-linear systems[FPD91,
JS90] but has not yet been proven for complicated, highly nonlinear, real-world

control problems.

The problem is that a large number of parameters are required to approximate

complicated functions. Even if a method for estimating optimal values for each



of the parameters can be devised, the complexity of the computation might be
exponential in the number of independent parameters. In practice, the problem
is circumvented using heuristic search techniques'. But these techniques cannot
generally guarantee that an optimal or even a satisfactory set of values will be

found for all of the parameters.

1.3 Test Problem

In order to test our methodology on an important real-world problem, we at-
tempt to design flight test maneuver autopilots for high performance experi-
mental fighter aircraft. Some flight test maneuvers are particularly difficult for
human test pilots to fly, especially if the vehicle is a remotely piloted scale model.
Maneuver autopilots have already been employed for this purpose[DJR86]. But
autopilot design and development costs which are normally amortized over hun-
dreds of production aircraft are usually prohibitive for one or two experimental
models. Our hope is that an automatic design methodology would be cost ef-
fective for flight testing even if the resulting controller was not safe enough for

commercial use.

Although high performance aircraft can be very complicated nonlinear sys-
tems, they should not be very difficult to control. Aircraft can tolerate a great
deal of control error except when taking off or landing. There are only about
a dozen state variables, half a dozen control variables and almost no hard con-
straints. The instruments which are standard equipment in almost all aircraft

provide accurate information about almost all of the system state variables.

There is very little unclassified flight test data for high performance exper-

!Here, the term heuristic refers to methods such as hill-climbing which apply to search in a
continuous multidimensional space and not just to search in graphs described by Pearl[Pea84].
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Figure 1.1: The ATAA Aircraft Controls Design Challenge model is a very realistic

computer flight simulator for high performance fighter aircraft.

imental fighter aircraft, but there are very realistic flight simulators for high
performance fighter aircraft like the one shown in figure 1.1. These simulators
can be used to generate training data for an artificial neural controller. We use
the ATAA Aircraft Controls Design Challenge model which is a computer pro-
gram distributed as FORTRAN 66 source code from the NASA Dryden Flight

Research Facility at Edwards Air Force Base.

We use the real-time recurrent learning algorithm to train the artificial neural
controller. This algorithm employs a first order gradient descent method which
requires estimates of the partial derivatives of the system state variables with re-
spect to the state and control variables at the previous time step. These estimates

can be obtained by a number of different methods.

One method is to differentiate the mathematical model symbolically. This



usually results in an enormous number of complicated expressions which must be
converted into code. Some researchers employ sophisticated symbolic manipula-
tion software to eliminate errors and redundant code, but must repeat the whole
process if there are any changes in the model. Others attempt to simplify the
model in order to make the problem more manageable, but find it difficult to
prove that the simplified model adequately represents the system. So the validity

of the model is compromised.

Another method is to differentiate the computer model numerically as sug-
gested by Dieudonne[Die78]. The system state variables are computed at the
next time step for small perturbations in the the current state and control vari-
ables. The partial derivatives are estimated by the ratios of the differences. But
this method is generally unreliable because it is too sensitive to small rounding

errors.

Another method suggested by Barto[Bar90], Narendra|[NP90] and Widrow[NW90]
is to train a multi-layer feed-forward artificial neural network to model the system.
If this works, the partial derivatives are easily and efficiently computed using the
backward error propagation (backprop) algorithm[RHWS86]. The network may
also have the flexibility required to account for modeling errors and unmodeled
behavior in an on-line adaptive control system. But this method discards all
knowledge and understanding of the plant and is seldom sufficiently accurate for

complicated nonlinear systems.

Because we have the source code for the computer model, we can use derivative
arithmetic to compute the partial derivatives. Derivative arithmetic replaces the
normal computer arithmetic with operations that compute and propagate the
partial derivatives along with the normal results. This simple idea is the main

original contribution of this research. It permits us to compute partial derivatives



for the complete computer model without maintaining any additional source code.

1.4 Scope

The scope of this research is limited to artificial neural networks which are used
as “black box” controllers for nonlinear systems for which an accurate conven-
tional computer model already exists. It does not address the problem of system
identification which, more generally, would be required to develop and validate a
conventional computer model. The discussion provides just enough background
in control system and artificial neural network theory to help orient readers who
might not be experts in either discipline. The research is limited to artificial
neural networks in engineering applications and any extension to natural neural

networks is purely speculative.

The scope of the research is further restricted to controllers which do not,
themselves, have internal state. The method requires that the source code for
the computer model is available which means that the internal state of the system
is accessible so no “observer” processes are required to estimate the state of the
system. Conventional computer models are usually not easily adjustable so only
accurate, valid conventional computer are considered and adaptive control is not

relevant. re

1.5 Organization

Chapter 2 presents a working definition for neural networks in terms of the three
properties which distinguish them from other computational networks. It includes
a brief description of both natural and artificial neural networks and introduces

learning as a process of statistical parameter estimation.



Chapter 3 details the mathematical models used for artificial neural control.
Section 3.1 briefly describes nonlinear control systems and introduces some of the
notation used in the sequel. Section 3.2 formally describes the real-time recurrent
learning algorithm. Section 3.3 introduces derivative arithmetic and explains how
it is used with the computer model. Section 3.4 reviews the backward error prop-
agation algorithm and shows how it is used to compute the partial derivatives
of the feed-forward network outputs with respect to network inputs as well as
the network biases and connection weights. Section 3.5 shows how the second
gradient might be employed to improve the performance and stability of a gra-
dient descent method. Section 3.6 shows that the practice of “normalizing” the
network inputs attempts to achieve the same effect as a constant second gradi-
ent method. Section 3.7 summarizes the real-time recurrent learning algorithm

including normalization.

Chapter 4 describes the construction of an artificial neural controller by ma-
nipulating the gains employed in a simple conventional controller which was pro-
vided along with the flight simulator. This was important for two reasons. First,
it demonstrated that an artificial neural network can control the aircraft. Second,
it showed that a feed-forward network architecture was appropriate for the neural

controller.

Chapter 5 describes the experiments that were designed to teach an artificial
neural controller to fly turns along with the results of those experiments. Sec-
tion 5.1 details the test maneuver. Section 5.2 describes the configuration of the
artificial neural controller and the real-time recurrent learning algorithm. It spec-
ifies the details of the desired state, network inputs and outputs, input biases and
variations, reference signal, output biases and variations, network initialization

and input normalization. Section 5.3 presents the experiments and their results.



First, a one-layer artificial neural controller is taught to fly shallow turns then
statistics generated by the simulator are used to revise parameters used by the
learning algorithm. The artificial neural controller is taught to fly successively
steeper turns until it can fly 2 g turns. The one layer artificial neural controller is
embedded into a two layer network with a single hidden layer of identical nonlin-
ear sigmoidal processing units. The two layer artificial neural controller performs
almost exactly like the one layer network but it has a much greater capacity for
learning. Section 5.4 presents an experiment designed to test the affect of noise
(mild air turbulence) on the ability of the artificial neural controller to fly to fly 2
g turns. The controller does not act to reduce the difference between the desired
and actual state but attempts to reduce the total squared error over the entire

maneuver.

Chapter 6 presents the conclusions which can be drawn from this research.
The artificial neural controller flies turns about as well as any human novice
pilot. It should be possible to train artificial neural controllers to fly almost any
standard flight test maneuver. Unfortunately, the methodology represents little
improvement in automated controller design. The main problem seems to be that
the first order learning algorithm is either too slow or unstable and we do not have

sufficient computational resources to employ a higher order learning algorithm.



CHAPTER 2

What Are Neural Networks?

There is no universally accepted definition for neural networks. Most people
have formed very vague notions about neural networks which they are unable to
articulate but sometimes describe in terms of ideas that have been associated with
them in the current literature. This is barely noticeable in casual conversation but
in more serious discussions, people often cannot determine whether or not they
disagree with each other much less whether or not some statement made about
neural networks is accurate. There must be a clear, concise working definition
for neural networks but so far they have eluded the search for a perfect sound

bite which sums them up in a nutshell. The following definition:

A neural network is a computational network with the following three
properties:

1. simple processing units,

2. massive parallelism and

3. high connectivity.

abstracts the essential properties of neural networks without making any as-
sumptions which unnecessarily narrow the definition but it requires considerable

elaboration.



Many features commonly associated with neural networks are conspicuously

absent from this definition.

e It does not imply that artificial neural networks which are the inventions
of engineers are in any way derived or even inspired by natural neural
networks which are the nervous systems of animals but applies equally to

both artificial and natural neural networks.

e It does not mention learning. Despite the fact that the bulk of the literature
on neural networks (including this discussion) concerns itself with learning,
most neural networks do not learn. The function of natural neural networks
is almost entirely determined by nature during development and changes
very little over the life span of the host organism. As technology evolves,
the current fascination with machines that learn should fade as engineers
turn their attention to exploiting the raw computational power of artificial

neural networks.

e It does not specify the function of the processing units. In particular, it does
not specify uniform sigmoidal functions applied to a weighted sum of inputs.
Each processing unit may be different and implement any function including
a discontinuous or unbounded function of the inputs. The processing units
in artificial neural networks bear little resemblance to the neurons in natural
neural networks even when artificial neural networks are used to model the

computational behavior of natural neural networks.

e It does not specify the network architecture. In particular, it does not spec-
ify a multi-layered feed-forward network architecture. The multi-layered
feed-forward network architecture is merely a mathematical contrivance

which is used to represent all other neural network architectures.

10



e [t does not specify whether numeric or symbolic, analog or digital, contin-
uous or discrete signals propagate through the network. Any combination

of signaling methods is possible.

2.1 Computational Network

A computational network is the abstraction of a computer architecture which
can be represented by a directed graph. Processing units at the nodes (vertices)
operate on inputs transmitted along arcs (edges) directed into the node and
produce outputs transmitted along arcs directed out of the node. Figure 2.1, for
example, shows the diagram for a computational network for a simple arithmetical
computation — the cross product a x b = ¢ where ayb, —a,by = c;, azb, —a,b, = ¢,

and agb, — ayb, = c,.

2.2 Properties

Neural networks are distinguished from other computational networks only by
the complexity, parallelism and connectivity of the processing units but there are
no precise thresholds which discriminate between them. It is not as important to
distinguish border line cases as it is to perceive the general relationship. A few
examples of each property should suffice to establish good intuition about the

differences.

2.2.1 Simple Processing Units

A processing unit which computes an elementary arithmetical operation (addi-

tion, subtraction, multiplication or division) is regarded as simple whereas few

11



Figure 2.1: A directed graph represents a computational network for the cross
product a x b = ¢ where a,b, — a,by = ¢, agb, — a,b; = ¢, and azby, — a,b, = c,.
Numerical values are transmitted along the arcs to simple processing units at the

nodes which compute products (*) and differences (-).

12



people think that a general purpose microprocessor is simple. Neurons are the
processing units in natural neural networks and are presumed to be simple even
though no one is quite sure exactly what each one computes. It is generally as-
sumed that the same value is distributed to every output of a simple processing
unit because a processing unit which can compute and distribute different values

for each of its outputs probably isn’t simple.

2.2.2 Massive Parallelism

If the computations performed by any two processing units are independent of
each other, they can execute in parallel. No particular timing mechanism is
specified. The network may be implemented synchronously or asynchronously. A
computational network which computes the matrix product Az = y where x and
y are each vectors with thousands of elements is massively parallel because each
element of y can be computed independently of every other element of y. The
computational network which computes the cross product a x b = ¢ has simple
processing units and high connectivity but it isn’t massively parallel because only

three elements are computed.

2.2.3 High Connectivity

Adding connections increases the connectivity until it approaches the limiting
case where there is a dedicated direct connection from each processor to ev-
ery other processor. Typically, neurons are directly connected to thousands of
other neurons in natural neural networks. Current technology is inadequate for
building artificial neural networks with connectivity approaching that of natural
neural networks. Processors in today’s massively parallel computers have direct

connections to only about a dozen of their nearest neighbors.

13



2.3 Natural Neural Networks

There are so many different kinds of natural neural networks that no one claims
to know how they all work but we know enough about some of them to give a
fairly accurate description of their behavior. The typical neuron in a vertebrate

animal has three parts:

1. the soma or cell body which contains the nucleus,

2. a collection of branching nerve fibers called dendrites which transmit nerve

impulses into the soma and

3. the axon which transmits nerve pulses out of the soma and may be quite long
but eventually branches into terminal fibers which connect to the dendrites

of other neurons through synaptic junctions.

The nerve impulses are changes in electrical potential across the cell membrane
which may increase by about one hundred millivolts when they spike then decay
again within a few milliseconds. They originate in the soma then travel on the
order of ten meters per second along the axon and are broadcast over the ter-
minal fibers. Nerve impulses are amplified (or attenuated) by the synapses then
transmitted along a dendrite to the soma of the next neuron. Apparently, the
soma behaves like a leaky integrator. If strong nerve impulses arrive at the soma
at a sufficiently high rate, the potential across the cell membrane will increase
until it reaches a threshold potential at which it begins to fire nerve impulses out
along the axon. Usually, the rate of firing increases with increasing cell membrane

potential but eventually saturates at some maximum rate.

No one knows what these nerve impulse signals really mean or how a natural

neural network uses them to compute but there is one interpretation which ex-

14



plains how they can be used to compute anything that can be computed. This
interpretation maintains that only the average firing rate of neurons is important
and not the details or timing of individual nerve impulses. The firing rate is a
frequency modulated signal which may have been naturally selected because it is
less susceptible to interference, cross-talk and other noise in the neural environ-
ment. The synapses act as weights, w;, for each input signal, z;, and the leaky
integrator effectively performs a simple sum of these weighted inputs so that
the membrane potential at the soma is proportional to ), w;x; and the neuron
fires at a rate proportional to o (3; w;z;) where o(-) is a sigmoid function. Al-
most any function can be approximated by a linear combination of the outputs,
y; = o (X; wijz;), given enough neurons and an appropriate set of connection

weights, w;;. The exact form of the sigmoid is unimportant.

A diagram of a natural neural network resembles a graph of a computational
network except that people tend to associate the products, w;;x;, with the arcs
because the synapses lie between the somata at the junction between dendrite and
axon. Each neuron has perhaps as many as ten thousand synaptic connections to
other neurons. If the human nervous system has as many as one hundred billion
neurons, there could be upwards to 10 synaptic connections. The somata are
essential but their exact function can be safely ignored as long as it is consistent.
It is the tiny but much more numerous synaptic connections that determine the
exact function of the network. Still, it is not clear whether there are enough of
them to account for all of the complexity of human behavior. Using this model for
neurons, a digital computer capable of at least one million trillion floating-point
multiplications each second is required to simulate the human brain in real time
updating once each millisecond. Machines capable of one trillion floating-point
operations each second are being introduced now. If performance continues to

increase by a factor of ten every three years, the minimum required computational
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power should be available within two decades.

2.4 Artificial Neural Networks

Virtually all artificial neural networks are simulated on general purpose serial
computers. Sometimes special purpose simulation accelerators are employed. A
few attempts have been made to implement the network itself in hardware using
electrical analog circuitry. Simple resistors, R;;, tap inputs, u,;, which are electri-

cal potentials and conduct electrical currents, u;/R;;, to an RC integration circuit

i
at the input to an operational amplifier which may have a nonlinear output.
Progress in the implementation of artificial neural networks in hardware has
been slow partly because of the limitations of current technology. It is difficult
to manufacture precision resistors on a silicon substrate. Also, the two dimen-
sional architecture severely restricts the number of connections between process-
ing units. The connections occupy most of the surface of a chip leaving little
room for the processing units. But an even better explanation is that devel-
opment of artificial neural network hardware has been inhibited by competition
from rapidly improving general purpose serial computers which can be used to

simulate artificial neural networks.

Any neural network can be represented by an equivalent multi-layer feed-
forward artificial neural network. For this network architecture, the outputs,
Trp, of layer k+1 are functions, fryi(xx) = Tgp,, of the inputs, zj, from
layer k. The fry,i(-) may all be different from each other and may be any
linear or nonlinear function including fr1,(zx) = xx,; which simply passes an
input through to the next layer. If the fi,(-) are functions of the activation,

Uki1i = 2 WkijTk,j, then the network is called a multi-layer perceptron. An
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activation function, fi1(ak,:), may be any function including a sigmoidal ac-
tivation function, opy (k). A sigmoid is any bounded function which ap-
proaches a different value when the argument approaches positive infinity than
when the argument approaches negative infinity. Any function with this general
S-shaped appearance will do but other properties such as monotonicity or contin-

uous, bounded derivatives are valued because they simplify learning algorithms.

Usually, an extra constant input, z;¢ = 1, is included in each layer so that
the associated connection weights, wy o, acts as a bias. As the weighted sum of
all the other inputs increases past the threshold —wy o, the activation changes
sign from negative to positive. Common examples of sigmoid functions are the
unit step function

o(z) = { (1) Ti g 2 2 (2.1)

and the logistic function
1

T 1t

o(z)

The problem with using these functions is that the output has a large bias which

(2.2)

is highly correlated with the bias in every other input to the next layer especially
the constant input. If there are very many such inputs, it usually means that
the biases must be large but the connection weights must be small. If a first
order gradient descent method like backprop is used to estimate the biases and
connection weights, the learning rate must be reduced to estimate the small
connection weights accurately which usually slows progress in approximating the

large biases. A better choice of sigmoid functions is the signum function
-1 if z < 0
o(z) = { 0 < z (2.3)
and the hyperbolic tangent function

o(z) = ——. (2.4)
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The output of the hyperbolic tangent is approximately equal to its argument if
the argument is a very small value and approximately equal to the output of the
signum function if the argument is a very large positive or negative value. Simply
scaling the connection weights and biases appropriately permits it to serve either

as a linear function or a step function.

A multi-layer perceptron can approximate any bounded continuous function
with just one hidden layer of sigmoidal activation functions but may require an
enormous number of units to obtain the desired accuracy. It is usually possible to

maintain accuracy using fewer hidden units by adding additional hidden layers.

2.5 Learning

Learning is simply the process of estimating system parameters as employed in
statistics, filter theory, systems science, operations research and a host of other
disciplines — each of which has developed its own redundant jargon more or less in
ignorance of the others. The process begins with a mathematical model f(z;0) ~
y(x) for a system where the actual outputs, y, are approximated by a function,
f(-), of the actual input variables, z, and adjustable system parameters, . The
problem is to find a # that minimizes the expected cost of the error y — f(z;60)
over all possible x. If the system is linear, Az = y, there is a simple, direct
method for estimating the matrix A which represents the system parameters.
If the system is nonlinear, there is no general method for minimizing the error
short of testing every possible . Even if the test is simple and the precision
of each element of # can be restricted, the complexity grows exponentially with
the number of elements in # and the problem quickly becomes intractable. Some
sort, of heuristic search is required to overcome this barrier. This usually means

some kind of gradient descent or hill climbing algorithm when the elements of
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f represent continuous parameters. Although there have been some significant
theoretical advances, the methods we use to optimize # haven’t changed since
they were invented by Karl Friedrich Gauss nearly 200 years ago. What has
changed is that we now have powerful computers which we can use to compute

accurate estimates for many more parameters.

A mathematical model may be derived from first principles if everything about
the system is known. But if the system is essentially a black box about which
nothing is known except the inputs and outputs, universal models may be em-
ployed to approximate the behavior of the system. The most simple approach is
to use a linear combination, Y 6;f;(z) ~ y(z), of functions, f;(-), which form a
basis for the function space. In general, an infinite set of functions is required to
span the function space so the trick is to pick a basis from which a small subset of
functions are required to adequately approximate the behavior of the system. For
example, the series Y 6;2° = y truncated to n terms can be used to approximate
any reasonable smooth, bounded function on the unit ball. Because the model is
a linear function of the parameters, there is a simple direct method for estimat-
ing them. Another approach is to parameterize the basis functions themselves
as in Y. a;x™ = y where the n; are adjustable exponents. This complicates the
parameter estimation process because the model is a nonlinear function of the n;

but it effectively permits a better choice of basis functions.

At first glance, a multi-layer perceptron with sigmoidal activation functions
seems to be an unlikely model for anything except perhaps a natural neural
network. In fact, it will serve as a universal model for any black-box system, y(x),
which is a function only of its inputs, . The system parameters, 8, are simply
the biases and connection weights, wy;; and the processes of estimating them is

called learning. If the system parameters are estimated from training data which
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are pairs of random vectors, (z,y), then the process is, at best, simply statistical
estimation. In general, there must be at least as many distinct, independent

training pairs as there are biases and connection weights in the network.

Learning in natural neural networks remains a matter of considerable spec-
ulation. There is strong evidence that the strength of synaptic connections is
modified by learning but the mechanism which effects these changes is unclear.
There is virtually no evidence for the kind of feedback network that seems to
be essential for learning in artificial neural networks but this does not rule out

communication via some other medium such as chemical diffusion.
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CHAPTER 3

Artificial Neural Control

3.1 Nonlinear Control Systems

Our research is concerned with discrete-time difference equations which represent
the equivalent continuous-time, ordinary differential equations on digital comput-

ers. A nonlinear system can be represented by a state transition equation,

Teg = f(x4,up), (3.1)

where the system state, z,., at the next time step, t+1, is a nonlinear function,
f(-), of the the system state, z;, and the control inputs, u;, at the current time

step, t, and a measurement equation,

yr = g(z1), (3.2)

where the observable system outputs, y;, are a nonlinear function, g(-), of the
system state, x;. The nonlinear system which is to be controlled is called the

plant. A block diagram of the plant is shown in figure 3.1.

The nonlinear system which controls the plant is called the controller. The
controller outputs,

Uy = c(xt,rt;et), (33)

are a nonlinear function, c(-), of the system state, z;, the reference signal, ry,

and numerous adjustable parameters, #;. This is the function that we wish to
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Figure 3.1: The nonlinear system which is to be controlled is called the plant.

The block labeled z=! represents a delay until the next time step.

approximate with an artificial neural network. The adjustable parameters are the
network biases and connection weights. More generally, the control function is
also a function of the internal state of the controller. However, these controllers
are beyond the scope of this research since the stability of the internal states can

be very sensitive to small parameter estimation errors.

The state of the system to be controlled must be observable. However, the
system state generally cannot be measured directly, and another process, called
the observer, is required to generate an estimate of the system state, 24, from
the observable system outputs, y.1. The block diagram in figure 3.2 shows the
signal flow from the controller to the plant to the observer and back again to the

controller completing the feedback control loop.

More generally, the output of the observer, &1 = ¢(yu1, L, us), will be a
nonlinear function, ¢(-), of the plant output, 44, the previous state estimate,
Z;, and the previous control input, u;. For example, if the plant is a linear or
quasi-linear system, a Kalman filter or an extended Kalman filter can perform
the function of the observer as shown in the block diagram in figure 3.3. The

innovations, asy = Y1 — Yu1, are used to improve the estimate of the plant
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Figure 3.2: The observer estimates the system state from the observable plant

outputs and feeds them back to the controller.
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Figure 3.3: An extended Kalman filter can be used to estimate the system state

variables for a quasi-linear system.
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Figure 3.4: The training algorithm adjusts the parameters in the control function

so as to reduce the difference between the actual and desired output of the plant.

state variables, Z;1 = ZTu1 + Koy, at the next time step. The accuracy of
the estimation process depends upon the accuracy of the mathematical model
specified by f(-) and §(-).

The design of observers is beyond the scope of this research, but for the pur-
pose of training the artificial neural controller, it is assumed that it is possible
to accurately estimate the system state variables from the system outputs. The
block diagram in figure 3.4 shows that the training algorithm adjusts the param-
eters in the control function so as to reduce the difference between the actual

output, ¥y, and the desired output, dyy, of the plant.

Although the design of adaptive controllers is beyond the scope of this re-
search, the same approach could be used on-line to compensate for minor mod-
eling errors and small changes in plant dynamics. The main difference is that

generally a system identification process will be required to automatically main-

24



/ gt—i—l

Uy model

- identify [

A

L @

plant Ytrl

Y

Figure 3.5: The system identification process maintains an accurate model of the

system dynamics.

tain a sufficiently accurate model of the plant which can be used to estimate the
partial derivatives of the state variables with respect to the state and control
variables. The system identification process shown in the block diagram in fig-
ure 3.5 uses the difference between the outputs of the model and plant to update
the model. The problem is that conventional models are seldom flexible enough
to account for unexpected behavior in the actual plant. We have already rejected
the idea of substituting an artificial neural network for the plant model. But it
is possible to place an artificial neural network in parallel or in tandem with a
conventional model which may be able to augment or modify the conventional

model enough to compensate for small errors.

Figure 3.6 shows a block diagram of the method used in this research to
train an artificial neural network with an off-line simulator to perform the control
function, uy, for a nonlinear system. It is assumed that an accurate mathematical

model and observer exist for the system so f(-) = f(-) and Z; = z;. Along with the
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Figure 3.6: A simulator is used off-line to train an artificial neural network to
perform the control function for a nonlinear system. Both the artificial neu-
ral network and the state transition function compute partial derivatives which
the real-time recurrent learning algorithm use to adjust the network connection

weights and biases at each time step.
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normal results, both the artificial neural network and the state transition function
compute partial derivatives which the real-time recurrent learning algorithm use
together with the difference between the actual and desired state of the system

to adjust the network connection weights and biases at each time step.

3.2 Real-Time Recurrent Learning

Real-time recurrent learning[WZ92] (a. k. a. dynamic backpropagation[NP90]) is
equivalent to backpropagation-through-time[Wer90] but maintains an estimate of
the total partial derivatives of the system state with respect to the network biases
and connection weights instead of recording the network inputs and outputs at

every time step.

The objective of the real-time recurrent learning algorithm is to optimize a

performance measure,
J=Y J, (3.4)
¢

by reducing, at each step ¢, the loss,

Jt = L(dpa, T ), (3.5)

which is a nonlinear function, L(-), of the desired state, dy;, and the actual
state, x4, of the plant at time ¢+1. It is often simply a function of the difference

between the desired and actual state of the plant as in the weighted square error,

1
L(de1, menn) = 3 (da — Te)” Wit (depy — Tes1) (3.6)

where the weight matrix, Wy, is usually a positive semi-definite symmetric ma-
trix which specifies the relative importance of each component of the error vec-

tor, diq — T41. The error correlation matrix W1 = <(dt+1 — Ty (doy — a:t+1)T>,
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which might be estimated using the average of the (dyy — Z41) (dey — o)’ , may

be used to help calculate the weight matrix.

Since the actual state is determined, in part, by the controller, the perfor-
mance is also a function of the control function parameters, . Real-time recur-

rent learning is simply a gradient descent algorithm,

0Jen
Oy = 0; — b+ — 3.7
tH t— M 90, ’ ( )
where the rate of descent, u, is a small number. The gradient,
5:]15-1—1 _ 5.’135_1 ) 8Jt+1 (38)

00, 59t aﬂﬁt+1’
of the performance with respect to the control function parameters is a total
derivative composed of the total derivative of the system state with respect to
the control function parameters and the partial derivative of the performance
with respect to the system state. If the performance function is the weighted

square error, then 0Jyy /0xu1 = — Wi (des — Tenr)-

Substituting the learning rate, n = u - (¢t + 1), and equation 3.8 into equa-

tion 3.7, B
_ Ot BJm
t+1 80t 833,54.1 ’

shows that it is possible to account for the effect that all previous control function

0t+1 = 9,5 (39)

parameter estimation errors have on the performance at the current time step
with a minimum of historical data by computing 0z /36, from a recurrence
relationship. Since the change in # will be small at each time step, the total

derivative of the system state with respect to the control function parameters is

ozl N Ozly Ozl ul) Oven  \©
00, — 00, 0 o(xf,uf)

Ty, Uy

(3.10)

where

Ol uf) [0z Ouf
00, |06, 06,
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and

o(af,uf)

0T _ 0T 0Ty
oxf ’ oul |’

The total derivative of the control function with respect to its parameters is

ou]  dx] Ou]  Oul

= . . 3.11
80t 80,; aﬂ?t 89t ( )
Expanding the right side of expression 3.10 and substituting equation 3.11,
Orly ., Oxf Oxly  Ouf Oz,
50«‘4—1 B 8_0t 81} gﬁt aut
_ 5}:? Oz N éxf Ou | Ouf\ Ox,
80,; aZEt 80,; 81} 89t 8ut
_ 07 ozl . Ouf Oxy N Ouf O, (3.12)
39,; alEt axt aut 8075 aut ’ '

then renaming the state transition matrix, A = 0z, /0x] , and the control ma-

trix, B = Oxyy /Oul , makes it possible to write

90, 00, Oz 0,

Derivative arithmetic can be used to compute A and B if there are not too

many state or control variables. The backward error propagation algorithm can

be used to compute <8utT/8xt) - BT and <8utT/80t) - BT.

3.3 Derivative Arithmetic

Derivative arithmetic computes partial derivatives of program variables with re-
spect to n scalar variables &; where j € {1,2,...,n}. Each scalar variable, z, is

replaced by an n+1 element vector variable,

X = ($0,$1,$2,...,In)

= (xg,0x0/0&,0x0/0&, ...,010/0&,), (3.14)
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which is just the original scalar, zy, augmented with the n partial derivatives,
0x0/0¢;.

Each scalar operation and function is replaced by an operation which com-
putes the partial derivatives along with the normal scalar result. The expression

z = x + y is evaluated by performing the normal scalar addition,
20 = To + Yo,

followed by each of the partial derivatives,

8z0 6330 8y0
2j = = =+ 2 =T, + Y;.
1T g "o, g Y

The expression z = exp(z) is evaluated by computing the value of the normal

scalar function,
20 = exp(zo),
followed by each of the partial derivatives,

_ 92 0%
KT TS

= Z0Lj.

The partial derivatives play no part in comparison operations. The expression
x < y is equivalent to zo < yo. The §; are also replaced by vectors with §;o = ¢;
and usually initialized with &; = d,, where J;; is the Kronecker delta function

since they are assumed to be independent.

Replacement of the normal computer arithmetic by derivative arithmetic is
accomplished using any of the modern computer languages which support user
defined types and operator overloading. A Fortran 90[MR90| compiler, the
FORTRAN-SC[BRKS87] precompiler or the AUGMENT[Cra76| precompiler could
be used to perform this function since they are all supersets of the FORTRAN 66

programming language. We found it more convenient to convert the original
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FORTRAN 66 source code into C++ source code using the £2c[FGM92] trans-
lator program. The f2c program replaces FORTRAN intrinsic data types real
and double precision with C data types named real and doublereal which
are normally replaced in turn by the built-in C data types float and double
respectively but are replaced by derivative types instead. A C++ class definition

for real and doublereal derivative arithmetic is the only requirement.

3.3.1 The Aircraft Model

At each time step, the partial derivatives of the system state and control variables,

T ,T
2
are set to 1 with respect to themselves and 0 with respect to each other. Since
many of the zeros will propagate right through the computation to 8z /d(z], ul),
much computational effort is wasted. Still, the simulation time is only about eigh-
teen times longer with derivative arithmetic because the aircraft model has only
twelve state variables (see table 3.1) and six control variables (see table 3.2).
Flight simulation with derivative arithmetic can still be accomplished in real
time on modern microprocessors. But the artificial neural controller may have
hundreds or even thousands of biases and connection weights. Another method

must be used to compute the partial derivatives of the control vector, du} /06,,

with respect to the parameter vector.

3.4 The Backprop Algorithm

Backward error propagation (backprop) is a gradient descent algorithm which
achieves an advantage in efficiency by avoiding explicit computation of the gradi-

ent. Typically, an arbitrary sequence of input and output training pairs are used
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name variable | description units
1P p roll rate rad/sec
21 Q q pitch rate rad/sec
3R r yaw rate rad/sec
4|V Vv airspeed ft /sec
5 | ALPHA « angle of attack | rad
6 | BETA B sideslip rad
7 | THETA 0 pitch rad
8 | PSI Y heading rad
9 | PHI (0] bank angle rad
10 | H h altitude ft MSL
11| X x distance north | ft
12 1Y Y distance east ft

Table 3.1: The aircraft model has only twelve state variables.

name variable | description units
1| DA 0a aileron rad
2 | DE Oc elevon rad
3| DT Ot rad
4 | DR O rudder rad
5 | THRSTX1 Ty left throttle | degrees
6 | THRSTX2 Tyo right throttle | degrees

Table 3.2: The aircraft model has only six control variables.
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Figure 3.7: Layer k computes o (by + Wivr = api1) = Vg1-

to incrementally adjust the network biases and connection weights in a multi-
layer feed-forward artificial neural network. The input feeds forward through the
layers of the network. The error between the desired and the actual output of
the network propagates backward through the network to compute the equivalent
error in each layer which is used to update the biases and connection weights.

The algorithm can be reduced to just three simple operations:

1. feed forward,
2. back propagate and

3. update.

3.4.1 Feed-Forward

A K-layer feed-forward artificial neural network has K layers of biases and con-
nection weights and K+1 layers of nodes including the input layer. The notation
N(ng,ni,...,nk) describes a network architecture with n, nodes in each layer.
The input and the output layers have ny and ng nodes respectively. Figure 3.7

show a block diagram of the signal flow through layer £ which computes
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Uk

et = 0 (ak+1 — (b, Wi [ L D (3.16)

where vector b, and matrix W are the biases and connection weights in layer k.
The nonlinear vector function, o(-), is usually a sigmoidal (S-shaped) function
such as the hyperbolic tangent, tanh(-), applied to each element of the activation
vector, a1, to compute the corresponding element, vgy ; = 0 (agn j), of the
signal vector, vy . If, as for controllers, the outputs, vk, are arbitrary continuous
functions of the inputs, vy, linear output functions replace the o(ag) or they are
simply omitted and the ag are passed directly to the output. An artificial neural

controller must have at least two layers of nodes with input signals

vo = lf L (3.17)

and output signals

Ut = Vk- (3.18)

3.4.2 Backward Error Propagation

At each time step, the output error, Avg, is propagated backward through each
layer to update the network connection weights and biases in previous layers.
The block diagram shown in figure 3.8 shows the feed-forward signal through the
network from inputs, vy, to outputs, vk, and the feed-back error signal through
the network from the output layer, K —1, to the input layer, 0. The backprop
algorithm computes the equivalent error,

T
vy,

T
1
8ak Wk 5]€, (3 9)

6k—1 =

where
T
ov,

. vy j : i
9a, — 4128 {a—} = diag {0 (ax,7)} = ding {0} ;}
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Vo n1 VK2 UK-1_ VK

Figure 3.8: The backward error propagation algorithm is used to adjust the biases
and connection weights in multi-layer feed-forward artificial neural networks. The
signals, v, feed forward through K layers. The output of each hidden layer is
an input for the next layer. The equivalent errors, 0, feed backward through the

layers and are used to update the biases, b;, and the connection weights, Wj.
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is a diagonal matrix. The initial equivalent error,

ovk
5}(_1 = @A’U}(, (320)

is computed using the error at the output layer.

3.4.3 TUpdate Weights and Biases

All that remains is to update the network biases,
by < b + Ny, (3.21)
and connection weights,
Wy « W, + nékv,{, (3.22)

where the learning rate, 7, is a small number.

3.4.4 Partial Derivatives

A similar method can be used in the recurrent learning algorithm to back prop-
agate BT and avoid explicit computation of dul /0z; and Oul /06;. First, we

define long row vectors,

19%1 =Tow [bk, Wk] s (323)

by concatenating the rows of the [bg, W] matrix together. Then the transpose of

the parameter vector,

97;1—’ = [19(1;1 19{; Tty 197};—1]’ (324)

is constructed by concatenating the 97 together. This construction permits us

to partition

oz”
89
_ 99,
o7 | B
Ty _ 3.25
00, : ( )
azT
Mra |y
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and .
vy
61533
ov
T K
aut _ ot

00,

(3.26)

81)17;
91 1y

so that it is possible to write independent expressions,

vt
AT 4+ 2K
( + o0x

dx™

ZN

5T
. Oz

:5—191C

T
vy

.BT +
) G

for each of the parts of expression 3.13. Now we can apply the chain rule to

- BT, (3.27)

Hl t t

T T T T T T
vk Oy OVk  p _ Oty  Ovgy  Ovg BT

K BT _—
vy, Ovy  Ougp Ovy  Oagn  Ovgp
. vt
= wr. dlag{vgﬂﬁj} . 8U—]:1 BT =wTl. AT (3.28)
where
ovE
T . K T . T T
Apa = dlag{v;m-} Do B" =diag {v}c,j} Wi - Ay (3.29)
and

A" = diag {v}(,j} : - B = diag {U'KJ-} - B”. (3.30)

81} K
The equivalent control matrix, Ay, is analogous to the equivalent error, d;, in the
original version of the algorithm. Substituting ¥ = 0 into equation 3.28 results
in

T
8(;’—; BT = XT. AT (3.31)

where the X matrix is obtained by partitioning the Wy, = [X, R] connection
weight matrix so that Wyvy = Xz 4+ Rr. The last term on the right hand side of

expression 3.27,

%-BT _ g OV T _ Oagy Ovgn  Ovk BT
Oy, 0V, Ovkp 0V Oapy  Ovgp

- I@“k].Afz (Aki@Hk]T)T:A{@Hk ](3.32)
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where the ® operator denotes the Kronecker product[Gra81]. Substituting equa-

tion 3.31 and equation 3.32 into expression 3.27 we get

ox” ox” 1
= =2 | (AT + XT.AT) + AT : 3.33
595, 619“( + )+ k®[vk] (3.33)
Defining
1 027
G =" — 3.34
Hen = 757 0V |,y (3:34)
permits us to write two new update rules,
Gk<—(1—6)-Gk-(A+A0-X)T+e-A,{®lqu ] (3.35)
k
where e = 1/(t + 1) and
Uy — U0+ G- e (336)

where e = —1 - 0Jy1 /0T 41 -

Update rule 3.35 will become unstable as ¢ — 0 if the magnitude of any of
the eigenvalues, );, of the augmented state transition matrix, A + A, - X, are
consistently larger than 1. This is generally true for systems like flight simulators
which have state variables such as x and y which can increase without bound.
It can be stabilized by restricting ¢ > 1/(1 + 7) where the decaying time 7 <
1/ (max{|A;|} —1). This causes the real-time recurrent learning algorithm to
respond more strongly to recent experiences and “forget” the effect of experiences

that occurred in the more distant past.

First order gradient descent algorithms like backward error propagation and
real-time recurrent learning are practically useless unless all of the inputs are
independent of each other and have about the same variance. But the inputs to
systems like the artificial neural controller are generally highly correlated with
each other and some vary several orders of magnitude more than others. The

weights associated with large inputs usually need to be small while the weights
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associated with small inputs must be large. But since, at each step in the learning
algorithm, the change in the weight is proportional to the input, the weights
associated with the small inputs change slowly relative to the weights associated
with the large inputs. The result is that the learning algorithm will be unstable for
the weights associated with large inputs unless the learning rate, 7, is so small
that learning virtually stops for the weights associated with the small inputs.
The ideal way to correct this problem is to use a second or higher order gradient
descent algorithm. Unfortunately, these algorithms require more computer power
than is readily available to us at this writing. We will instead employ a more

simple but effective method which involves “normalizing” the inputs.

3.5 Second Gradients

The purpose of this section is to characterize the nature of instability in gradient
descent algorithms then propose a general solution to the problem and use it to
justify the practice of normalizing the inputs. Finally, update rules are provided

which incorporate input normalization into the biases and connection weights.

Consider using a first order gradient descent algorithm to minimize a perfor-

mance function,

J(0) = o+ k0 + %w, (3.37)

which is a second order polynomial in the adjustable parameter 6. At step n+1,

the adjustable parameter

aJ
Oy = 0, — Hog = Onp — u(k + N0y,) = (1 — pA)b, — pk
= (1—pN)"0 — > (1 — pN)"*ux (3.38)

k=1
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Figure 3.9: Gradient descent is unstable for J(0) = 36% when p = 3.

where
8_J _ 0J(0)
00, Y

As shown in figure 3.9, the algorithm will be unstable and the adjustable pa-

0n

rameter will grow exponentially unless —1 < 1 — A < +1 which means that
we must restrict the rate of descent 0 < pu < 2/ |A|. Using the absolute value
of the curvature, A\/2, ensures that the rate of descent will be positive and the

algorithm will actually step down the gradient even if the performance curve is
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convex instead of concave.

A second order gradient descent method can be derived at step n from a
second order approximation of the performance function

oJ 10%J

J(Op1) = J(0n) + —— A0, + = —Ab?, 3.39
(Bun) = T () + 57 + 5 5 A0 (339
where A6, = 0,1 — 0, and AG> = (0,4 — 0,)>. Setting the partial derivative
of this approximation equal to zero with respect to the change in the adjustable

parameter,
0J(On) _ 0J 82J
oA, 06, 002

permits us to solve for the adjustable parameter,

0.7/96,

AB, =0, (3.40)

Opn = Oy — ———, 3.41
m |02.7/062] (3.41)
which minimizes it. Apparently, the best choice for the rate of descent
eI 1
=|— = ) 3.42
W= loez T 342

If the performance function is the second order polynomial in equation 3.37, then
the second order approximation in equation 3.39 is exact and p = 1/|)| specifies
the rate of descent required to minimize the performance function in one step.
But performance functions are not restricted to second order polynomials and
may not even be convex everywhere in parameter space. More generally, they
will contain a number of local minima separated by local maxima with inflection
points between them as shown in figure 3.10. In this case, it is prudent to use a

more conservative rate of descent

n
= (3.43)
[An]
where 0 < 7 < 1 and limit the rate of descent
p= il (3.44)

max{[An|, | Amin|}
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Figure 3.10: The performance function, J(6), will generally contain a number of

minima separated by maxima with inflection points between them.
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where 0 < |[Apmin| since the curvature of the performance function goes to zero
when the adjustable parameter approaches an inflection point. For systems with
a single adjustable parameter, it is usually sufficient to choose a constant rate of
descent p1 < 1/ |Amax| where %)\max is the maximum curvature of the performance
curve. This value is usually easily obtained by trial and error because instability
in the learning algorithm is so obviously apparent if the rate of descent is too

large. Systems with several adjustable parameters pose additional problems.

If the system has several adjustable parameters, a second order gradient de-
scent method can be derived at step n from a second order approximation of the

performance function,

oJ 1 0%J

which is similar to the one in equation 3.39 except that # represents a parameter

vector and the second derivative,

s _ 000 _,
62 — 9 oo™ |, "

is the Hessian matrix. Setting the partial derivatives of this approximation equal

to zero with respect to the change in each of the adjustable parameters,

0J(0wn) _ 0 , 07
onG, 00, ' 062

Af, =0 (3.46)
permits us to solve for the adjustable parameters,

2 -1
) J] aJ (347

O =0 — | =5| =
o laeg 80,
which minimize the performance function if it is a concave, second order polyno-
mial. More generally, the Hessian matrix, H,,, will become singular near inflection

points, negative definite at local maxima and have at least one negative eigen-

value near saddle points. Since the Hessian is a real symmetric matrix, it can be
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decomposed

into an orthogonal matrix, @, = [en ;], composed of the unit eigenvectors, e, ,
of H, and a diagonal matrix, A,, = diag{\, ;}, composed of the corresponding
eigenvalues, A, ;, of H,. This permits us to replace the solution in equation 3.47
with

s = b0~ @D, Qu o (3.49)

where

D,, = diag {max {|\,,;

, | Amin[}} - (3.50)

Computing and decomposing the Hessian at every step in the algorithm can

be very expensive especially for performance functions like
7(0) = / T (z:0)dQ2 (3.51)
Q

which are integrals of a nonlinear density function, J(-), of the state, x, over
an extended subspace, €2, of state space. It is often impossible to evaluate the

continuous integral so one must settle for a sum of samples,
J(0) =Y T (xx;0), (3.52)
k

at discrete points, x, in state space which represent the subspace €2. Since the

partial sums,
In(0) =D T (213 0), (3.53)
k=1

already contain some of the information needed to estimate the adjustable pa-
rameters, some expense can be saved by applying the gradient descent algorithm

to the partial sums while accumulating the total.
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Suppose we have already found the adjustable parameters, 6,,, that minimize

the partial sum, J,(6,), at step n so that

0Jn(0n) 0
a0,
Then the partial sum at the next step,
can be used to approximate
0Jra1(On 1 02 Jp1 (0,
Tt (On1) = i1 () + AOT 0Jni1 (6n) + —A@TﬂAen (3.55)

00, 2" 002
where the gradient

aJn—H (en) _ aJn(en) + aj(xm—laon) _ 6\7(xn+l; Hn)
00, 90, 80, 90,

and the Hessian

_ T (0n) _ i 0T (@hi130n) <~ 0°T (@hi; O)

H, = ~
" 062

5 > o (3.57)

k=0

if the adjustable parameters don’t change very much and approximation 3.55
is accurate. As this partial sum accumulates, the elements of the Hessian can

become quite large. It may instead be prudent to maintain a running average,

Hn anl 82\7(3371—1—1; On)
e T2

(3.58)

where € = 1/(n+1) if there is danger of floating point overflow. Since this running

average is a real symmetric matrix, it can be decomposed,

H,
n+1

2 AnQn, (3.59)

into an orthonormal matrix, @, = P,Q,_1, composed of the unit eigenvectors and
a diagonal matrix, A,,, composed of the corresponding eigenvalues. Substituting

equation 3.59 into equation 3.58 and solving for

2 .
0" (@nia;0n) yr |\ pr (3.60)

Ap=Py(1 =€) Apy+e Quy 202 1) Fn
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provides us with insight into how we might compute this decomposition efficiently
using the previous decomposition. If € is small, then the new information only
slightly perturbs A,,;. A single sweep of Jacobi rotations, P,, should be sufficient
to almost zero the off-diagonal elements and reduce A,, nearly to diagonal form.
Precision is not essential. A rough estimate of the eigenvalues and eigenvectors
should be sufficient to implement the solution proposed in equation 3.49 and

equation 3.50.

3.6 Normalization

Unfortunately, we are in no position to take advantage of second order learning al-
gorithms for the same reason that second and higher order learning algorithms are
generally avoided. The required computational resources are not readily available
to us. Computational and storage requirements are proportional to the number
of parameters for first order gradient descent methods but proportional to the
square of the number of parameters for second order gradient descent methods.
We can expect second order methods to become more popular as faster comput-
ers with large memories become more available and affordable. But for the time
being, we propose to contrive a first order method which, in effect, substitutes
a constant for the dynamic Hessian matrix, H,, in a second order method. The
effect is achieved by “normalizing” the inputs to a K-layer, feedforward artificial

neural network.
The objective is to minimize

1

J=3 ; (d — )] Wy (d— i), (3.61)

where d is the desired output, vg is the actual output and W is a symmetric,

positive, semi-definite matrix which specifies the relative importance of each of
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the outputs. With respect to the parameters ¥; in layer [, the gradient

avK
el —§: - 62
am a9, |, v (3.62)
where
T T T T
Ovy _ day,  Ovk — I, ® 1 (%K _ Ovg ® 1 ‘ (3.63)
oY, oY, 8al+1 + Uy 8al+1 8al+1 Uy

With respect to the parameters 9, and ¥; in layers k£ and [, the second gradient

827 o aJ oL

00,007 — 00y 09T th 0,

0%
T K
_Z(d—’UK)t Wtwt

t

Ovie
o7 |,

W, . (3.64)

t
Assuming that the second sum in equation 3.64 is negligible and substituting

from equation 3.63 permits us to write

82J AL [1 ] A [1 ]T
09, 09T T Oagy |, Yk |y ' Oai, |, vy
ok v 1 11"
= 2 Gans | Wi gar, ®lv ] l”l ' (369
ket | 1 [ k14 by

Assuming that we have no a priori information about the partial derivatives,

Ovk /Oay,y, of the actual outputs with respect to the activations, agy, we should

expect them to be independent of each other and —KW a”K =0 for all [ # k.
Furthermore, we expect the partial derivatives, Qv Qa1 4, of the actual outputs
with respect to each element, a4, of layer £ + 1 to be independent and equal
because of the symmetry of the nodes in that layer. We also expect that the
inputs, vy ;, are all independent so that the only elements of the second derivative
that accumulate any significant amount are along the diagonal,

02 0%
002 — 99,007

o In,,, @ diag{1, (v ;)}. (3.66)

Since we are using the hyperbolic tangent, tanh(-), we expect (vf ;) ~ 1 for all

k > 0. Only the variances, (v(%,j), associated with the inputs differ significantly
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from 1. Apparently, the entire second derivative would be proportional to a
huge identity matrix and inversion would be unnecessary if all the inputs were

normalized, v ; < vo;/4/(v5 ), before they are used in the learning algorithm.

Before normalizing the inputs, it is important to try to remove some of the cor-
relation between the inputs especially correlation with the constant input which
appears as a constant bias in the variable inputs. This is usually accomplished
by subtracting an appropriate linear combination of the correlated inputs. All
of this preprocessing can be accomplished by prepending another layer to our
network with uncorrelated and normalized outputs, vo = b_; + W_jv_1, where

v_1 are the raw inputs. For example, if

1
vy = dia,
i { \/(Uzl,ﬂ — (v_1,5)?

} (-1 — (v-1))

then
1

b_; = —dia (]
i { N <v_1,,->2} -

1
W_, =dia .
g{wv%,j) - <v_1,j>2}

After training, we update the network input biases, by < by + Wyb_1, and

and

connection weights, Wy < WyW_4, to incorporate the preprocessing step so that

the network can accept the raw inputs directly.

3.7 Summary

A summary of the real-time recurrent learning algoritm for artificial neural con-
trollers is shown in table 3.3. The algorithm is designed to accept an initial set
of input biases and connection weights that incorporate the preprocessing step

and temporarily transform them for the learning algorithm.
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Pseudocode Remarks

Wy +— WoW ! Dis-incorporate
by < by — Wyb_; Normalization
for t < 0 to ... do begin
vo=b_1 +W_; l f ] Normalize Inputs
for £+ 0to K—2do Feed Forward
Vg < tanh (by + Wiwvg)

U brg + Wgavk
z
[x\A\B]<—f<[ .

Agq + B Back Propagate

I ]) Derivative Arithmetic

for k <+ K—1 down to 1 do
A — ApWidiag{l — v} ;}

6(_tj+1 Update

e<n -W(d—=x)

for £ <+ 0 to K—1 do begin
Gr—(1—€-Gp-(A+0¢-X) " +6e-ATQ® [ 11)16 ]

19k(—19k+Gk'€

end
end
by < by + Wyb_, Re-incorporate
Wy +— WeW_4 Normalization

Table 3.3: Summary of the real-time recurrent learning algorithm.
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CHAPTER 4

Preliminary Investigations

We were able to construct an artificial neural controller by manipulating the gains
employed in a simple conventional controller which was provided along with the
flight simulator. This was important for two reasons. First, it demonstrated that
an artificial neural network can control the aircraft. Second, it showed that a

feed-forward network architecture was appropriate for the neural controller.

Figure 4.1 shows a block diagram of the conventional controller. The purpose
of the controller is to maintain a set altitude HSET, airspeed VSET and bank
angle PHISET without sideslip. These reference signals are supplied as inputs to
the controller along with six of the twelve state variables and two state variable
derivatives, the vertical airspeed h and the acceleration V, which are nonlin-
ear functions of the state and control variables. A total of five control signals
are output by four independent subunits. Two of the subunits produce linear
functions of their inputs. The DR signal controls the rudder deflection which is
used to minimize sideslip by turning the aircraft into the relative wind. The DA
and DT signals control the aileron and differential elevon deflections respectively.
Together, these deflections are used to bank and turn the aircraft. The other
two subunits produce nonlinear functions of their inputs and internal state. The
DE signal controls the deflection of the elevators (elevons) and the angle of at-
tack. The THRSTX signal controls the throttle for both left and right engines.

Together, these deflections determine the acceleration V, and the rate of climb

20



Figure 4.1: A simple conventional controller was provided along with the flight
simulator. Variable names from the computer simulation were used to label the
signals and gains. The symbols represent nonlinear limiting functions. The A

symbols represent unit time delays.
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The conventional controller was transformed into a feed-forward network in
three steps. First, the nonlinear limit functions were replaced by equivalent

normalized semi-linear functions

-1, z < -1
o(z) = z, -1 < z < +1 (4.1)
+1, +1 < =z

by scaling their respective input and output gains,

KHDOT
KH1 il 7q ¢ 41
~ TKH
KH2 « SHymo
20
KH
KH3 2P KH3
< 20
20
KH4 2 KH4
~ DGR
KVD « 2-KV-KVD
KVI « 2.KV-KVI
KV3
KV3 ave
TRV
KV4 <+ £27,

and providing appropriate biasing,

THSTAD = 1/4

IVSTAQ = -1,

as shown in the block diagram in figure 4.2. Second, the internal state feed-back
loops were replaced by equivalent loops which feed the delayed DE and THRSTX
outputs back into their respective subunits as shown in the block diagram in fig-
ure 4.3. Third, the conventional controller is replaced by a 4-layer, feed-forward,
artificial neural network, N(28,12,8,6,6), using the semi-linear sigmoid in equa-

tion 4.1. Delayed controller inputs and outputs are supplied to the network along
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Figure 4.2: The first step in transforming the conventional controller into a neural
controller replaces each of the nonlinear limit functions with equivalent normal-
ized semi-linear functions (symbols) then scales the signal gains and adjusts the

biases appropriately.

% -KH4 IHSTAO
1
—_— O—»0
wh DE
HSET
O
IHSTAO
HDOT 4
O—»
KHDOT
=
1/KV4
v / A

20-KV4 IVSTAO

O—0 THRSTX

IVSTA0-20/KV4

-1
KV
-VSET
VDOT
O

I -KV3 | KVD KV4|

Figure 4.3: The second step in transforming the conventional controller into a
neural controller replaces each of the internal state feed-back loops with equivalent

loops which feed the outputs back into their respective subunits.
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with the current controller inputs. The feed-back gains and biases for delayed
outputs appear in the input layer and the computations for both H2 and V2
are duplicated for delayed inputs in order to compute the internal state of the
controller. Since the sigmoids are linear near zero, signals can be passed through
them by multiplying by a small number, e, then recovered without distortion
in a subsequent layer by dividing by the same number. Part of the network is
shown in the diagram in figure 4.4. The signals which pass through the linear
subunits are similarly scaled so that they do not saturate the sigmoids during

normal operation.

The resulting feed-forward network behaves exactly like the conventional con-
troller but has a much greater capacity for learning and adaptation because it has
548 adjustable parameters which are almost all zero. However, it proved virtually
impossible to train the network to perform as well as the conventional controller
starting from arbitrary connection weights and biases. In fact, the backward
error propagation algorithm proved to be unstable for any reasonable learning
rate even when training began with an appropriate set of connection weights and
biases despite the fact that it was able to reduce output errors to less than 0.1%.
The network would, of course, learn the linear functions without difficulty. But
altitude and airspeed control were never both satisfactory. Figure 4.5 shows a
plot of both actual and desired altitude versus time for the best simulation re-
sult obtained after training an artificial neural network initialized with arbitrary

connection weights and biases.

The problem can be understood by inspection of figure 4.2. The internal state
variable,

THSTA4; = (14 €)IHSTA, + KH3 - HI2(H2,; + H2)),

will saturate regardless of the value of H2 and overwhelm any direct contribution
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JL/KHDOT DO KH1

O%>o>@bo

T1
o -KH4 THSTAO
1/KH (IHSTAO)e
KH4

o_e/KH4 DO 1 >O>c +1/e o DB
JL/KHDOT DO KH1 M
+1/KH >@Do

O

o 1/KH

-eKV3

e

(KVI HI 20-KV4 IVSTAO

OF1/KV

/KA (IVSTA-20/KV4)e
+1 >o>c +1/e
Og/KV4/2

-eKV3 (HI2 K

oO— =0
o 1/KV >@Do

o +1/KV

KV4 o T1

o T2

) e
DO 4 KVD

Figure 4.4: The third step in transforming the conventional controller into a
neural controller places the feed-back gains and biases in the input layer and
duplicates the computation of H2 and V2. The feed-forward network computes
the internal state of the controller from delayed controller inputs and outputs.
The layers are fully connected but only the non-zero biases and connection weights

are shown.
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Figure 4.5: The artificial neural network never learned to control altitude. The
plot represents the best simulation result obtained. Most other simulations would

end in less than five minutes by crashing the airplane.

to DE from H2 through the gain KH2 = 0.08 if the error in the feed-back gain,
e > 2-KH3 . HI2 = 0.0004. The feed-forward network requires at least four
connection weights and two biases to effect the feed-back gain. The backward
error propagation algorithm can learn sensitive parameters like the feed-back
gain to whatever degree of accuracy is required if the learning rate is sufficiently
small. But as the learning rate is reduced, improvement in other less sensitive
parameters virtually comes to a halt. The problem can be solved by using a
more sophisticated (i.e., higher order) learning algorithm but such algorithms

are beyond the scope of this research.

This problem is not unique to aircraft or even control systems. In general,
complicated nonlinear systems will have at least a few parameters which are very

sensitive to estimation errors. Similar difficulties can be expected when using
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artificial neural networks to identify these systems as suggested by Barto[Bar90].
This does not mean that Barto’s approach is wrong. It only means that more
sophisticated learning algorithms and significantly more computational power will
be required to identify complicated, real-world systems. It appears that Barto’s
approach should only be used when virtually nothing is known about the system
except the inputs and outputs. On the other hand, if a good model of the system
already exists as in the case of the computer flight simulator, then it should be

used and not discarded.
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CHAPTER 5

Teaching Neural Networks to Fly Turns

5.1 Introduction

The purpose of this research is to test a new automatic design methodology for
nonlinear controllers that can be used when an accurate conventional computer
model exists for the plant (the nonlinear system which is to be controlled). The
real-time recurrent learning algorithm[WZ92] is employed to train an artificial
neural network to perform an unknown nonlinear control function that results in
the desired behavior from the plant. Two different methods are employed to com-
pute partial derivatives for the real-time recurrent learning algorithm. Derivative
arithmetic is used to compute the partial derivatives of the state variables at
the next time step with respect to the state and control variables at the current
time step. The backward error propagation algorithm is used to compute the
partial derivatives of the control variables with respect to the current state vari-
ables and the control system parameters which are simply the network biases and

connection weights.

In order to test the methodology on an important, complicated real-world
problem, the artificial neural controller was installed in a computer flight simu-
lator for a high performance fighter aircraft and trained to fly a 2 g coordinated
right turn at Mach 1 while maintaining an altitude of 20 000 feet. A diagram

of the maneuver is shown in figure 5.1. It is a gentle turn which has a radius
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Figure 5.1: The controller functions as a flight test maneuver autopilot. The
artificial neural controller is trained to fly a 2 g coordinated right turn at Mach 1
while maintaining an altitude of 20 000 feet. The turn requires about half a
minute to complete and has a radius of about 4 miles. The desired state of
the aircraft is specified at intervals of 1.0 second (about 0.2 miles) ahead of the

aircraft in order to permit the controller to look ahead.
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of about 4 miles and requires about half a minute to complete at the speed of

sound.

This maneuver is interesting because it exercises all six control variables. In
order to turn the aircraft, the controller must learn to bank the aircraft and pitch
the nose up in order to “climb” around the turn. It must also increase power
to maintain airspeed and altitude then apply right rudder to eliminate sideslip.
Also, each control variable affects multiple state variables. For example, too
little right rudder causes the aircraft to climb and increases drag which slows the

aircraft and widens the turn.

Training an artificial neural controller to fly turns using the real-time recurrent
learning algorithm proved to be exceptionally difficult. The problem is that
the learning algorithm needs reasonable approximations for the input biases and
variations, weight matrix and learning rate before it can begin to learn but the
artificial neural controller must complete at least one maneuver before statistics
are available which can be used to estimate these parameters accurately. Finding
suitable initial estimates for these parameters requires considerable engineering
insight and knowledge of the system. Of course, this compromises the ultimate

goal which is to completely automate the controller design process.

Hundreds of tedious experiments were required to diagnose problems and to
adjust the various parameters used by the learning algorithm. At first, almost
none of the experiments worked but eventually the network began to show some
evidence that it was learning. There is little point in chronicling all of these
experiments or trying to explain why they failed. The remainder of this chapter
is devoted to the strategies for configuring a network and learning algorithm that

seemed to succeed.
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5.2 Configuration

5.2.1 Desired State

The relative importance of the difference between the desired and actual value
of the aircraft state variables are shown in table 5.1. The simulator uses a state
vector which includes the time ¢, all twelve state variables in table 3.1 and the time
derivatives of all thirteen of the above for a total of twenty six state variables.
The desired airspeed V; = Mach 1, sideslip 5; = 0 and altitude hy = 20 000
feet are constant during the entire maneuver so the respective time derivatives
should all be zero. In order to avoid ambiguity at 1 = 7, the desired heading
is specified indirectly by the desired velocity in the z-direction 4 = Vj cos(¢4(t))
and in the y-direction gy = Vysin(¢4(t)). The desired pitch rate g5 = 1/}(1\/?_)/2,
yaw rate ry = Qﬁd /2 and the the rate %d at which the desired heading changes are
constant so g =79 = ﬁd = 0.0. The desired value of all the other state variables
are zero but the angle of attack «, pitch angle 6, bank angle ¢, distance north
x and distance east y are free to assume whatever values are required to satisfy

the other constraints.

The real-time recurrent learning algorithm was used as described in section 3.2
to minimize the weighted square error performance measure in equation 3.6. The
weight matrix, W, is a diagonal matrix with zero elements along the diagonal
corresponding to the unconstrained state variables including time ¢ and the rate
of change of time dt/dt = 1. All of the other elements were assigned the same

arbitrary value (one) meaning that they all have the same relative importance.
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relative desired
variable | importance value | units

0 tq 0.0 t | sec

1 Pd 0.0 0.0 | rad/sec

2 G4 0.0 ?&d rad/sec

3 T4 1.0 Libg | rad/sec

4 % 1.0 1037.9 | ft/sec

5 Qg 0.0 « | rad

6| B 1.0 0.0 | rad

7 04 0.0 0 | rad

8 (I 0.0 g | rad

9 Pq 0.0 ¢ | rad
10 hq 1.0 20000.0 | ft MSL
12 Yd 0.0 y | ft
13 tq 0.0 t
14 Dd 0.0 0.0 | rad/sec/sec
15 da 0.0 ?&d rad/sec/sec
16 Td 0.0 %&d rad/sec/sec
17 Vy 0.0 0.0 | ft/sec/sec
18 Gy 0.0 0.0 | rad/sec
19 By 1.0 0.0 | rad/sec
20 04 0.0 0.0 | rad/sec
21 Ya 1.0 Yq | rad/sec
22 ba 0.0 0.0 | rad/sec
23| hg 1.0 0.0 | ft/sec
24 Tq 1.0 | Vycos(v4(0)) | ft/sec
25 U 1.0 | Vgsin(v4(0)) | ft/sec

Table 5.1: The relative importance of the difference between the desired and
actual values of the aircraft state variables are set to zero if the difference has no

importance. Otherwise, they are arbitrarily set to one.
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5.2.2 Network Inputs and Outputs

The artificial neural controller is a multi-layer feed-forward network. There are
a total of forty two inputs from the current state and the reference signal. There
are five outputs which suffice to produce the six control variables in table 3.2
using a single throttle output for both the right and left throttles. The network
outputs are not fed back into the network inputs so there is no state internal to

the controller which can be used to help control the aircraft.

5.2.2.1 Input Biases and Variations

The initial estimates for the network input biases and variations shown in table 5.2
were obtained from various sources. The speed of sound is about 1037.9 feet per
second at an altitude of 20 000 feet. The angle of attack and the pitch are equal
at about 0.029 radians in straight and level flight at 20 000 feet and Mach 1 with
the conventional controller. All of the other input biases were set to zero except,
of course, { = 1. The variation in the airspeed, altitude and vertical airspeed
were taken from the conventional controller and set to 250 feet per second, 200
feet and 50 feet per second respectively. The variations for ¢, z, y and ¢ were all
set to 10 so that they would be ignored by the controller. The variations for all
of the other inputs were set to one except for the variations for ¢ and V which
were arbitrarily set to 64 radians and 256 feet per second per second respectively

reducing the effect of both inputs on the control function.

5.2.2.2 Reference Signal

A reference model provides the reference signal 7(¢) which is the desired heading,

Ya(t + kAt), of the aircraft at sixteen intervals of At = 1.0 seconds (about 0.2
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input bias | variation | units
0|t 0.0 10° | sec
1|p 0.0 1.0 | rad/sec
2 q 0.0 1.0 | rad/sec
3| r 0.0 1.0 | rad/sec
41V 1037.9 250.0 | ft/sec
5| « 0.029 1.0 | rad
6|0 0.0 1.0 | rad
710 0.029 1.0 | rad
8| v 0.0 64.0 | rad
91| ¢ 0.0 1.0 | rad
10 | A 20000.0 200.0 | ft MSL
11|« 0.0 107 | ft
12|y 0.0 109 | f
13|¢ 1.0 10°
14 | p 0.0 1.0 | rad/sec/sec
15 | ¢ 0.0 1.0 | rad/sec/sec
16 | 7 0.0 1.0 | rad/sec/sec
17|V 0.0 256.0 | ft /sec/sec
18 | & 0.0 1.0 | rad/sec
19| 8 0.0 1.0 | rad/sec
20 | 6 0.0 1.0 | rad/sec
21 | ¢ 0.0 1.0 | rad/sec
22 | ¢ 0.0 1.0 | rad/sec
23 | h 0.0 50.0 | ft/sec
24 | x 0.0 1037.9 | ft/sec
25 |y 0.0 1037.9 | ft/sec
26 | Va0 0.0 1.0 | rad
41 | Va5 0.0 1.0 | rad

Table 5.2: Initial estimates for the network input biases and variations were

obtained from various sources.
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output bias | variation | units
119, 0.0 1.0 | rad
2 | b —0.032 1.0 | rad
3|6 0.0 1.0 | rad
4|9, 0.0 1.0 | rad
5T, 77.3 90.0 | degrees

Table 5.3: Initial estimates for the network output biases and variations were

obtained from straight and level flight with the conventional controller.

miles) ahead of the aircraft. This gives the controller a “look-ahead” capability
much like that provided by terrain-following or obstacle avoidance radar systems
which permits the controller to anticipate and compensate for sluggish response

to control action.

5.2.2.3 Output Biases and Variations

The initial estimates for the network output biases and variations shown in ta-
ble 5.3 were obtained from straight and level flight with the conventional con-
troller. The bias for the elevon deflection and throttle angle were -0.032 radians
and 77.3 degrees respectively. All of the other biases were zero. The variation in
the throttle angle was set to 90 degrees and the other variations were arbitrarily

set to one.

5.2.2.4 Imitializing the Network

Both network input and output biases and variations were used to initialize the
artificial neural controller. First, the network biases and connection weights are

assigned small random values with a normal distribution about zero. Then the
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network connection weights and biases are adjusted:

1
Wy <+ W()dlag{ }
Avg,j
b() — bO—W()?j() (51)

and

Wk <+ dlag {A’UK,]'} Wk

bK_1 — diag{AvK,j} bK—1+7_)K (52)

The adjustments to the input layer incorporate input normalization. The adjust-
ments to the output layer produce controller outputs which permit the aircraft
simulator to fly nearly straight and level for some time before the aircraft crashes

so that the network has time to begin learning.

5.2.2.5 Input Normalization

The input biases 7y and variations Avy are used to normalize the inputs to the

artificial neural controller. First, the input biases are subtracted from the inputs
Vg < Vg — Vp- (53)

Next, the heading is subtracted from each element of the reference signal
1
1
rer—v| . |. (5.4)
1

Finally, each input is divided by the respective variation

1
vy — diag { Ao .}vo. (5.5)
J
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Normalization is incorporated into the input layer of the artificial neural controller

and must be dis-incorporated from it

bo — b0+W0’le

1
1
Wy « Wodiag{A’Uo,j} (56)

before learning begins then re-incorporated into it

A’UO,]
1
1
Xw “— Xw—R .
1
bo — bO—W(ﬂ_)() (57)

after learning ends. Here X, represents the column of Wy corresponding to the
heading input of vy. The learning algorithm permits an optional “fudge factor”
to be applied to the input variations in order to adjust the size of the variable

inputs relative to the constant input which is always 1.

5.3 Training

It proved practically impossible to train a multi-layer network starting with small
randomly perturbed network biases and connection weights. The connection
weights in the output layer attenuate the output error as it propagates backward
so strongly that the biases and connection weights in the input layer change very
slowly. Similarly, the connection weights in the input layer attenuate the input

signal so strongly that the signal produced by the hidden units is too weak to
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cause significant changes in the connection weights in the output layer. The only
significant effect of the learning algorithm is to adjust the biases in the output
layer until they are equal to the required output. The learning algorithm attempts
to fly the desired trajectory but the aircraft eventually crashes. Initializing the
network with larger biases and connection weights only causes the aircraft to

crash more quickly.

It was relatively easy to train a linear controller to fly shallow turns. A linear
controller is a single layer of biases and connection weights with no nonlinear
output units. If the state of the aircraft does not deviate too far from straight and
level flight, it behaves like a linear system and a linear controller is an adequate
autopilot. The single layer network was important because it permitted us to
verify that the derivative arithmetic was working correctly. After the single layer
network learned to fly 2 g coordinated turns, it was converted into a two layer
network which was used to verify that the derivatives would propagate backward

through the output layer correctly.

5.3.1 The One Layer Network
5.3.1.1 Shallow Turns

Figure 5.2 shows the results of the first experiment. There are 64 seconds of
straight and level flight before the maneuver begins. The maneuver is a shallow
90 degree turn to the right which should have a radius of about 64 miles and
require about 512 seconds to complete. There are an additional 64 seconds of
straight and level flight after the turn is completed. The simulator is initialized
with the aircraft heading due north at Mach 1 and 20 000 feet but the aircraft
begins to deviate from straight and level flight almost immediately. It looses over

1000 feet in altitude, 15 feet per second in airspeed and banks in excess of 90
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Figure 5.2: The artificial neural network learned to fly a turn.

degrees before the learning algorithm automatically reinitializes the simulation®.
The aircraft begins to meander again but the artificial neural controller appears
to have learned something from its first attempt to fly the maneuver. The aircraft
begins to turn right and after about five minutes, it settles onto the desired flight
path then transitions smoothly into straight and level flight heading due east at

the end of the maneuver.

The minimum decay rate was 277 per time step which represents a half-life
of about 2 seconds for Gy at 50 time steps per second. A fudge factor of 27°
was applied to the input variations to increase the size of the variable inputs
relative to the constant input and discourage the learning algorithm from simply
adjusting the network biases to equal the desired controller outputs. The learning

rate, n = 27*2, was determined by trial and error to be the highest rate for which

!Like any good flight instructor, the learning algorithm takes control away from the student
autopilot well before the aircraft crashes not only to avoid a dangerous situation but also to
avoid an experience that is useless or even harmful to the learning process.
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the learning algorithm remained stable for the entire experiment. These same

settings were used in four additional experiments:

1. a 90 degree left turn with an initial heading of 0 degrees,
2. a 90 degree right turn with an initial heading of —90 degrees,
3. a 90 degree left turn with an initial heading of 90 degrees and

4. a 90 degree right turn with an initial heading of 0 degrees

in an attempt to eliminate any dependence upon the initial heading or the direc-

tion of the turn.

5.3.1.2 Revisions

The output from the learning algorithm includes averages and deviations for
the differences between the desired and actual state as well as all of the network
inputs and outputs. These were used to calculate better estimates for the relative
importance of the differences (table 5.4) and the relative variation in the inputs
(table 5.5.) There were two revisions. The first revision was made just after the
artificial neural controller had learned to fly turns with a 64 mile radius then the
fudge factor was increased to 2° and the controller learned to fly turns with a 32,
16, 8 and 4 mile radius using, in each case, the largest learning rate for which the
learning algorithm would remain stable. Again, the artificial neural controller
was taught to fly both left and right turns starting at various headings. The
second revision was made just after the artificial neural controller had learned to

fly turns with a 4 mile radius.
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first | second

variable | revision | revision

0 tq 0.0 0.0
1 Da 00| 3-10°
2 a 00| 2-10°
3 Td 4-10°| 2-108
4 Vy 100.0 0.2
5 Qg 0.0 0.0
6 Ba 8-10°| 5-10°
7 0, 0.0 0.0
8 V4 0.0 0.0
9 ba 0.0 0.0
10 ha 100.0 | 3-1072
12 Ya 0.0 0.0
13 i 0.0 0.0
14 P 0.0 0.0
15 Ga 0.0 0.0
16 iy 0.0 0.0
17 vy 0.0 0.0
18 g 00| 4-107
19 By 1-10 | 6-10%
20 0, 00| 4-107
21 | 4y 4.10°| 3-10°
22| g 00| 3-10°
23 ha 100.0 0.2
24 ig 1.0 1.0
25 Ua 1.0 1.0

Table 5.4: The relative importance of the difference between the desired and
actual values of the aircraft state variables was revised twice — once after the
artificial neural controller had learned to fly turns with a 64 mile radius and

again after it had learned to fly turns with a 4 mile radius.
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first | second

input | revision | revision | units

0|t 1-10™ | 1-10%° | sec
1|p 1-1073 | 3-1072 | rad/sec
2|q 3-107* | 2-1072 | rad/sec
3T 31073 | 1-1072 | rad/sec
4|V 3.0 10.0 | ft/sec
5| « 1-107* | 1-107? | rad
6|3 3.10~4 | 7-10~* | rad
716 1-107*| 6-1073 | rad
8 | 4 0.1 1.0 | rad
91| ¢ 0.1 0.4 | rad

10 | A 3.0 30.0 | ft

11 |z 1-10%9 | 1-107° | ft

12 |y 1-10%9 | 1-10™ | ft

13 |¢ 1-107 | 1-10%°

14| p 1-1073 | 7-1073 | rad/sec/sec

15 | ¢ 6-107* | 1-1072 | rad/sec/sec

16 | 7 3-107*| 2-1073 | rad/sec/sec

17|V 1-1072 0.7 | ft/sec/sec

18 | & 5-107° | 2-1073 | rad/sec

19 | B 71075 | 2.10* | rad/sec

2 | 6 7-107% | 2-1073 | rad/sec

21 | ¥ 3-1073 | 2-1072 | rad/sec

22 | ¢ 1-1073 | 3-10 2 | rad/sec

23 | h 0.1 5.0 | ft/sec

24 | z 1000.0 | 1037.9 | ft/sec

25|y 1000.0 | 1037.9 | ft/sec

26 | Va0 1.0 1.0 | rad

27 | Yaa 1.0 1.0 | rad

28 | Va2 1.0 2.0 | rad

29 | Va3 1.0 3.0 | rad

30 | as 1.0 3.0 | rad

31 | Va5 1.0 4.0 | rad

32 | Yae 1.0 5.0 | rad

33 | Yaz 1.0 6.0 | rad

34 | Yas 1.0 6.0 | rad

35 | Va9 1.0 7.0 | rad

36 | Y410 1.0 8.0 | rad

37 | Yan 1.0 9.0 | rad

38 | Y12 1.0 10.0 | rad

39 | a3 1.0 10.0 | rad

40 | Y414 1.0 10.0 | rad

41 | Y415 1.0 5 10.0 | rad

Table 5.5: Initial estimates for the network input variations were revised twice —
once after the artificial neural controller had learned to fly turns with a 64 mile

radius and again after it had learned to fly turns with a 4 mile radius.



5.3.1.3 Steep Turns

The 4 mile radius turns were very unsteady but slowly improved with training.
Figure 5.3 shows the result obtained after several cycles through left and right
turns at different initial headings. The turn is still unsteady but the actual head-
ing never deviates from the desired heading by more than about seven degrees.
The artificial neural controller must bank the aircraft to the right about 60 de-
grees in order to make a 2 g right turn. This converts part of the lift into a
centripetal force to the right and reduces the resistance to gravity by one half.
The aircraft begins to drop like a rock and the artificial neural controller responds
by pulling back on the stick (decreasing d.) in order to increase the lift by increas-
ing the angle of attack which slows the rate of descent but also tightens the turn.
When the actual heading begins to exceed the desired heading, the controller
attempts to regain some lost altitude by rolling back to the left. Figure 5.4 shows
the rocking motion in the bank angle and the relationship between the altitude

and the bank angle.

Figure 5.5 shows that the aircraft looses over twenty feet per second in airspeed
and almost one hundred feet in altitude during the 2 g right turn. These are
relatively small losses and the artificial neural controller performs well for a novice
pilot but there appears to be a fundamental problem with the learning algorithm.
The conventional controller uses the elevon deflection to control altitude and uses
the throttle to control airspeed but every stick-and-rudder pilot uses the stick to
control airspeed and the throttle to control altitude. Apparently, the learning
algorithm couldn’t decide which method was correct. It uses the elevon deflection

to control both altitude and airspeed and ignores the throttle entirely.

Figure 5.6 shows that sideslip is negligible. The artificial controller had no

trouble learning how to apply the correct deflection for the rudder (about —0.3
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Figure 5.3: An artificial neural controller with just one layer of biases and con-
nection weights (a linear controller) learned to fly turns with a radius of four

miles at Mach 1 and 20 000 feet. The actual heading never deviates from the

desired heading by more than about seven degrees.
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Figure 5.4: The artificial neural controller must bank the aircraft to the right
about 60 degrees in order to make a 2 g right turn. The turn is unsteady because
the artificial neural controller attempts to regain lost altitude by rolling back to

the left.
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Figure 5.6: The artificial neural controller applies about 0.3 degrees right rudder

to minimize sideslip.

degrees in this case) required to fly a coordinated turn.

Evidently, the artificial neural controller makes good use of the look ahead
capability provided by the reference signal. The aircraft begins to roll into the
turn almost 15 seconds before the beginning of the maneuver and begins to roll
back out of the turn almost 15 seconds before the end of the maneuver. For
any given control output except the throttle, the network connection weights
associated with the reference signal all have about the same value. Since this is
a linear controller, only the weights associated with the aileron and differential

elevon deflections are useful for both right and left turns.

The biases and connection weights in the artificial neural controller were com-
pared with the biases and gains in the conventional controller. They are about
twice as large and have the the same sign for the elevon deflection but have no re-

semblance at all for the other control outputs. Apparently, the learning algorithm
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was using an entirely different strategy than the designer of the conventional con-
troller for flying the aircraft. The gain (—0.535) from the conventional controller
was substituted for the connection weight (1.4-107%) in the artificial neural con-
troller corresponding to 07, /0V and 0.535-1037.9 & 555.3 was added to network
bias. Figure 5.7 shows the result of this alteration. The turn became more steady
but also became tighter varying up to almost eight degrees even after extensive
training.

Although the learning algorithm provides signals sufficient to adjust the con-
nection weight corresponding to 07, /0V correctly, it also supplies other, much
larger, alternating signals which, over time, tend to reduce the the connection
weight to nearly zero. It may be possible to devise a maneuver which isolates
the dependency of the airspeed on throttle angle but this investigation was not
essential to the research and was set aside. The alteration to the throttle control
output was retained, however, in all subsequent experiments because it permitted

improvement of the other controls to continue.

5.3.2 The Two Layer Network

The single layer network, N (42, 5), was embedded in a two layer network, N (42,42, 5),
with single hidden layer of 42 identical nonlinear sigmoidal processing units which
compute the hyperbolic tangent of their respective activations. First, the in-
put normalization is dis-incorperated from and the output normalization was
re-incorperated into the single layer network using the revised output variations
shown in table 5.6. Two different initial configurations for the two layer network
were tested. In the first configuration, the input layer is a 42x42 identity matrix

with a small amount of noise added onto it and the output layer is the normalized
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Figure 5.7: A bias and connection weight in the artificial neural controller were
altered to control the throttle in the same manner as the conventional controller.
This resulted in a more steady but tighter turn which slowly improved with

training.
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units

output | revision
1] 9, 0.002
2 | b 0.010
3| 0 0.002
4196, 0.002
51T, 2.000

rad
rad
rad
rad
degrees

Table 5.6: Initial estimates for the network output variations were revised after

the network had learned to fly turns with a 4 mile radius.

single layer network.

by « b
W, « Wy
bp <« O
Wo « ILigxao (5.8)

In the second configuration, both input and output layers were initialized with

a small amount of noise then the normalized single layer network was added to

the first five rows of the input layer and a 5x5 identity matrix was added to the

first five columns of the output layer connection weight matrix.

by < 0

Wy« [Isxs,0]

by « b

W [SV] (5.9)

The input layer biases and connection weights were multiplied by a small number

(0.125) and the output layer connection weights were divided by the same number.

Finally, the input normalization was re-incorperated into the input layer and the

output normalization was dis-incorporated from the output layer.
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The initial configuration of the two layer artificial neural controller behaves
almost exactly like the single layer network embedded within it but it has a
much greater potential for learning. This expanded learning capability increased
simulation time by a factor of ten but, unfortunately, neither initial configuration
of the two layer network was improved much by additional training. Part of the
problem may be that the initial configuration represents a local minimum in the
performance function but this is difficult to determine because so many of the
eigenvalues of the second gradient are very small. The small variation in the
outputs from the hidden layer was a more obvious problem. These variations
can’t be much larger than about 0.1 in the initial (linear) configuration without
squashing the activation signal but many of them were much smaller. In an
attempt to accelerate learning, the row of the input layer matrix corresponding to
variation Awvy; < 0.1 was multiplied by 0.1/Awv; ; and the corresponding column
of the output layer matrix was divided by 0.1/Awv;;. This did accelerate the
learning rate but did not improve the turns. Figure 5.8 shows the best turn
executed by a two layer artificial neural controller. It did not perform much
better than the single layer controller. The actual heading exceeds the desired
heading by more than seven degrees but the learning algorithm is actually trying
to minimize the deviation from the true heading which lags behind the actual
heading by asin(¢) ~ 3 degrees when o = 3.5 degrees and ¢ = 60 degrees.
The true heading undershoots and overshoots the desired heading by about the
same amount — approximately five degrees. The aircraft rolls out of the turn too
late and overshoots and undershoots the desired heading again at the end of the
maneuver. The controller did not learn to increase the throttle in anticipation of
a turn but simply responds to a loss in airspeed. The aircraft looses almost 14
feet per second in airspeed and 180 feet in altitude which it does not completely

regain until after it rolls out of the turn.

81



Heading
100 I I T ! T | T T

90
80
70
60
50

4
degre)
( egregs

desired — |
actual —

=N
o O
I I

I
-80  -60 -40 -20 0 20 40 60 80 100
t (seconds)

Heading Error

8 [ [ [ ! [ [ [ [
T desired —
6 L | actual — |
5 \ .
4 | ]
3 - ]
Aoy | ]
(degrees) | /\ |
0 I |
il ‘ V |
92k _
_3 | | | i | | | |

-80  -60 -40 -20 0 20 40 60 80 100
t (seconds)
Figure 5.8: The two layer artificial neural controller did not perform much better
than the single layer artificial neural controller. The actual heading exceeds the
desired heading by more than seven degrees. The aircraft rolls out of the turn
too late and overshoots the desired heading at the end of the maneuver. It looses
almost 14 feet per second in airspeed and 180 feet in altitude which it does not

completely regain until after it rolls out of the turn.
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5.4 Stability

A controller must be able to tolerate some noise. In particular, and autopilot
must be able to tolerate mild air turbulence. The simulator does not accomodate
wind much less model air turbulence. In order to simulate wind shear gusting up
to about 50 miles per hour, a small amount of noise 74,; was added to the time
rate of change ¢y and Bt+1 in the angle of attack and sideslip respectively. In

each case, the noise was computed using

Uy = pm — AL (7’715 + WZ’./t)

l./t—l—l == l)t + Atl}t_H (510)

where w = v = 27 per second, At = 0.02 seconds and p is normally distributed
random noise with zero mean and 1/1024 radians per second per second variance.

Figure 5.9 shows the Fourier cosine amplitudes

wkt
vy &~ 1.56 + ;ck cos <@>

of this noise if it were to accumulate using v,y = vy + Aty where vy = 1y =
g = 0. Figure 5.10 shows that the artificial neural controller does not permit
the affect of mild turbulence to accumulate. It acts to maintain the desired angle
of attack and minimize sideslip. Although the aircraft does complete the turn,
figure 5.11 shows that the artificial neural controller is seriously affected by mild

turbulence.

Figure 5.12
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Figure 5.9: Mild air turbulence was modeled by adding noise 7;; to &y and Bt+1-
The Fourier cosine amplitudes of the accumulated noise vy = v + Aty are

shown above.
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Figure 5.10: The artificial neural controller does not permit the affect of mild
turbulence to accumulate. It acts to maintain the desired angle of attack and

minimize sideslip.
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Figure 5.11: Although the aircraft does complete the turn, the artificial neural

controller is seriously affected by mild turbulence.
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Figure 5.12: The artificial neural controller immediately suppresses the transients
errors which occur when the simulation is initialized. The total weighted error
increases before the maneuver begins. The controller trades airspeed for altitude
anticipating a loss in altitude during the turn. It take advantage of the look
ahead capability provided by the reference signal by starting to roll into the turn

before the maneuver begins and roll out of the turn before the maneuver ends.
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CHAPTER 6

Conclusions

There is something fascinating about science. One gets such whole-

some returns of conjecture out of such a trifling investment of fact.

Mark Twain

The man who sets out to carry a cat by its tail learns something that
will always be useful and which never will grow dim or doubtful. Mark

Twain

The original intent of this research was to test a novel variation of the real-
time recurrent learning algorithm which uses derivative arithmetic to propagate
partial derivatives through a conventional computer model of the system to be
controlled. Derivative arithmetic appears to have performed flawlessly from the
beginning and there is little more to conclude about it. Still, the artificial neural
controller would not learn to fly turns. The learning algorithm was either too slow
or unstable. Hundreds of experiments were required to diagnose the problem and
adjust parameters just so that the artificial neural controller could begin to learn.
This experience compels us to attempt to conclude something about the viability
and the future of automatic controller design. No doubt, someone will attempt to
extrapolate profound and probably erroneous conclusions about natural neural
networks from this research. There is no way to prevent this but we feel obliged

to indicate which of the more obvious implications are reasonable and which are

88



not.

6.1 Derivative Arithmetic

The introduction of derivative arithmetic into the real-time recurrent learning
algorithm is the single most important contribution of this research. It provides
the controller design engineer with immediate access to partial derivatives of all
variables with respect to state and control variables in the computer model with
little more effort and expense than that required to re-compile the program source
code. This means that it is now possible to use the real-time recurrent learning
algorithm to train artificial neural controllers for any of thousands of existing

simulators.

Derivative arithmetic itself is an ancient and obvious invention which is easy
to implement but was always difficult to use until programming languages which
support user defined types and operator overloading were introduced. Two of
these new languages, Fortran 90 and C++, are especially important. Because
the Fortran 77 language is a subset of Fortan 90 and the C language is a subset
of C++, derivative arithmetic can easily be substituted for normal floating-point

arithmetic in most of the existing scientific and engineering simulations.

Since few of the program variables in a typical simulation depend upon all
of the state and control variables, much of the computational effort in derivative
arithmetic is wasted computing and propagating zeros. This may or may not have
a significant affect on the efficiency of the real-time recurrent learning algorithm.
Derivative arithmetic in the flight simulator represented a small fraction of the
total computational load while training the artificial neural controller using the

real-time recurrent learning algorithm. There is very little incentive to improve
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the efficiency of partial derivative computation in simulations of comparable size

and complexity.

6.2 Automatic Controller Design

Artificial neural controllers can be trained to mimic human operators but the
ultimate goal of automatic controller design is to eliminate the need for human
intervention in the design process. Theoretically, an artificial neural controller
should be able to learn to control a complex nonlinear system autonomously.
A demonstration of this capacity might be considered as evidence for artificial
intelligence. This research was not designed to demonstrate autonomous learn-
ing. It was begun under the naive assumption that the artificial controller would
learn autonomously. The results of our experiments seem to indicate that a first
order real-time recurrent learning algorithm is inadequate for learning to control
complex nonlinear systems like a flight simulator autonomously. We believe that
a second order real-time recurrent learning algorithm would be able to learn au-
tonomously and adjusted the first order algorithm based upon this conjecture.
The fact that the artificial neural controller began to learn after these adjustments
were made seems to support our conjecture. At this time, artificial neural control
has no advantage over conventional control or even fuzzy control because a com-
parable amount of engineering insight and system knowledge is required from the
design engineer to make the necessary adjustments. We expect that, eventually,
the necessary computer resources will become available to test a second order

real-time recurrent learning algorithm.

The results of this research show that the real-time recurrent learning al-
gorithm can be used to train an artificial neural network to control a complex

nonlinear system like a flight simulator for a high performance fighter aircraft.
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This is not a “toy” simulator. It was used extensively for flight test simulation
by NASA Ames-Dryden Flight Research Facility at Edwards Air Force Base in
California. The simulation is not constrained in any way. The artificial neural
network controls all six degrees of freedom. Turns are not trivial maneuvers.
They are fairly difficult and demanding. The artificial neural controller learned
that it must bank in the direction of the turn, increase the angle of attack to
maintain altitude and apply rudder to minimize sideslip. It flies 2 g coordinated
turns about as well as any novice pilot. It flies shallower turns better and slightly
steeper turns less well. It will turn either left or right from any given initial
heading to any given final heading. It should be possible to train an artificial
neural controller to fly any standard flight test maneuver. It appears to be stable

and can tolerate mild air turbulence.

A sincere effort was made to preserve the autonomy of the real-time recurrent
learning algorithm. The artificial neural controller was provided with all of the
system state variables and their derivatives along with a fairly rich reference signal
which provided a look ahead capability for the desired heading. No preprocessing
was applied to the inputs other than normalization. The real-time recurrent
learning algorithm was expected to determine which inputs were relevant and
train the artificial neural controller to use or ignore them for each control output
by assigning appropriate weights to each input. The real-time recurrent learning
algorithm does not employ a “teacher”. The artificial neural controller does not
mimic any human pilot or even a conventional autopilot. The learning algorithm
trains the controller to minimize the difference between the desired and actual
state of the aircraft over the entire maneuver. The design engineer influences the

learning algorithm by specifying

e the desired value of each state variable at every time step during each
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maneuver,

e the weights applied to each of the differences between desired and actual

state variables,
e the rate at which recent experience is forgotten and

e the learning rate.

Some human intervention in the automatic design process may always be
necessary or at least desirable if the objective is to produce the best possible

artificial neural controller in the least amount of time.

e Some sort of “bootstrapping” may be necessary. Unless the artificial neu-
ral controller is initialized in such a way as to produce reasonable control
outputs, the simulation may never run long enough to allow the artificial

neural controller to begin learning.

e It may not be practical to have the artificial neural controller compute all
required nonlinear functions even if the learning algorithm could train it to
produce them. Some (nonlinear) preprocessing of the inputs may help to

speed up the learning process and improve control over the system.

e It will always be necessary for the controller design engineer to specify the
performance function. It is hoped but there is no guarantee that any less
engineering insight or knowledge of the system will be required to do this

correctly.

The artificial neural controller would not learn when this research began.
Hundreds of tedious experiments were conducted to diagnose problems. There

are still no solutions for some of those problems.
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e We were not able to train a two-layer artificial neural network to fly turns
starting from small random biases and connection weights. When networks
are initialized this way, they learn very slowly until the weights get larger.
Perhaps we were simply too impatient to wait long enough for the network
to begin learning. We tried initializing the network with larger biases and
connection weights but this only caused the simulator to crash more quickly.
We trained a one-layer artificial neural network instead and embedded it

into a two-layer network in order to learn nonlinear control.

e The artificial neural controller never learned to control the throttle. This
didn’t seriously affect the ability of the artificial neural controller to learn
to fly turns. Human pilots don’t usually use the throttle when they first
begin to learn to fly turns. There appears to be a fundamental problem
involving the relationship between altitude and airspeed that the real-time
recurrent learning algorithm was not able to resolve. It may be possible
to design a maneuver which isolates the dependency of airspeed on power
and train the artificial neural controller to use the throttle but this was not
essential for this research. We adjusted the artificial neural controller to

mimic the conventional controller.

e The two-layer artificial neural network with the embedded one-layer ar-
tificial neural controller never learned any significant nonlinear function.
This may be partly due to the fact that 2 g turns can be flown by a linear
controller don’t demand much from a nonlinear controller. The two layer
network also had about ten times as many biases and connection weights
as the one layer network and required much more time to train. Although
the network did seem to be learning slowly it didn’t always appear to be

improving. Again, the problem may simply have been that we were too
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impatient to continue training.

e We were never able to train an artificial neural controller which included
its own outputs as part of the inputs. Theoretically, it should be possible
to train a recurrent network to control a nonlinear system but none of the
neural networks that learned to fly turns incorporated any kind of internal

state.

e We never explored any method for stabilizing the update rule for the Gy
matrices except limiting € > 1/128. This meant that the learning algorithm
would forget recent experience after just a few seconds in real time. We
don’t think this had a serious impact on real-time recurrent learning and
the learning algorithm must forget eventually but we were never able to

test these assumptions.

6.3 Natural Neural Controllers
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APPENDIX A

Second Order Real-Time Recurrent Learning

This appendix shows how to calculate the total second partial derivatives of the
loss function Jy; with respect to the network biases and connection weights at
each time step so that they can be averaged to estimate the Hessian matrix which
is required to implement a second order real-time recurrent learning algorithm.
The objects are third order tensors and some of the notation used may be am-

biguous taken out of context.

A.1 Derivative Arithmetic

The first step is to extend derivative arithmetic to compute and propagate the
second derivatives of each variable with respect to the state and control variables

so that the simulation would compute

[m\A\B\M]ef([i‘I‘OD (A.1)

where

82$t+1 82$t+1 9 9
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at each time step.
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A.2 Real-Time Recurrent Learning

A second order real-time recurrent learning algorithm must compute the total

second partial derivatives of the loss with respect to the network biases and

connection weights

Pl Oviy Pl Doer | Ol O
60,5(99; 39t a$t+18513£_1 89; 8(13%_;_1 80@9;
_ ozl 0%y 0% (A.3)

50, Wi - 0T (der — y42)” Wit - 56,007
which requires an estimate of the total second partial derivatives of the state
variables with respect to the network biases and connection weights
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00,

(A.4)
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00,00} 00,00F
which requires, in turn, the total second partial derivatives of the control variables

with respect to the network biases and connection weights
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which requires the second partial derivatives of the control variables with respect

(A.5)

to the network inputs, biases and connection weights.

A.3 Backprop

The backward error propagation algorithm may be used to obtain the second
partial derivatives of the control variables, u; = vy, with respect to the net-
work inputs, biases and connection weights. The calculation is decomposed into

separate blocks for each combination of layer ¢ and layer k£ at time ¢.

The second partial derivatives of the control variables with respect to the

network inputs

Pux  _ Odagy Oy Pk
Qvedv] v agy  Ove O]
= W/ -diag{vj, ;}- % (A.6)
I1 0 Qv OV
where ¢/ < k and
2
s = (ot inalha) i)
= W/ -diag{vp, ;}- Ok -diag{vi, } - Wk
I7 Qo OV, kg
+ g (W - diag{vfl ;) - W) (A7)
Vi

where diag{vy, ;} is a diagonal third order tensor are computed first for layers
K —1 down to 1. The second partial derivatives of the control variables with

respect to the state variables
82
O0v10v] v, 00T

(92’()[{
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Oux (XT - diag{vy;} - X) (A.8)

ovT
are then available. If the controller outputs were nonlinear functions of the output

activations, backprop would begin with

(%K
=7 A.
ok (A.9)
and
82?)](
— = Al
Qv vk 0 (4.10)

but, in this case, there are no output units so backprop begins with
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and
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Next, we calculate the
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to get the mixed second partial derivatives of the control variables with respect
to the state variables and network biases and connection weights
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and the second partial derivatives of the control variables with respect to the

network biases and connection weights
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If there are nonlinear output units, backprop begins with

v S i
doro0r — Vi diaglvc,} © [ 1]k, ]
and
82'UK 1 . . .
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otherwise,
621)1(
[ — 07
Ovg 100%
82’1)[(
[ O,
avK_laﬁﬂ_Z
aZUK
- = O,
001 00%
backprop begins with
82’1)1( T )
000, = Wiy - Wk - diag{vg , ;} ® [ 1] vk, ]
and
v 1 o )
m - [ VK_9 ] ® (WK—l : dlag{val’j}) ® [ 1 ‘ ol ] _

For a two layer network with no output units
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