APPROXIMATE DISTRIBUTIVE LAWS AND FINITE
EQUATIONAL BASES FOR FINITE ALGEBRAS IN
CONGRUENCE-DISTRIBUTIVE VARIETIES

KIRBY A. BAKER AND JU WANG

ABSTRACT. For a congruence-distributive variety, Maltsev’s con-
struction of principal congruence relations is shown to lead to ap-
proximate distributive laws in the lattice of equivalence relations on
each member. In the case of a variety generated by a finite algebra,
these approximate laws then yield two known results: the bound-
edness of the complexity of unary polynomials needed in Maltsev’s
construction, from which follows the finite equational basis theo-
rem for such a variety. An algorithmic version of the construction
is included.

1. INTRODUCTION

We present a calculus of equivalence relations that quantifies Malt-
sev’s construction of principal congruence relations ([16], Theorem 1.20)
to show how, in a congruence-distributive variety, distributive laws hold
for equivalence relations after they have been adjusted by unary polyno-
mial functions of a certain nesting depth. This theory illuminates two
results. The first, due to the second author [18], is that in a congruence-
distributive variety generated by a finite algebra, the nesting depth of
the unary polynomials involved in Maltsev’s construction of principal
congruence relations can be bounded. The second is the theorem, due
to the first author [4], that a congruence-distributive variety generated
by a finite algebra of finite type has a finite equational basis. Several
proofs of this result are in the literature [4, 14, 17, 13, 8]; see also [7].
In [19] it is shown how this theorem follows from the boundedness the-
orem, to produce an explicit equational basis while appealing neither
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to Ramsey’s theorem as in [4] or to the compactness theorem of first-
order logic in some form [14, 17, 13, 8, 15]. An improved version of this
construction is included in algorithmic form.

For a history of the question of finite equational bases for finite al-
gebras, see [4, 6, 15]. For general terminology and standard concepts,
see [16, 9, 11].

2. APPROXIMATE DISTRIBUTIVE LAWS FOR EQUIVALENCE
RELATIONS

By an operational (or basic) unary polynomial on an algebra A we
mean any polynomial function obtained by freezing all entries except
one in a basic operation of A. Let O4 be the set of all operational
unary polynomials on A. For a € Eqv(A), the lattice of equivalence
relations on the universe A of A, let Oa be the equivalence relation on
A generated by a U {(p(a),p(b)) : p € Oa,(a,b) € a}. Thus O is an
operator on Eqv(A). We write O4 for O when needed for clarity.

Observations.

2.1: O is a complete join-endomorphism of Eqv(A). In particular,
O is isotone, and therefore

2.2: O(anB) C OanOp for a, B € Eqv(A).

2.3: The fixed points of O are the congruence relations of A.

2.4: Cga = UL OFa, where Cg o denotes the smallest congruence
relation on A that contains «. (This is a variant of Maltsev’s
construction of principal congruence relations; see [16], Theorem
1.20, [10] and §4 below.)

2.5: If p is a unary polynomial function on A obtained by freezing
all entries but one in a term of depth D, then (a,b) € « im-
plies (p(a),p(b)) € OPa. (Here “depth” is nesting depth in the
construction of the term.)

2.6: For an integer M > 0, by a linear unary polynomial of depth
M let us mean a composition of M operational unary polyno-
mials of A (where a composition of no polynomials is the iden-
tity function). If some linear unary polynomial of depth at most
M takes a pair (ag,a;) to the pair (by,b;) in A, let us say that
(bo, by) is weakly projective to {(ag,a;) in at most M steps, written
{(ag, a1y —ar (bg,b1). Then OMq is the equivalence relation on A
generated by all pairs weakly projective to pairs in « in at most
M steps.

2.7: If f : A — B is a surjective homomorphism, then fo Oy =
Opof.
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Here f(a) for o« € Eqv(A) means the smallest member of
Eqv(B) containing all pairs (f(a1), f(az2)) for {ai,as) € a.

2.8 Lemma. Let V be a congruence-distributive variety, fix Jénsson
terms tg,...,t,, and let D be the maximum of their depths. Then
for A € V and o, 31, --Bm € Eqv(A) we have these variants of the
distributive laws:

(i): om(ﬁlv---v m) C (OPanOPp) v (ODaﬂODBm)
(ii): («VB)N---N(aV B,) C OPL "Oa vV (O?PEm) B N
O?bLmg . Wher L(m) = [log, m].

Proof of Lemma 2.8. For (i): Suppose (a,c¢) € anN (B V-V By).
Then (a,c) € « and also a and c are connected by a sequence a =
bo, .. ,bm = c such that for each j = 1,...,m we have (b;_1,b;) €
Br() for some k(j). Let sij = t;(a,bj,c) for each relevant 7,5. As
in [2], J6nsson’s laws relating the t; give a “zig-zag” sequence a =
5105 8115+ - - » S1m=52m; S2,m—1, - - - 5 520=530, 531, - - -, €tc., with the second
subscript alternately increasing and decreasing, ending with c in the
guise of s,_1,, if n is even or of s,_1 if n is odd. Let us examine
relations between adjacent terms s; ;_; and s;;. Since these terms are
obtained by evaluating the unary polynomial t;(a,-,c) at b;_; and b;
respectively, by Observation 2.5 we have (s; j_1, S;;) € (’JDﬂk(j). By the
same observation applied to the unary polynomial ¢;(a, b;, ) evaluated
at ¢ and a, we have (s;j,a) € OPa (since t;(a,b;,a) = a); similarly
(sij-1,0) € OPa, so (s;;-1,8;) € OPa. Via the zig-zag sequence,
then, (a,c) € (OanNOPB) V- -V (0% n OPB,), as required.

For (ii): For m = 2, if o, 81, B> were actually congruence relations, by
congruence-distributivity we would have the derivation (aV £;) N (aV
B2) C [(aVBi)Na]V[(aVpi)NBa] C aV[(anB)V(6iNB2)] € aV(BiNGs).
Since «, 31, B2 are not necessarily congruence relations, however, we
invoke ( ) twice and use Observations 2.1 and 2.2 to dlstrlbute powers
of O through meets and joins: (aV ;) N (aV B2) C [(OPaVv O8,) N
OPa) v [(OPa Vv OPB1) N OP By
C OPa Vv [(0*Pan O?PB,) v (0?P3, N O?PB,)] € O*Pav (O?PB N
OQDBQ) .

For general m, it suffices to check the case where m is a power of 2,
which is accomplished by using the case m = 2 recursively: (aV 1) N

ﬂ(a\/ﬁzm) C [OzDL(m)a\/((’)wL(m)ﬁlﬂ- . -ﬂO2DL(m) Bm)]ﬂ[OQDL(m) v
(OQDL(m)Bm—i—l N---N OQDL(WL)ﬁZm)] C 02D—|—2DL(m)a v (02D+2DL(m)/61 N

N 02D+2DL(m)B2m) — 02DL(2m)a vV (OQDL(Qm) ﬁl NN 02DL(2m)52m).
O



4 K. A. BAKER AND J. WANG

2.9 Definition. For o € Eqv(A), O 'a is the largest 8 € Eqv(A)
with OB C a, or equivalently (in view of Observation 2.1), O~ 'a =
V{0 € Eqv(A): 00 C a}.

Observations.

2.10 : O~! is a complete meet-endomorphism of Eqv(A).
2.11 : The fixed points of @' are the congruence relations on A.
2.12 : O~ *q, in the sense of O~ (O7!(--- (O~ (a)) --+)) (k times),
equals V{0 € Eqv(A) : O%0 C a}.
Here is another kind of approximate distributive law, one that will
actually be used in what follows; its virtue is that the exponent of «
does not depend on m:

2.13 Lemma.
O ™Pl(aVvp)N---N(aV Bn)] COPaV (O™Pp N---NO™PE,).

Proof. For convenience, for k = 0,...,m write p, = O*PB, N---N
OFPB,. (Thus py = 1 € Eqv(A) and p,, occurs in the statement of
the Lemma.) Let 6 be such that O™P0 C (aV 1) N---N(aV By); we
must show that § C OPa Vv (0™PB, N---NO™PS,,). We first prove
this claim:

(2.14)  OPav (O*-DPgn p. 1) C OPa Vv (O*P0N py) for k =
ce. M.
The claim depends on the equation and inclusions
(2.15)  O®DPeN g 1 = (O*DPIN 1) N (e V Br)

C [OP(O*VPgN pp_1) N OPa] Vv

[OP(O%=DP0 N p,_1) N OP ]

C OPa Vv [O*Ph N py].
Here the equality follows from O*-1P9np,_; C O™Pf C oV fi. The
first inclusion follows from (i) of Lemma 2.8. In the second inclusion,
it is harmless to delete all but « in the bracketed expression on the
left; for the bracketed expression on the right, Observation 2.2 is used
to distribute OP to the lowest-level constituents, even within p,_;. To
complete the proof of the claim 2.14, it suffices to take the join of OP«
with the first and last expressions in 2.14.

Since pg = 1, by the claim 2.14 we have § = 6 N1 = 0N p, C
OPa v (0Npy) C OPaVv(@np) C---C OPaV(0Np,) C OPaV pn,
which gives the Lemma. [

1

Y

3. VARIETIES OF BOUNDED MALTSEV DEPTH

3.1 Definition. An algebra A has Maltsev depth at most M if OM+1 =
OM on Eqv(A), in which case Cga = OMq for each a € Eqv(4). A
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variety V can be said to have Maltsev depth at most M if OM+!1 = OM
on Eqv(A) for all A € V. An algebra or variety has bounded Maltsev
depth if it has Maltsev depth at most M for some M.

3.2 Theorem (improving Ju Wang [19]). Let V be a congruence-
distributive locally finite variety. If the finite subdirectly irreducible
members of V have bounded Maltsev depth, then so does V itself.
Specifically, if the Maltsev depths of finite subdirectly irreducible mem-
bers are bounded by N, then all members of V' have Maltsev depth
bounded by N + D, where D is the maximum depth of the designated
Jonsson terms for V.

The proof appears as 3.6 below. The explicit bound on the Maltsev
depth of V' is the improvement to [19].

3.3 Corollary (Ju Wang [18]). If V is a congruence-distributive variety
generated by a finite algebra then there is a bound M such that for all
A € V and all a,b € A, Cg(a,b) = Cg,,(a,b). Here Cg(a,b) denotes
the principal congruence relation obtained by identifying a and b and
Cgys(a, b) denotes the equivalence relation generated by {(p(a),p(b)) :
p € OX'} (M-fold compositions).

Proof of Corollary 3.3 from Theorem 3.2: For A € V and a,b € A,
apply Observation 2.4 to 6(a,b), the atomic equivalence relation that
identifies only @ and b. [J

3.4 Lemma. Suppose that f : A — B is a surjective homomorphism
and that B has Maltsev depth at most M. Then for each oo € Eqv(A)
we have Cga C OMa V ker f.

In other words, in computing the congruence closure of an equiva-
lence relation we can bound powers of O in Eqv(A) at the cost of an
adjustment by ker f.

Proof. By various Observations, f(Cga) = f(U2,0%a) =
UX, f(OFa) = U2 OF f(a) = OM f(a) = f(OMa). Therefore Cga C
LHf(OMa) = OMaVker f. O

3.5 Lemma. Let V be a congruence-distributive variety. If A € V is
the subdirect product of finitely many factors each with Maltsev depth
at most IV, then A has Maltsev depth at most N + D, where D is the
maximum depth of designated Jénsson terms for V.

Proof. Suppose A is a subdirect product of By, ... ,B,,, and let f; :
A — B; be the corresponding coordinate projections. For a € Eqv(A),
Lemma 3.4 gives Cga C (ONa Vker fi)N---N(ONa V ker f,,). Then
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Cga C OPONaV (ker fiN---Nker f,,) = OV Pa v 0 = ON*tPq, by
Lemma 2.13, taking into account the fact that Cga and the ker f; are
congruence relations and so are fixed points of @ and O~!. O

3.6. Proof of Theorem 3.2. Let A € V and o € Eqv(A) be given.
First consider the case where o = 6(a, b). Let (r, s) € Cg(a,b). Because
Maltsev’s construction (as in Observation 2.4) is finitary, we still have
(r,s) € Cg(a,b) inside some finitely generated subalgebra S of A. Since
V is locally finite, S is finite and is therefore the subdirect product of
finitely many factors. By Lemma 3.5 applied to S, we have (r,s) €
OM+D§(a,b), as desired.

For general o, the same bound follows from Observation 2.1 and the
fact that every element of Eqv(A) is the supremum of a set of atomic
equivalence relations, i.e., relations of the form §(a,b). O

3.7 Example. Consider varieties of lattices. Since only one nontrivial
Jénsson term is needed, such varieties have D = 2.

1. In the variety D of distributive lattices, the only subdirectly ir-
reducible member is the 2-element chain 2, which has Maltsev
depth 0, so D has Maltsev depth at most 0 + 2 = 2. This bound
is actually achieved in the cube 23.

2. The five-element nonmodular lattice N5 has Maltsev depth 2, so
the variety generated by N5 has Maltsev depth at most 4.

3. The five-element modular nondistributive lattice M3 has Maltsev
depth 2, so the variety generated by M3 has Maltsev depth at
most 4.

In the last two examples there are weak projectivities of length 3
that cannot be shortened, but by using transitivities Maltsev depth 2
can be achieved.

4. AN ALGORITHMIC APPROACH

We undertake a direct proof of Lemma 3.5, by means of a recur-
sive construction. It is based on the observation that when a Maltsev
scheme [10] is pulled back through a surjection, the weak projectivities
pull back suitably but equalities needed for the connecting sequence
may fail, resulting in a longer sequence that has “gaps”. The following
framework provides for the gaps.

In any algebra A € V, for a finite sequence of elements ¢ = ¢y,

. ,¢m = d, by an even link of the sequence (or an odd link) let us mean
a pair (c;, ci11), where ¢ is even (or odd, respectively). For a,b, € A
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and an integer N, let us say that such a sequence has depth (at most)
N relative to a, b if

(i) m is odd, so that the number of terms is even; and

(ii) for all odd links {c;, ¢;41) of the sequence, (a,b) =y (¢, Cit1)-

Let us call an even link {(¢;, ¢;41) a gluing if ¢; = ¢;11 or a gap if not.
Let us say that the sequence is end-consistent if
(¢, ;) € Cg(c,d) for all 3.

Here are some examples, in all of which it is assumed that a, b, c,d €
A:

1. The trivial sequence: The sequence c, d itself has depth 0 relative
to a, b, since there are no odd links.

2. A doubled sequence: If ¢ = ¢g, cq, ... , ¢, = dis a Maltsev sequence
connecting ¢ to d, with {a,b} =y {¢; 1,¢;} foreachi=1,... &,
then the doubled sequence ¢ = cgy,co,c1,¢1,-.. ,Cx, ¢ = d has

depth N relative to a, b.

Conversely, observe that a sequence from ¢ to d of depth N
relative to a,b that has no gaps, only gluings, gives a Maltsev
sequence of depth at most N witnessing (c, d) € Cg(a,b).

3. An image sequence: If f : A — B is a homomorphism and ¢ =
Co,C1,y--. ,Cp = d is a sequence in A of depth N relative to a, b,
then é = €, ¢, ... ,Cyn = d is a sequence in B of depth N relative
to @, b, where bars denote images.

4. A pullback sequence: If f : A — B is a surjection such that
in B the images ¢,d are connected by a sequence of depth N
relative to @, b, then this sequence pulls back to a sequence in A
of depth N relative to a,b. Indeed, the same terms can be used
for the polynomials, with an arbitrary choice of pre-images of the
auxiliary elements involved.

5. A lifted sequence: If ¢ = ¢y, ..., ¢, = d is a sequence of depth N
relative to a, b, then the zig-zag sequence
c=co = t1(c,co,d), t1(c,c1,d), ..., ti(c, cm,d) = ta(c, Cm,d), - ..,
Cm =4d
has depth N + D relative to a, b, where D is the maximum depth
of the terms t;.

Observe that the zig-zag sequence has the virtue of being end-
consistent, at the cost of an increase in depth. Observe also that if
the original sequence has no gaps, neither does the lifted sequence.

6. A patched sequence If ¢ = ¢y, ... ,c,, = d is a sequence connect-
ing ¢ and d and for some even 7 we have another sequence ry =
CiyT1,.-. Tk = Ci+1, Where k is even, then we say that the com-
bined sequence ¢ = ¢y, ... ,C;, C; =Ty T1y- -+ 5Tk = Cit1,Cit2y -+« 5Cm
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has been obtained by “patching” the second sequence into the first
at the link (c;, ¢;11). We generally re-index the patched sequence.

Observe that if the original two sequences are end-consistent,
so is the patched sequence. Observe also that if the original two
sequences have depth at most N relative to a, b then so does the
patched sequence.

Re-proof of Lemma 3.5: Given {(c,d) € Cg(a,b), the plan is to start
with the trivial sequence c,d and modify it repeatedly by patching
gaps, always keeping the result end-consistent and of depth at most
N + D relative to a, b, until finally such a sequence is obtained with no
gaps. Then we are done.

To describe the modification step, suppose that we currently have
an end-consistent sequence ¢ = ¢y, . .. , ¢, = d of depth at most N + D
relative to a,b. By a “gap split by w;”, where m; : A — B; is the
coordinate projection, let us mean a gap (c,d’) = {¢;, ¢;+1) for which
the images 7;(c;), 7;(cip1) are distinct—certainly any gap has some
such j. We patch this gap “via m;” as follows. By end-consistency in
A, in B, we have (m;(c'), m;(d)) € Cg(m;(c), m5(d))  Ce(m;(a), m,(b)).
By hypothesis, there is a Maltsev sequence in B; connecting 7;(c’) and
7;(d") with depth at most N relative to 7;(a), 7;(b). Pull the double of
this sequence back to A and lift, to obtain an end-consistent sequence
in A connecting ¢ and d’, of depth at most N + D relative to a,b.
Finally, patch this lifted sequence into the current sequence to obtain
a new sequence. By construction, the segment of the new sequence
between ¢’ and d' has no gaps split by 7;, only gluings. Moreover, if
later a new end-consistent sequence is patched in somewhere in that
segment, the resulting patched sequence too will have no gaps split by
7; between ¢’ and d’, because by end-consistency all the even links will
be in ker ;.

A convenient overall organization is to patch all gaps split by 7, via
7, then to patch all gaps split by 7y, via 79, and so on. Because, as
noted, further patching does not introduce more gaps, eventually all
gaps will have been patched at all 7;. Since any gap must be split by
some 7;, there are no gaps left and the algorithm terminates. O

5. THE FINITE BASIS THEOREM

5.1 Theorem [4]. A finite algebra of finite type that generates a
congruence-distributive variety is finitely based.

The proof appears as 5.4 below.
5.2 Lemma. A variety V has bounded Maltsev depth M if and only if
this property is finitely equationally expressible, in the sense that there
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is a finite set 3 of laws of V' all of whose models have Maltsev depth
at most M.

Proof. The “if” implication is trivial; let us consider “only if”. Be-
cause we are constructing laws, this discussion will distinguish between
three contexts: term algebras, free algebrasin V', and arbitrary algebras
in V. We notate elements of free algebras as images of terms. Thus for
a term algebra T generated by variable symbols x, y, ..., the free alge-
bra in V with corresponding generators will be denoted Fy (z,7,...),
where the bar denotes the natural epimorphism of T onto the free al-
gebra. The proof of the lemma will consist of examining carefully how
the relation OM*! = OM in a suitable free algebra becomes equational
in V.

By a protolinear term, let us mean a term that is a formal compo-
sition of operation symbols using variable symbols x, z1, ... , 2, each
appearing once, where x occupies the “argument” entry and the aux-
iliary variable symbols z1, 2o, ... appear consecutively left to right up
to some point and do not appear thereafter, and where every subterm
is either a variable or includes z. For example, if the type consists
of a single binary operation with symbol b and if m > 2, then one
protolinear term is ¢(x, z1, ..., zy,) = b(21,b(z, 22)). In an algebra in
V with designated elements cy, ... , ¢, there is a corresponding unary
polynomial a — £(a,ci,...,cm) = b(cr,b(a, c)). In fact, every linear
unary polynomial in every algebra in V' has this form, for a suitable m.
Let us choose m large enough that protolinear terms in z, 2q,... , 2,
are adequate to induce any linear unary polynomial of depth at most
M +1 in any member of V; such a choice is m = (M +1)(k — 1), where
let k£ be the maximum arity of operation symbols in the type of V. Let

Anry1 be the set of protolinear terms £ in x, zq, ... , z,, of depth M + 1.
Since V' is of finite type, Apryq is finite.

Take any £ € Apryq1. In the free algebra F = Fy (Zo, 1, 21, - - - , Zm),
observe that <f0, f1> —M+1 <£(i‘0, Zlyeen s Em),g(i‘l, 215 .. ,Zm». Then

by the choice of M, (€(Zg, Z1, - - - » Zm), U(T1, 215 - - - » Zm)) € OM(Zg, T1),
which by Observation 2.6 is the equivalence relation generated by all
pairs (p(a),p(b)) for all linear p that are compositions of at most M
operational unary polynomials on F. Therefore in F there is a finite se-
quence connecting ¢(Zg, Z1, - - - , Zm), (%1, 21, - - - , Zm), of depth at most
M relative to xg, 1 and with no gaps. The even links, giving equations
in a free algebra, constitute a set 3, of laws of V. Let ¥ = Uee Aniss Y.
Then V E X

Further, if in some model A of ¥ we have (ag,a1) —mi1 {(€o,e€1),
then there exist £ € Apry1 and constants ci,...,cy, such that e; =
laj,c1,...,¢p) for j = 0,1. The laws of ¥, then give a recipe for
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building a Maltsev scheme in A to show {(eg,e;) € OM§(ag,a;). For-
mally, we represent A as a homomorphic image of F, pull the arrow
back to F, regard it as a congruence scheme, replace it by a congru-
ence scheme of depth at most M using the laws of ¥;, and then map
forward to A. By the observation of 2.6, this argument proves that A
has Maltsev depth at most M. [J

5.3 Remark. The construction just presented yields explicit laws, in-
dividually not complex but possibly numerous.

5.4 Proof of Theorem 5.1.

Let A be a finite algebra of finite type, generating a congruence-
distributive variety V. By Theorem 3.2, V' has bounded Maltsev depth
M, so that Lemma 5.2 applies. Let us build an equational basis for
V' by including various finite sets of laws in turn to get smaller and
smaller varieties, ending with V. First, let us take the finite set ¥
of laws of J6nsson [12] satisfied by the chosen Jénsson terms for V.
Second, let us take the finite set 3 of laws constructed in Lemma 5.2;
the variety defined by ¥ U X includes V' and has members of Maltsev
depth at most M.

Third, by Jénsson [12], V has only finitely many subdirectly irre-
ducible (SI) algebras, all finite; let K be their maximum cardinality.
Let us take the set of laws A » obtained by applying the construction
of §4 of [2] for the case of the disjunction (Vzy) - - - (V2 k) (ORic;jz; = z;),
to a maximum depth M. The set of laws WUX UAg ys defines a variety
containing V' of which all SI members have at most K elements.

Fourth, a finite set [' of additional laws will suffice to exclude the
finitely many SI models of ¥ U X U Ag j that are not in V. The
equational basis of V, then, is WU X U Agp UT'. O

6. PROBLEMS

1. Determine whether Lemma 3.5 can be extended to the case of
infinitely many subdirect factors. This is unlikely to be the case,
even for lattices, but a counterexample is elusive. One approach
would be to look for a sequence of finite lattices, each with OM+1 =
OM for the same bound M, but where the Maltsev schemes pro-
ducing this reduction require longer and longer strings of transi-
tivities.

2. Can the approximate distributive law 2.13 be simplified while still
retaining a constant bound on the power of O applied to a? What
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about the case of lattices? Can the power of O in 2.8-(ii) be
reduced?

3. From each operation *; on pairs described in [2] we can define
an operation « *; # on equivalence relations, whose value is the
equivalence closure of the obvious set of pairs. Incorporate these
operations in the theory developed in §2. (Cf. [4, 17].)

4. The method of constructing a basis used in §5 is still not very
economical in terms of the number of laws produced. Find a
more economical approach—one that approaches known equa-
tional bases in small examples.

5. The method of [4] was actually carried further, to a finite basis
theorem for varieties whose subdirectly irreducible members form
an elementary class. This approach is distilled especially well in
Jénsson [13]. Can this more general theory be tied to the methods
of the present paper?

The authors are grateful to the referee and editor for valuable sug-
gestions.
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