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Jonsson’s Lemma

1. A finite version

Theorem. (Foster) Let A be a finite algebra such that Var(A) is congruence-
distributive. Let B € Var(A) be finite and subdirectly irreducible. Then
B € HS(A).

Corollary. Under the same hypotheses, |B| < |A|, and if |B| = |A| then
B A.

Ezrample. Each of the lattices M3, N5 satisfies a law that fails in the other.

Proof of the theorem: Var(A) = HSP(A), so represent B as a homomorphic
image of a subalgebra C of AXx - x A: CCAx---xAand¢:C — B
(a surjection). Here we know a finite product will do since B is the image
of a free algebra Vary(n), where n = |B|, and such a free algebra can be
constructed by the table method. See the left-hand side of Figure 1.

C C A x - Sio - A
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Figure 1: Mappings for the Theorem of §1.

Focus on Con(C). One of its elements is ker ¢, which by the Correspondence
Theorem is meet-irreducible. Some other elements are the kernels of the
coordinate projections restricted to C: ker(m;|c). Of course m;|¢ may not
map C onto A; its image is some subalgebra S; of A.

Observe that
N; ker(m;|¢) = 0 < ker ¢.

Recall that in a distributive lattice, a meet-irreducible element is meet-prime.
Therefore ker(m;,|c) < ker ¢ for some ig. This says that m;,(a) = m,(a') =
¢(a) = ¢(a'). Therefore a well defined map 1 of the image of S;, onto B is
obtained by setting 1(m;,(a)) = ¢(a). This map is the desired homomorphism
showing that B € HS(A). See the right-hand side of Figure 1. O
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2. Ultrafilters

Consider the set I =w = {0,1,2,...}, the lattice Pow(/), and its ideals and
dual ideals (filters). A principal ideal consists of the family of all subsets of
some given set. Some examples to think about:

e The principal ideal generated by I\ {k} is maximal, for each k.

e Its complement is the principal dual ideal (“principal ultrafilter”) con-
sisting of all subsets containing {k}.

e The ideal I; of all finite subsets is not principal.

e However, the ideal I; of all finite subsets is the intersection of maximal
ideals (as is any ideal). These are the nonprincipal maximal ideals.
There are 22°° of them, but it is impossible to give even one explicitly!

Given a maximal ideal, we think of its members as “small” subsets of I.
What is a “large” subset? There are two possible definitions:

(1) A large subset is a subset that is not small;
(2) a large subset is the complement of a small subset.

But these two definitions are equivalent! Recall that for a maximal ideal of
a Boolean lattice, for each z exactly one of x or z’ is in the ideal.

Question. For the principal maximal ideal generated by I'\{k}, which subsets
of I are small and which large? (It is as if only £ counts for largeness.)

To summarize,
1. Every subset of I is either large or small (not both).

2. The empty set is small. In fact, if the maximal ideal is nonprincipal,
then any finite subset is small.

1 itself is large.

The union of two small subsets is small.

The intersection of two large subsets is large.
A subset of a small subset is small.

A superset of a large subset is large.

The small sets form a maximal ideal.
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The large sets form an ultrafilter.
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3. Ultraproducts

An “ultraproduct” of algebras is their direct product modulo an congruence
relation constructed from a nonprincipal ultrafilter. The congruence relation
tends to collapse the product down to something that looks like a “generic”
copy of the individual algebras, reflecting whatever features they have in
common.

The construction is set-theoretic and actually works for sets with relations
as well as for algebras. In detail:

Definition. Let I be an infinite index set. Let algebras A;,¢ € I be given.
Choose a nonprincipal ultrafilter &/ on I. On the direct product [],., 4;,
define an relation = by saying a = b when a and b agree on a large set of
indices. The ultraproduct of the A; is the direct product modulo =:

A* = ([],e; Ai)/ =, or more simply A* = [[..; A;/U.

There are several things to consider here:

e Does the phrase “agree on a large set of indices” mean that there is
some large set J C I of indices such that a; = b; for all j € J, or that
the set of all i € I with a; = b; is large? By the properties of large sets,
it doesn’t matter; the meanings are the same.

e It must be checked that = is an equivalence relation. This follows from
the properties of large sets.

e We say “the” ultraproduct even though the result does depend on the
choice of U.

Ultraproducts have some startling properties:

1. Any n-ary relation common to the A; has a reasonable definition on
their ultraproduct.

2. Any first-order sentence true in the A; is true in their ultraproduct.
(This extends to first-order formulas.)

3. An ultraproduct of fields is a field. (Why?)

4. The ultraproduct is unchanged if finitely many factors are omitted.
(Why?)

5. If all the A; are finite and isomorphic, then A* is a copy of the same
algebra. (Why?)
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Ezxamples.

(a) The ultraproduct of countably many copies of the field R of reals is the
field R* of “nonstandard reals”. It is possible to do calculus using “infinites-
imals” in R*.

(b) The ultraproduct of countably many copies of the ring Z of integers is
the ring Z* of “nonstandard integers”. Some of them are “infinite”.

(c) The ultraproduct Zs X Z3g x Zs X - -- /U is a field of characteristic 0.

(d) The ultraproduct of chains 1 x 2 x 3 x -- - /U is an infinite chain. (What
does it look like?)

4. Jonsson’s Lemma

“Jonsson’s Lemma” would be called a theorem by most people, but it was
called a lemma in the original paper and the name has stuck.

For a class K of similar algebras, let U(K) denote the class of algebras iso-
morphic to ultraproducts of algebras in K 1.

Theorem. (Jénsson’s Lemma) Let K be a class of similar algebras such that
Var(K) is congruence-distributive. If B € Var(K) is subdirectly irreducible,
then B € HSU(K).

Corollary. For a finite algebra A, if Var(A) is congruence-distributive, then
for each subdirectly irreducible algebra B € Var(A) we have B € HS(A).

Notice that this Corollary is a little stronger than the Theorem of §1, since
it is not assumed to start with that B is finite. The conclusion is the same.

5. Problems

Problem G-1. How can we be sure that an ultraproduct of chains is a chain?
Problem G-2. Prove the Corollary of §4 from Jénsson’s Lemma.

Problem G-3. Let F; be the Galois field of 4 elements. Find all the SI
members of Var(F,), up to isomorphism.

Most authors write Py, following Jénsson, and some omit the use of isomorphic copies.
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