Math 222A W03 F.

Mal'tsev conditions

1. The idea

Based on a theorem of Mal'tsev discussed below, a "Mal'tsev condition" is any condition on a variety that is can be characterized using the existence of terms obeying laws of some sort¹. Some typical examples are

• V is congruence-permutable. In other words, for any $A \in V$ and any $\theta, \psi \in \text{Con}(A)$, we have $\theta \psi = \psi \theta$.

Examples: The variety of all groups; the variety of all rings.

• V is congruence-distributive. In other words, for any $A \in V$, Con(A) is a distributive lattice.

Example: The variety of all lattices; the variety of all Boolean algebras.

• V is congruence-modular. In other words, for any $A \in V$, Con(A) is a modular lattice.

Since the distributive law implies the modular law, any congruence-distributive variety is also congruence-modular. Also, we have:

Proposition. Any congruence-permutable variety is congruence-modular.

• V is arithmetic ("arithmet'ic"). This means that V is both congruence-permutable and congruence-distributive.

Example: The variety of rings generated by a finite field.

A relevant kind of term: A ternary term m(x, y, z) is said to be a majority term for a variety V if V has the laws

$$m(x, x, y) = x, m(x, y, x) = x, m(y, x, x) = x.$$

2. Some theorems showing Mal'tsev conditions

- **2.1 Theorem** (Mal'tsev) For a variety V, the following are equivalent:
- (a) V is congruence-permutable (i.e., $\theta \phi = \phi \theta$ in congruence lattices of algebras in V);
- (b) there is a term p(x, y, z) such that in V these laws hold:

$$p(x, x, z) = z,$$

$$p(x, z, z) = x.$$

¹Mal'tsev, also transliterated Mal'cev, was a famous Russian algebraist.

- **2.2 Theorem** (Pixley) For a variety V, the following are equivalent:
- (a) V is arithmetic;
- (b) there are terms p(x, y, z) and m(x, y, z) such that in V, p obeys Mal'tsev's laws of (1b) and m is a majority term;
- (c) there is a term q(x, y, z) such that in V,

$$q(x, x, z) = z$$
 (minority),

$$q(x, z, z) = x$$
 (minority),

$$q(x, y, x) = x$$
 (majority).

- **2.3 Theorem** (Jónsson) For a variety V, the following are equivalent:
- (a) V is congruence-distributive;
- (b) for some $n \geq 2$, there are terms t_0, \ldots, t_n in x, y, z such that in V,
 - (i) $t_0(x, y, z) = x$, $t_n(x, y, z) = z$;
 - (ii) $t_i(x, y, x) = x$, for all i;
 - (iii) $t_i(x, x, z) = t_{i+1}(x, x, z)$ for i even, $t_i(x, z, z) = t_{i+1}(x, z, z)$ for i odd.

(Notice that the case n=2 is equivalent to the existence of a majority term.)

- **2.4 Theorem** (Day, Gumm) For a variety V, the following are equivalent:
- (a) V is congruence-modular;
- (b) for some $n \geq 0$, there are terms t_0, \ldots, t_n and p in x, y, z such that in V,
 - (i) $t_0(x, y, z) = x$
 - (ii) $t_i(x, y, x) = x$, for all i;
 - (iii) $t_i(x, z, z) = t_{i+1}(x, z, z)$ for i even, $t_i(x, x, z) = t_{i+1}(x, x, z)$ for i odd.
 - (iv) $t_n(x, z, z) = p(x, z, z)$,
 - (v) p(x, x, z) = z.

3. Problems

Problem F-1. Prove Mal'tsev's theorem.

Problem F-2. Prove Pixley's theorem.

Problem F-3. (a) Another Mal'tsev condition: Show that the following are equivalent for a variety V:

- ullet V has a majority term;
- meets of congruences distribute over composition: $\alpha \cap (\beta \gamma) = (\alpha \cap \beta)(\alpha \cap \gamma)$.
- (b) Use (a) to show that a variety with a majority term is congruence-distributive (the case n=2 of Jónsson's theorem).