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ABSTRACT. For varieties of algebras, we present the property of
having “definable principal subcongruences” (DPSC), generalizing
the concept of having definable principal congruences. It is shown
that if a locally finite variety V of finite type has DPSC, then V'
has a finite equational basis if and only if its class of subdirectly
irreducible members is finitely axiomatizable. As an application,
we prove that if A is a finite algebra of finite type whose variety
V(A) is congruence distributive, then V(A4) has DPSC. Thus we
obtain a new proof of the finite basis theorem for such varieties. In
contrast, it is shown that the group variety V(S3) does not have
DPSC.

1. INTRODUCTION

We consider only varieties of finite type. Following Baldwin and
Berman [3] and McKenzie [10], let us say that a first-order formula
['(u,v,z,y) is a congruence formula if it is positive existential and
['(u,v,z,2) — uw ~ v holds in all algebras of the relevant type. It
follows that I'(u,v,z,y) implies (u,v) € Cg(z,y) (the principal con-
gruence relation generated by identifying = and y) in any algebra of
the type. A typical congruence formula expresses the assertion that
(u,v) can be reached from (x,y) by using one of finitely many Mal’tsev
congruence schemes [7].

For some congruence formulas I' and instances of x, y in an algebra, it
is the case that I'(—, -, z, y) is Cg(z,y). A useful observation [10] is that
this case can be described by a first-order formula Il (z, y); specifically,
[r(z,y) asserts that I'(—,—, z,y) is an equivalence relation compatible
with the (finitely many) basic operations and also that I'(z,y,z,y)
holds.
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A variety V is said to have definable principal congruences (DPC)
[3] if there is a first-order formula T'(u, v, z, y) such that in any B € V,
(c,d) € Cg(a,b) if and only if B =I'(c,d,a,b). If V does have DPC,
then I' can be taken to be a congruence formula.

McKenzie [10] proves that if V' is a variety of finite type with DPC
and only finitely many subdirectly irreducible members up to isomor-
phism, all finite, then V is finitely based. We generalize this fact
by defining the concept of having definable principal subcongruences
(DPSC) and showing (Theorem 1) that if V' is a locally finite variety
of finite type with DPSC for which the class of subdirectly irreducible
members is definable (finitely axiomatizable), then V is finitely based.
An application is to congruence distributive varieties generated by a
finite algebra A of finite type, which are shown to have DPSC (Theo-
rem 2). The resulting proof of the finite basis theorem [1, 9] for this
congruence distributive case avoids dependence on computation with
Jénsson terms [8]; cf. [1, 9, 2].

General references for varieties of algebras are [5] and [11].

2. DEFINABLE PRINCIPAL SUBCONGRUENCES

Definition. A wariety V has definable principal subcongruences
(DPSC) if there are congruence formulas I'y (u, v, z,y) and Ua(u, v, z,y)
such that given any algebra B € V and elements a,b € B with a # b
there exist elements ¢,d € B with ¢ # d for which B = T'i(c,d, a,b)
and B =1, (¢, d).

In essence, the condition for DPC says that the variety has a fi-
nite list of congruence schemes [7] sufficient to compute any principal
congruence, while the condition for DPSC says that the variety has
a finite list of congruence schemes sufficient to reach a principal con-
gruence that can be fully computed by a predetermined finite list of
congruence schemes. Observe that DPC implies DPSC.

An instructive example is the variety V (Ms), where M3 is the five-
element modular lattice with three atoms. By Theorem 2 below, V (Mj3)
has DPSC, but McKenzie [10] shows that V' (Mj3) does not have DPC.
McKenzie observes that V(M3) contains lattices P, for n = 1,2,...,
of which P, is shown in Figure 1. The computation (b,1) € Cg"™ (a, b)
requires a sequence of transitivities of length at least n, so there cannot
be a single formula for principal congruences and DPC fails. On the
other hand, the condition for DPSC is satisfied; for example, in P, with
a, b as indicated, one can choose ¢, d as shown and then a typical pair
(r,s) € Cg(c,d) is reached via a computation whose complexity has a
bound depending only on the variety. See also [4].
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FIGURE 1. The lattice P, of McKenzie

A class of similar algebras is said to be finitely aziomatizable (or
strictly elementary or definable) if it is the class of models of some first-
order sentence. By the compactness theorem, the finitely axiomatizable
varieties are simply those that are finitely based.

As mentioned, McKenzie [10] showed that a variety of finite type with
DPC and with only finitely many subdirectly irreducible members, all
finite, is finitely based. The following fact is a generalization. For
any class KC of similar algebras, let gy denote the class of subdirectly
irreducible members of IC.

Theorem 1. A wvariety V with definable principal subcongruences is
finitely based if and only if Vgr is finitely aziomatizable.

The proof depends on the following lemma. For convenience, let us
say that a class K of similar algebras has a property “doubly” if both
K and Kqp have the property.

Lemma. If a variety V is contained in a doubly finitely axiomatizable
class KC, then V' is either doubly finitely ariomatizable or doubly not
finitely axiomatizable.

Proof (after Jonsson [9]): First suppose that V is not finitely ax-
iomatizable. Then there exists an index set I, algebras A; € V,i € I,
and an ultrafilter & on I such that the resulting ultraproduct A* is in
V', by [6] Theorem 4.1.12, or by taking I = w and for each ¢ choosing
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A; to satisfy all i-variable laws of V' but not all laws. If we replace each
A; by one of its subdirectly irreducible subdirect factors not in V', then
A* is replaced by a homomorphic image, so without loss of generality
we may assume that each A; is subdirectly irreducible. Further, since
A* € I, which is finitely axiomatizable, we have {i € I : A; € K} € U,
so without loss of generality we may assume A; € K for all 7. Then
A; € Kgy for all 4, and since Kqy is axiomatizable, A* is subdirectly
irreducible. Thus A; € Vg for all 7 but A* € Vgj. Therefore Vg is not
finitely axiomatizable.

Suppose on the other hand that V' is finitely axiomatizable. Then
sois Vqr =V NKgr. O

Proof of Theorem 1: Let I'y and I's be congruence formulas witness-
ing DPSC for V' and let K be the class of all algebras (of the type of
V') for which T'; and T', witness DPSC. Observe that K is the class of
models of

® = (Ya,b)la#b— (Fe,d)[c#d A Ti(c,d,a,b) ANp,(c, d)]],
while Kqr is the class of models of & A U for
U = (3r,s)[r#£sA (VYa,b)[(a#b — (Fe,d)[['1(c, d, a,b) ATs(r, s,¢,d))]]-
Since V' C I, the Lemma applies. [

Remarks. The same kind of argument would apply if it is the class of

finitely subdirectly irreducible members of V' that is finitely axiomatiz-
able.

3. CONGRUENCE-DISTRIBUTIVE VARIETIES GENERATED BY A
FINITE ALGEBRA

Theorem 2. Let A be a finite algebra of finite type for which V(A) is
congruence distributive. Then V (A) has definable principal subcongru-
ences.

The proof depends on this fact about embeddings in a product:

Observation. In a congruence distributive variety, consider an em-
bedding C — [l;c; Ai, where C is finite. Let p,q,7,5 € C. Then
(r,s) € Cg%p,q) in C if and only if the same holds in the pro-
jected image of C' in each factor, i.e., for each i € I we have (F,5) €
Cg™)(p, q), where 7,5, p,q are the images in A;.

Indeed, “only if” is automatic. For “if”, observe that Cg“(r,s) <
Cg“(p, q) V ker7; for each i. Since C is finite there are only finitely
many possible kernels, so that the distributive law applies: Cg®(r, s) <
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Nicr(Cg%(p,q) V kerm;) = Cg(p,q) V (Nicr kerm;) = Cg%(p,q) VO =
Cg“(p, q)-

Proof of Theorem 2: By Jonsson’s Lemma [8], V(A) has up to
isomorphism only finitely many subdirectly irreducible members, all
finite. Let N be the maximum of their cardinalities. We proceed as
follows. Given any algebra B € V(A) and a # bin B, we shall construct
a subalgebra D of B with at most N generators, including a and b,
and designate ¢ # d in D with Cg®(c,d) < Cg”(a,b). Next, given any
r,s € B with Cg®(r,s) < Cg®(c,d), we shall let C be the subalgebra
of B generated by D and r,s and show that (r,s) € Cg%(c,d). By
local finiteness, |D| and |C| have finite bounds depending only on A.
Therefore there are congruence formulas I'y (u, v, z, y) and I's(u, v, z, y),
depending only on A, with I'y(c, d, a,b) holding in D and hence in B,
and with T's(r, s, ¢, d) holding in C and hence in B, as required. Thus
V(A) has DPSC.

To construct D, let B — [[,.;S; be a subdirect representation of
B, with coordinate maps m; : B — S;, ¢ € I. Choose j € I so that
n(j) = |S;| is as large as possible subject to m;(a) # m;(b). Choose
preimages ey, ... , e,(;) € B of the elements of S; under 7;, with e; = a
and e; = b. Let D be the subalgebra of B generated by ey, ..., en).
Thus 7;(D) = S;. For convenience, write 7 for m;|p.

Since S; is subdirectly irreducible, ker 7TJD is completely meet irredu-
cible in Con(D). By the congruence distributivity of V' (A), the interval
[0, ker 7T]-D ] in Con(D) is a prime ideal; therefore its complement is a dual
ideal whose least element « is join-prime. In particular, « is the least
congruence on D not under ker7”. Because Cg”(a,b) £ kerw? we
have o < Cg”(a, b). Moreover, since « is join-prime and is a finite join
of principal congruences, « is principal, say a = Cg”(c, d).

Let us say that say i splits u,v € B if m;(u) # m;(v). Observe that
if i splits ¢, d, then Cg”(c,d) £ ker 7P and i also splits a, b, so by the
minimality of @ = Cg”(c,d) we have ker 7? < kerwP. Then there is
an induced map of D/kern” = m;(D) onto D/kern = 7;(D) = .
By the choice of j, m; maps D onto S;.

Now let 7, s € B be given with Cg”(r, s) < Cg”(c, d). As mentioned,
let C' be the subalgebra of B generated by D and r,s. Again by the
local finiteness of V(A), C is finite. We apply the Observation to
c,d,r,s and C < [[,.; S, as follows. If ¢ splits ¢, d, then m;(C) =
S; = m(B), so (7,5) € Cg"P)(¢,d) = Cg™(9)(¢,d), where 7,35, d are
images in S;. If ¢ does not split ¢, d, then neither does 7 split r, s, so
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again (7, 5) € Cg™(9) (¢, d) = 0. Then the Observation applies to show
(r,s) € Cg(c,d). O

Corollary ([1]). If A is a finite algebra of finite type for which V(A)
is congruence distributive, then A is finitely based.

4. A GROUP VARIETY WITHOUT DPSC
Theorem 3. The group variety V(S3) does not have DPSC.

Proof: We start from the observation that a variety V' with DPSC
has “definable atomic congruences in finite members” in the sense that
there is a congruence formula I'(u, v, z,y) for V such that in any fi-
nite member B of V, for each nontrivial congruence Cg”(a,b) there
is some atomic congruence Cg®(r,s) < Cg”(a, b) for which I'(r, s, a, b)
holds. Indeed, given a, b we can choose ¢, d as in the definition of DPSC
and then an atomic congruence Cg”(r,s) under Cg”(c,d), so that
['(r, s, a,b) holds for I'(u, v, z,y) = 3z, w)[['1 (2, w, z,y) A2 (u, v, z, w)],
again a congruence formula.

If V is a group variety, then principal congruences correspond to prin-
cipal normal subgroups. For a € B € V', the elements of the principal
normal subgroup N(a) generated by a are the products of conjugates
of @ and a~!. Let V have finite exponent, so that mention of ! can be
omitted. By compactness, V' has definable atomic congruences in finite
members when there is a bound M such that for any finite member B
of V and a € B with a # 1 there exists a minimal normal subgroup of
B generated by the product of at most M conjugates of a.

We shall show that V(S3) lacks such a bound. Write S3 = {1, ¢, ¢, b, be, bc},
where ¢ = 1, b> = 1 and ¢b = bc®. For future reference, observe
that a conjugate ¢ = v~ tcv of ¢ for v € S3 depends only on the
coset of v modulo A3 = {1,¢,c?}. For each n let B, be the sub-
group of S2" generated by b\, ... b{", where b{™ = (1,b,1,b,...),
by = (1,1,b,b,1,1,b,b,...), and in general b,(c") has alternating runs
of I’s and b’s each of length 271, Let E, be the larger subgroup of S2"
generated by b, ..., b{™ and ¢ = (c,c,. .. ,c).

First we show that the minimal normal subgroups of E, are all of
the form {1} x --- x {1} x A3 x {1} x ---{1}. To establish principles
let us examine E), which is generated by (1,b) and (c,c). If N is
a nontrivial normal subgroup not of the stated form, then N has an
element (z,y) in which neither of z,y is 1. In the case where y € A3,
we have [(z,y),(1,b)] = (1,y) and {1} < N((1,y)) < N. In the
case where y ¢ As, since x € Az we have [(z,y),{c,c)] = (1,¢) and
{1} < N({(1,¢)) < N. For Ei, these are the only cases, so that N
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is not minimal. More generally, if N < F, is a nontrivial normal
subgroup not of the stated form, then N has some element x with two
entries z;, z; neither of which is 1. In the case where both z;,z; € As,
as with E; we take the commutator of x with a generator b,(cn) whose
i-th and j-th entries differ. In the case where one of z;, z; is in A3 and
the other is not, we take the commutator with ¢. In the case where
z;, ; ¢ As (a case that does not occur for E), the i-th and j-th entries
of [x,c] € N are both ¢, so we have arrived back at the first case. In
all cases, we find that N is not minimal, showing that minimal normal
subgroups of E,, do have the stated form.

Now suppose that there is a bound M as above for V. Let n = M +1
and consider any a € N(c) < E, other than the identity. We shall
show that N(a) cannot be a minimal normal subgroup of E,. By
assumption a is the product of at most M < n conjugates of c, say
a=c".. -c"(k), where £ < n. Each conjugate ¢’ is determined by
the As-cosets of the entries of v(?; say v](-z) € hS-Z)Ag, where hg-z) € {1,b}.
If we set h® = (hY .. h{)), we see h® € B,. A claim: The set of
2" coordinate indices can be partitioned into nonsingleton blocks in
such a way that the entries of each h® are constant on each block.
From this claim it follows that the entries of a are constant on each
block. Then each entry value occurs in at least two coordinates and
so a is not in any minimal normal subgroup as characterized above.
We conclude that V(S3) does not have definable atomic congruences
in finite members.

To verify the claim, let H be the subgroup of B, generated by
h® ... h®. Since B, is an elementary 2-group with n independent
generators and H has fewer than n generators, we have H < B,. The
corresponding subgroup H' of the dual group B, is nontrivial and con-
sists of characters that have value 1 on H. Two characters are in the
same coset of H' when they agree on H. Now observe that from the
construction of B, the coordinate projections m; : B, — {1,b} are the
characters of B, with {1,b} playing the role of {—1,1}. Thus the 2"
coordinate indices are partitioned into blocks of equal size (the cosets)
such that each element of H has constant entries on each block. This
is the partition to which the claim refers. [

The authors are grateful to George McNulty and Andrew Glass for
a number of valuable suggestions.
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