Math 222A W03 D.

Congruence relations

1. The concept

Let’s start with a familiar case: congruence mod n on the ring Z of integers.
Just to be specific, let’s use n = 6. This congruence is an equivalence relation
that is compatible with the ring operations, in the following sense:

a = b a = b _
a = b a = b o« = b
—— T — 7 = —a = —b
= a+d = b+b = aa’ = bb
and of course 0 = 0.
The same definition works for algebraic systems in general:
1.1 Definition. A congruence relation on an algebra A = (A; fi1,..., f) is an

equivalence relation = that is compatible with the operations, in the sense
that for each basis operation f;, if f; is n;-ary we have

a = bla vy Op, = bm, = f,-(al, ceey U,ni) = fi(bla ceey bnl)

Terminology. Often we name a congruence relation 6, say, and write either
abb or a = b (). Also, we may say “congruence” instead of “congruence
relation”. Just as for equivalence relations in general, we can speak of the

blocks of a congruence relation (or “classes”, but that usage is somewhat old).
For a € A, the block of a is often called a.

2. Examples

(1) In Z, a congruence relation is the same as congruence mod n for some
n. The case n = 0 is allowed, giving the equality relation.

(2) In a group, a congruence relation is the same thing as the coset decom-
position for a normal subgroup.

(3) In a commutative ring, a congruence relation is the same thing as the
coset decomposition for an ideal.

(4) In a finite chain C, a congruence relation is any decomposition into
intervals, as in Figure 1(a).

(5) Lattices in general can have congruence relations, as in Figure 1(b).
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(6) For a homomorphism ¢ : A — B, the kernel of ¢ is a congruence
relation.

Here the kernel of a homomorphism means the equivalence relation that
¢ induces on its domain: a = a’ < ¢(a) = ¢(a’). This is a contrast
with the specific cases of groups and rings, where the kernel is a normal
subgroup. However, Example (2) shows that the two definitions are
equivalent.

Figure 1: Congruence relations on lattices

3. The congruence lattice of an algebra

It is easy to see that an intersection of congruence relations on 4 is again a
congruence relation. Therefore the congruence relations on A form a com-
plete lattice, Con(A). In fact, Con(A) is simply a sublattice of Equiv(A).
Some examples:

(a) For a group G, the lattice Con(G) is essentially the same thing as the
lattice of normal subgroups, Normal(G).

(b) For a commutative ring R, the lattice Con(R) is essentially the same
thing as the lattice of ideals of R.

(c) The congruence lattice of a four-element chain is the Boolean lattice 23.

4. Factor algebras

For a group G with normal subgroup H, we can form G/H. For a commu-
tative ring R with ideal I, we can form R/I. In general:

4.1 Definition. For an algebra A = (4; f1,..., f,) and 6 € Con(A), let A4/0
be the algebra whose elements are the blocks of # and whose operations are
defined as follows: For each basic operation f; on A, define a corresponding
operation f; on A/6 by

fi(ala .. adnl) = fz-(al, . .,G,ni).
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This operation is well defined, since by the definition of a congruence relation
the result does not depend on which representatives are chosen for the blocks.
Just as for groups or rings, A/f is called a “factor algebra” or “quotient
algebra” obtained by “factoring out #”. Don’t confuse this with the concept
of a “field of quotients”.

4.2 Definition. The natural map of A onto A/f is 7 : A — A/ given by
7(a) = a.

4.3 Proposition. The natural map of A onto A/f is a surjective homomor-
phism with kernel 6.

This natural map can also be called the natural homomorphism or natural
surjection. See Figure 2.

™
— O O O O O

fon A A/o

Figure 2: The natural homomorphism

4.4 Corollary. Every congruence relation is the kernel of some homomor-
phism.

4.5 Note. If 6; C 6y, then there is a natural surjection A4/0; — A/f,. To
remember the direction of this map, think of .A/6; as bigger than .A/f,, since
in A/6;, less has been factored out.

5. The first isomorphism theorem

For groups, recall the “first isomorphism theorem”: If ¢ : G — H, then
im ¢ = G/kerp. Or equivalently, if ¢ : G — H is a surjection with kernel
K, then H 2 G/K.

This theorem is useful in examples. It also shows that the homomorphic im-
ages of a group G are determined up to isomorphism by information internal
to G. In particular, if G is finite then up to isomorphism G has only finitely
many homomorphic images.

For algebras in general, the situation is the same:

5.1 Theorem (first isomorphism theorem). Let ¢ : A — B be a homo-
morphism. Then im ¢ =2 A/ker . Equivalently, if ¢ : A — B is a surjective
homomorphism with kernel 6, then B = A/6.
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5.2 Corollary. The possible homomorphic images of A are determined up to
isomorphism by the internal structure of A.

6. The correspondence theorem

One version for groups: If ¢ : G — H is a surjective homomorphism, then
there is a one-to-one correspondence between the normal subgroups of H and
the normal subgroups of G' that contain ker ¢. In fact, the subgroup of G
corresponding to a normal subgroup K of H is simply ¢~ (K).

The generalization to algebras is this:

6.1 Theorem (correspondence theorem). If ¢ : A — B is a surjective ho-
momorphism, then there is a one-to-one correspondence between congruence
relations on B and the congruence relations on 4 that contain ker ¢.

6.2 Note. Using the first isomorphism theorem, equivalent versions can be
given for the natural maps G — G/N (where N <« G) or A — A/6 (where
6 € Con(A)).

6.3 Note. For groups, one can also say that there is a one-to-one correspon-
dence between all subgroups of H, normal or not, and those subgroups of GG
that contain ker ¢. For algebras in general, this becomes a statement about
subalgebras rather than about congruence relations.

7. Intersections of congruence relations

Suppose 61,0, € Con(A). Let m; : A — A/6; and m : A — A/6, be
the natural homomorphisms. Combining these, we get a a homomorphism
m X 7wyt A — A/ x A/By (not necessarily onto). What is its kernel? By
considering when a, a’ € A have equal images, we see that the kernel is 6;M65.
From this and the first isomorphism theorem we get this fact:

7.1 Theorem (subdirect embedding theorem). For an algebra A and
61,6, € Con(A), there is a natural embedding of A/(0;N6y) — A/0; x A/b5.

(“Subdirect” means that the image of the embedding inside the product is
large enough to map onto each factor. This will be important later.)

7.2 Corollary. If A has congruence relations 6,60, with 6; N6, = 0 (the
equality relation), then A — A/6; x A/f; (an embedding).

8. Congruence relations on lattices
8.1 Principles For § € Con(A):
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(1) If a = b(mod #), then a Ab = aV b(mod 6).

(2) Ifa <t <band a =b(mod 0), then t = a = b (mod 0).
(3) If aAb=a(mod ), then b = a V b(mod #), and dually.
(4) If a = b(mod €) and b = c¢(mod ), then a = ¢(mod 0).

8.2 Theorems

(A) A nonempty relation # on a lattice is a congruence relation if and only
if @ satisfies (1) through (4).

(B) For elements ag, by of a lattice L, con(ag, by), the smallest congruence
relation on L that identifies ay and by, can be constructed by applying (1)
(unless ag < by already), then (2) and (3) repeatedly, and then (4) repeatedly.
This is the principal congruence relation con(a, b) (lower-case c).

For examples to try, see Figure 3. Congruence relations can be indicated by
darkening each covering between two elements in the same block.

(iii) .
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Figure 3: Some lattices for which to find congruence lattices

9. Problems

Problem D-1. Verify that any congruence relation on a group is simply the
coset decomposition determined by some normal subgroup.
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Problem D-2. For general algebras, prove (a) the first isomorphism theorem
(Theorem 5.1); (b) the correspondence theorem (Theorem 6.1).

Problem D-3. (a) Any function f: X — Y on sets induces an equivalence
relation on its domain X, where  ~ 2’ means f(x) = f(z'). Show that for
groups G and H, if ¢ : G — H is a homomorphism then any single block
of the equivalence relation it induces determines all the blocks. (This is why
the “kernel” of ¢ is defined to be a single block, the one containing e.)

(b) Give an example of two algebras and two homomorphisms ¢, ¢’ between
them such that ¢ and ¢’ give different equivalence relations that do have
at least one block in common. (This is why the “kernel” of ¢ is defined to
be the whole equivalence relation rather than a single block, for algebras in
general.)

Problem D-4. Explain how the congruence lattice of A is a sublattice of
the partition lattice of A as a set.

Problem D-5. State and prove a version of Theorem 7.1 that refers to
two surjective homomorphisms ¢; : A — B; (i = 1,2), rather than to two
congruence relations on A.

Problem D-6. If ¢ : A — B is a surjective homomorphism, show that
there is a lattice embedding of Con(B) into Con(.A), with the image being
an interval.

Problem D-7. Invent a correspondence theorem (like Theorem 6.1) for a
surjective homomorphism ¢ : A — B that relates subalgebras of B to certain
subalgebras of A. Somehow describe which ones. (No proof is required.)

Problem D-8. Show that the subdirect embedding theorem (7.1) holds for
the intersection of a possibly infinite family of congruence relations.

Problem D-9. For the case A = Z, the ring of integers, give (a) an example
of the subdirect embedding theorem in which the two congruence relations
come from prime ideals, and (b) an example where neither comes from a
prime ideal. In each case, say what the embedding does to each element.

Problem D-10. Prove that the congruence lattice of a chain of length n (as
an algebra with lattice operations) is the Boolean lattice 2". (The length of
a chain is the number of jumps, so a chain of length n has n + 1 elements.)

D6



Problem D-11. Let D be a distributive lattice and consider any d € D.
Define maps fug : D — D and faq : D — D by fu(z) = dV z and
faa(z) = d Az (a) Show that fy4 and fag are homomorphisms. (b) Show
that the intersection of their kernels is 0 (i.e., equality). (c) Use Theorems
7.1 and 5.1 to show that D < (d] x [d).

Problem D-12. Compute all the principal congruence relations in Figure
3. Indicate blocks by darkening coverings between two elements in the same
block. You may omit examples already done in lecture.
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