Math 222A W03 N.

Boolean Lattices, Algebras, and Rings

1. Definitions

Definition. In a lattice L with 0 and 1, y is a complement of x if x Ay = 0,
zVy=1

Proposition. In a distributive lattice, complements are unique.

Definition. A Boolean lattice is a distributive lattice with 0 and 1 in which
every element has a complement and 0 # 1.

The complement of z is denoted z’.

Definition. A Boolean algebra is a Boolean lattice in which complementa-
tion is regarded as an operation. It is best to regard 0 and 1 as constant
operations. Thus the algebra has the form (B;V,A,0,1,).

Thinking of complementation as an operation makes a difference when
subalgebras or homomorphisms are considered. Thus a Boolean subalgebra is
a sublattice that is also closed under complementation and contains 0 and 1.
(In particular, a Boolean subalgebra cannot be empty, unlike a sublattice.)

Proposition. In a Boolean lattice B, the complementation map =z +— z’ is
a “dual isomorphism”, meaning an isomorphism of B with its dual (i.e., B
upside-down). In other words, the complementation map is one-to-one and
obeys de Morgan’s laws (z Vy) =2’ Ay and (z Ay) =2' vy

2. Examples

1. 2" (n > 1), the most general finite example up to isomorphism. In
particular, 2 is an example.

2. Pow(X) for any set X.
3. Any Boolean subalgebra of a Boolean algebra.

4. For any infinite set X, the lattice Pow;,,(X) of all finite and cofinite
subsets of X.
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5. Any interval [a, b] of a Boolean algebra, with relativized operations.
6. Any direct product of Boolean lattices or Boolean algebras.

7. For any n > 0, the free Boolean algebra FBA(n), which is isomorphic
to 2%, with the exponent 2" being just an integer.

(In contrast, the free distributive lattice is 22" (lattice exponent 2™)
with 0 and 1 deleted.)

8. For any Boolean algebra B and lattice ideal I, the lattice B/I of equiv-
alence classes, where x = y means x + y € I. (Recall that a nonempty
subset I of a lattice L is an ideal if I is a downset closed under joins.)

9. For any infinite set X, the lattice Pow(X)/F of all subsets of X modulo
finite subsets. This means the lattice of all equivalence classes of subsets
of X, where two subsets are considered equivalent if their symmetric
difference [defined below] is finite.

10. The lattice of measurable subsets of the reals modulo sets of measure
0.

11. The lattice of equivalence classes of a first-order language, where equiv-
alence means logical equivalence and the operations are “and”, “or”,
and “not”.

12. Clopen(X), where X is a topological space.

13. Any Boolean ring with 1, made into a Boolean algebra as below.

3. Boolean rings
Definition. A Boolean ring is a ring in which every element is idempotent.

Ezxamples.

1. Z, as a ring.

2. Z5 as aring (n > 1).
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3. Pow(X), made into a ring by letting multiplication be N, addition be
the symmetric difference AAB = A\BU B\ A, and 0 be the empty set.

4. For an infinite set X, the subring of Pow(X) consisting of the finite
subsets of X.

5. For any Boolean algebra B = (B,V,A,,0,1), the ring (B, +,-,0) ob-
tained by defining zy to be z Ay and z +y to be (x Ay') V (y Az'), the
Boolean-algebra analogue of the symmetric difference.

All these examples except 4. are Boolean rings with 1.

Proposition 1. Any Boolean ring is of characteristic two (i.e., obeys z+x = 0
for all z).

Proposition 2. Any Boolean ring is commutative.

Proposition 3. Any Boolean ring with 1 can be made into a Boolean algebra
by defining x Ay =zy,xVy=x+y+zy, and 2’ =1 — .

Proposition 4. For a Boolean algebra B, a subset is a lattice ideal if and only
if it is a ring ideal with respect to the resulting ring structure.

4. Reduction of expressions to normal form.

A typical example:

VvV V2))Y=2ANyVz)"=2N>YV2) (cmpl’s inside)
=@ ANY) V(2 A2) (distribute)

=@ ANY)AN(zVZ)| V[ AN2)AN(yVY)] (break into atoms)
=@'ANYAN)VEANYNYV(EANYyA2)V (2 AY A 2)

Any repeated meet-terms should be deleted. The final result is a join of dis-
tinct meets, with each meet involving all variables, possibly complemented.
These meets correspond to the atoms in a free Boolean algebra, or equiva-
lently, to the “puzzle pieces” in its Venn diagram.

Note. Determining whether an arbitrary Boolean expression reduces to 0 is
the prototypical NP-complete problem. Many hard problems, such as the
“traveling salesman problem”, are equivalent to it in difficulty.
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5. Complete Boolean lattices; atomic Boolean lattices

Definitions. In any lattice, the “sup” of a subset is its least upper bound, if
it exists. Thus a sup is the same thing as a possibly infinite join. The sup of
the empty subset is 0. Correspondingly, the “inf” of a subset is its greatest
lower bound, if it exists, and the inf of the empty subset is 1. A lattice is
complete if every subset has a sup and inf.

It is easy to show that if every subset in a lattice has a sup, then the lattice
is already complete.

Definition. In a lattice with 0, an atom is an element that covers 0. A lattice
is atomic if every element is the sup of some set of atoms.

6. A hard problem solved

A few decades ago, people were looking at alternate algebraic descriptions
of Boolean algebras. H. Robbins looked at these axioms, which use join and
complementation alone:

(1) z Vy =y Vz (commutativity)
(2) (xVy)Vz=xzV(yVz) (associativity)
B) (zVy)V(zVvy)) =z (avariant of z = (x AyY) V (z A Yy)).

These conditions are obviously true in Boolean algebras. Robbins conjectured
that they define Boolean algebras. This fact was finally proved in 1996
by a computer theorem-proving program, the first long-standing conjecture
proved that way.

See http://www.mcs.anl.gov/home/mccune/ar/robbins/index.html .

7. Free Boolean algebras
FBA(3) = 2%°: 3 generators; 8 atoms; 256 elements.

FBA(4) = 22"; 4 generators; 16 atoms; 65,536 elements.
FBA(5) = 22°: 5 generators, 32 atoms, 4,294,967,296 elements.

FBA(6) = 22°. 6 generators; 64 atoms; 18,446,744,073,709,551,616 ele-
ments.

FBA(7) = 22": 7 generators; 128 atoms; 340,282,366,920,938,463,463,374,
607,431,768,211,456 elements.
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FBA(8) = 22°. 8 generators; 256 atoms; 115,792,089,237,316,195,423,570,
985,008,687,907,853,269,984,665,640,564,039,457,584,007,913,129,639,936 el-

ements.

8. Problems

Problem N-1. (a) On a sketch of 2%, indicate two elements that generate
2% as a Boolean algebra. (b) Choose a third element at the same level as
your two generators, and express it in Boolean normal form in terms of the
generators.

Problem N-2. In the examples of §2, which are necessarily complete? Which
are necessarily atomic?

Problem N-3. Prove Propositions 1 through 4 of §3 regarding Boolean
rings.

Problem N-4. Decide which of the examples in §2 are atomic, which are
atomless, and which (if any) are neither.

Problem N-5. Let X be a countably infinite set.
(a) Show that Pow(X) contains a chain isomorphic to the chain R of reals.

(b) Show that Pow(X) contains an uncountable antichain of elements whose
pairwise meets are finite subsets of X.

Problem N-6. (a) Show that if p is an atom of a Boolean lattice B and
x € B, then either p < z or z < p', but not both.

(b) Show that in a complete Boolean lattice B, any atom p is completely
join-prime (or sup-prime); in other words, p < sup S implies p < s for some
s € S. (Suggestion: Somehow use p'.)

Problem N-7. Prove this representation theorem: Any atomic complete
Boolean lattice is isomorphic to Pow(X) for some set X. (A lattice is said
to be atomic if every element is the sup of a set of atoms.)

(Notice that most of our representation theorems have used some subsets
of a set; this representation theorem uses all subsets. Alternatively, this
theorem can be regarded as a characterization of the lattices Pow (X )—they
are the atomic complete Boolean lattices.)
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Problem N-8. Let L be a Boolean lattice with prime ideal space II(L).
Each lattice property of L should be reflected in some topological property
of TI(L). Here is one example: Show that L is atomic if and only if the
isolated points of II(L) form a topologically dense subset.

(An isolated point in a topological space is a point that is open, as a singleton.
A subset is dense if its closure is the whole space.)

Problem N-9. Let B be a Boolean lattice. Show that Open(II(B)) =
Ideals(B), where Open() denotes the lattice of open sets of a topological
space.

Problem N-10. As discussed in class, if f : B — C is a homomorphism of
Boolean algebras, then there is a corresponding continuous map f : I[I(C) —
II(B), and if h : X — Y is a continuous map between Boolean spaces, then
there is a corresponding homomorphism A : Clopen(Y) — Clopen(X) of
Boolean algebras.

Invent and state definitions for f and h (without writing the proof that
they make sense) and then prove one of the two assertions in the following
Proposition:

Proposition. ?z f and ﬁ = h, up to the identifications of Boolean algebras

or Boolean spaces with their “double duals®.”

Problem N-11. Show that any two countable, atomless Boolean algebras
are isomorphic.

(A Boolean algebra is atomless if (surprise!) it has no atoms. An exam-
ple of a countable, atomless Boolean algebra is FBA(Xy), the free Boolean
algebra on countably many generators, which can be constructed by first
making FBA(1) C FBA(2) C FBA(3) C ... using Venn diagrams and then
taking their union—all the subsets you get at all stages. Another example
is Clopen(2 x 2 x 2 x ...), where 2 means {0,1} as a discrete topological
space; this is the same as the lattice of all subsets of 2 x 2 x ... that are
describable by referring only to finitely many coordinates, for example, “the
subset consisting of all sequences whose second and fourth entries are either
1 and 0 or 0 and 1”.)

L“Dual” here is in the sense of categories, not order.
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