Math 149 Wo2 T.

Project #2 — See the World
1. Project specifications

Target due date : Monday, February 25 with a team notification dead-
line of Wednesday, February 13 (see below).

Points : This project is worth 5 points.

Teams : You are encouraged to work with a partner as a two-person team.
One of you should be “project leader” and the other, “project staff”. As
a comment in your program, please say who is which. It is the leader’s
responsibility to submit the project. If you don’t have a partner, let
me know and I’ll help to arrange something. Please send me email by
Wednesday, February 13 saying who your partner is.

Language : For this project, you need a high-level language such as C,
C++, or Java, to produce an output file in a simple format, which is
then plotted by a program to be provided to you. This description is
for C4++ on the Windows NT network. Other options are possible.

Submitting your program : The project leader should submit the source
file (the .cpp file for C++). Use the usual submit folder, under the
name of seeworld.cpp .

Grading : As usual, grading will be pass/fail. However, if your program
is well organized and well documented, with good variable names and
good use of vectors and matrices, I'll make a note of it for writing
recommendations later.

Description, in outline : Imagine the earth as a unit sphere centered at
the origin, with the north pole at (0,0, 1) and the z-axis going through
the point with latitude 0° and longitude 0°.

e The program should get a specified latitude and longitude in de-
grees, either from command-line arguments or by reading them
from standard input.

e Input to the program consists of a file continents.dat that gives
outlines of the continents, in terms of points and information
about how they are connected.

T1

e The program should find a rotation that moves the the view-
point to the point at infinity on the z-axis (using the up-vector
k = (0,0,1)). The program should apply this rotation to all
data points and then project them on the z, y-plane. Hidden lines

should be removed by simply not drawing a segment at all if either
end is hidden.

e The output of the program should consist of the x,y pairs and
connection information, in a simple format described below.

e As mentioned, the actual plotting will be done with a program to
be provided to you.

Input file : This is the file H:\class\m149.1\continents.dat, which de-
scribes the outlines of the continents. Each line of this data file has
three numbers for one data point. The first number is 0 or 1, where
1 means the point is connected to the previous point and 0 means it
is not connected. The second number is the latitude of the point in
degrees; the third is the longitude in degrees.

0 18.6 120.7
1 18.5 121.4
1 18.5 122.2

Output file : The output file should be in a very simple form, which we
may call the “ez format” (ez = easy): Each nonblank line of the output
file contains just two numbers representing = and y for one point. A
blank line means not to connect the preceding point to the following
point; otherwise, consecutive lines represent points that are intended
to be drawn connected. It is suggested that your output file be named
earth.ez .

Arguments (latitude and longitude of the viewpoint in degrees): The user
should be able to enter these at the time the program is run. One good
way is to use command-line arguments, so that the user would type the
command line

seeworld.exe 30 -90 < continents.dat > earth.ez

(for example). Below is a discussion of just how to access such argu-
ments in your program.

Another way is to have your program prompt the user for these argu-
ments and read them in from standard input. The only disadvantage
is that then you can’t use standard input and output for the data files
in and out; instead, you will need to build the names of those files into
the program and open them for reading and writing.

T2

Getting the relevant files : From the folder H:\class\m149.1\1ab2 you
will need the files continents.dat and ez2gs.cmd; it would be easiest
first to make shortcuts to these files from your own folder, the one
in which you are working. (To make a shortcut, use Windows NT
Explorer to go to the folder, use the right mouse button to make a
copy, go to your working folder, and use the right mouse button to
“paste shortcut”.)

Getting a command line : From the Start menu, get the Programs menu,
and then click on Command Prompt. If your working folder is m149\1ab2
in your home folder, type cd m149\1ab2 . Then you can run commands
as described.

Viewing your output : Assuming you have made shortcuts as recom-
mended and have generated the output file earth.ez, you can generate
the graphic output by the command ez2gs.exe earth.ez on the com-
mand line. To center the picture you may need to use the horizontal
and vertical scroll bars.

Summary of steps : (Let’s assume command-line arguments are used.)

Step S-0. Make the shortcuts described above.

Step S-1. Make your program source file, which on NT should be
called seeworld.cpp.

Step S-2. Compile your source file to make a binary file called seeworld. exe.

Step S-3. To view the earth from the viewpoint above the point with
latitude 30° and longitude —90°, generate an output data file
earth.dat by using the DOS command

seeworld.exe 30 -90 < continents.dat > earth.ez

Step S-4. View the file using the DOS command
ez2gs.exe earth.ez

After a wait for processing the file, you will get a drawing window
in which the picture will be shown.

Avoiding confusion about angles : There are two separate uses of lati-
tude and longitude in this program: (1) to give the direction of viewing
and (2) to give the location of each point in the data file. In the first
case, you’ll be using the angles to make a rotation matrix; in the sec-
ond case, you’ll be using them to find the Cartesian coordinates of each
point in R®. In both cases, you will need to change the angles to
radians before doing anything with them. Use descriptive variable
names to distinguish uses.

T3

Remember, the latitude of a point on the earth is the angle up from
the equator, as seen from the center of the earth, and the longitude is
the angle east of a line that runs from pole to pole through Greenwich,
England.

2. More details of your program

Let’s assume you use C++ and call your program seeworld.cpp . Also,
since in C++ the coordinates of a point p are p[0],p[1],p[2], for clarity
define x to be 0, y to be 1, and z to be 2, so you can write p[x],ply],p[z]
for the three coordinates. (But this means you can’t use x,y,z later for other
things!)

1. Output the points of a unit circle. Specifically, make a loop with a

variable (say i) going from 0 to 60 (say), use it to have a variable t go
from 0 to 2*pi in 60 steps, and for each value of t, output cos(t) and
sin(t) on one line. Don’t omit the point where i is 60.

. Get viewing latitude and longitude from command-line arguments, as
described in Section 7 below; convert to radians.

. Make a suitable rotation matrix R taking the viewpoint to infinity on

the z-axis. Specifically, R = R;’;;H /2Rfr7;gilat'

4. For each data line:

(a) Read data, checking for end of file. (The discussion here assumes
you have opened H:\class\m149.1\continents.dat as a named
file.)

(b) Convert angle data to radians.

(c) Convert data points to Cartesian coordinates in three dimensions,
treating the world as a sphere of radius 1. Specifically, for a
point of latitude # and longitude ¢, Cartesian coordinates are
(cos @ cos ¢, cos B sin ¢, sin f).

(d) Transform by R to get coordinates (say) p[x1, plyl, p[z].
(e) If the point p is visible from above (i.e., if p[z] > 0) then

i. If the previous point was hidden or p is not connected to it,
write a blank line.
ii. cout << plx] << " " << ply] << endl;
(If p is hidden, do nothing. If you use nested if...else{}’s,

remember that C and C++ associate the else with the most
recent if unless you used { } blocks.)

T4

(f) Save information about visibility of p, to use for the next point.
(Before starting the read-data loop, you’ll need to set this infor-
mation to “hidden” for use by the first data point. Otherwise the
first data point will be plotted connected to the circle!)

3. Recommended procedures and functions to use

e any needed from the page of suggested matrix procedures;
e one to multiply a vector by a matrix;
e one to turn latitude, longitude in radians into Cartesian coordinates:

e any others that are useful for clarity, e.g., one for degrees to radians.

Please use arrays for vectors and matrices, for example, p[1, R[][], instead
of using a different letter for each vector or matrix entry. This is usually
better programming procedure, as it permits vector and matrix calculations
to be done with loops rather than many separate statements. Then if there
is a bug in the loop, it will be dramatic and will be more apt to be discovered
than a bug in one of several separate statements. As mentioned, for clarity
you can define x,y,z to be the indices 0,1,2.

4. Suggested phases

e Start with a program to output a circle. Display using the ez2gs.exe
program, as above.

e Add commands to do 3, 4(a), 4(b) and to write out the Cartesian
coordinates. Display results.

e Remove the writes and add 4(c), 4(d), 4(e), 4(f), using the identity
matrix for R, so that you are looking from above the north pole. Display
results.

e Add the calculation of arbitrary R as in 2, 3. Display results.

5. Header information

You’ll probably need a header line #include <cmath> to get type definitions
for sin() and cos()

T5

6. Debugging advice

e If you get strange long lines across your picture, check your logic about
connections of points. Have you used nested if statements properly?

e If your points are bunched up and not spread around the picture, check
your transformations. Do your matrix and vector multiplication rou-
tines use the indices i j k correctly?

e If you get mirror images of the correct continents, check whether your
hidden-line test is the right way around.

7. Command-line arguments

There are several ways to get specific numbers into your program, say for
latitude and longitude: You can write them in explicitly, you can put them
in as definitions, you can put them in as initial values of variables, you can
compute them, you can read them from standard input using scanf (), you
can read them from a named file, or you can get them as “arguments” from
the command line used to run your program.

For the viewing latitude and longitude, this last way is best.

In the C++ language, the main program can look like

main(int argc, char*x argv)

{
view_lat_deg = (argc>1) 7 atof(argv[1]) : O ;
view_long_deg = (argc>2) 7 atof(argv([2]) : O ;

Ezplanation: argv is a list of strings (argc of them), of which the first is the
name of the calling program [not needed here| and the rest are the arguments
as strings. Thus the first argument is argv[1], as a string of characters
even though for this program it represents a number. The atof () function
converts this alphanumeric string to a floating number. (This function needs
#include <math.h>, but you will already have included that line because
of the sine and cosine functions.) The ?: expression says to use the given
argument if it is present or 0 otherwise.

8. More detailed suggestions on using C+-+

Depending on your computing background and that of your partner, you
may wish to write your program on various levels. Let’s assume you’re using
C++.

T6

8.1. Too low-level

You might think of using named coordinate values x,y,z instead of an array
pL0],p[1],p[2] or a vector class. But then how are you going to represent
matrices? And how are you going to do matrix multiplications? If you end
up with lots of long, messy expressions, that’s bad programming. There are
very likely to be mistakes that you don’t notice.

8.2. Basic level (PIC 10A only, or C-style)

Do use an array such as p[0],p[1],p[2] for a point, but to keep things
straight, follow the suggestion above by defining x,y,z to be coordinates
indices 0,1,2, rather than the actual coordinate values, so that you can say
plx]l,plyl ,plz] when you wish but also do loops with p[i] other times.
Since this is the basic level, you might not use functions. Your program
might look something like the following. Examine carefully how the matrix
multiplication goes; think it through to see how it does correspond to what
you do when you multiply matrices by hand.

// (some or all of these include files may not be needed, depending
// on the compiler)

#include <math.h>

#include <stream.h>

#include <fstream.h>

#include <stdlib.h>

const int x =
const int y =
const int z ;

const double pi = ...;

b

b

N =~ O

void main(int argc, charx* argv)

{

/] === get args, convert to radians -----------
double view_lat_deg = (argc>1l) ? atof(argv[i]) : 0.0;
double view_long_deg = (argc>2) ? atof(argv[2]) : 0.0;
double view_lat_rad = ...;
double view_long_rad = ...;

/] ———-- find rotation R taking viewplane to north pole —--—----

T7

double rot_long[3][3];
double rot_lat[3][3];

rot_long[x] [x] = rot_longlyl[yl = cos(view_long_rad + pi/2);
rot_long[x] [yl e
//etc. to complete rot_long

rot_lat[x][x] = ...
//etc. to complete rot_lat

double R[3][3];

for (int i=0; i<3; i++)
for (int j=0; j<3; j++)

{
R[i1[j] = 0.0;
for (int k=0; k<3; k++)
R[i][j] += rot_longlil [k]*rot_lat[k][j];
}

for (int i=0; i<=60; i++)

{
double t = 2xpi*i/60.; // better use 60., not 60 (why?)
cout << ... // write out cos(t), space, sin(t)

}

cout << endl;

int connect;

double data_lat_deg, data_long_deg;
double data_lat_rad, data_long_rad;
double data_pt[3];

double p[3];

(open stream fin to read continents file)

if (!'fin)

T8

cerr << "can’t open continents file for reading" << endl;
exit(-1);

while (fin >> connect >> data_lat_deg >> data_long_deg)

{

// convert to data_lat_rad, data_long_rad in radians;
/ expressions on right will involve sines, cosines

data_pt[x] = ...
data_ptly] = ...
data_ptlz] = ...

// rotate the data point: p = data_pt * R

for (int j=0; j<3; j++)
{ // call outer index j since entry of row vector is column
pljl = 0.0;
for (int i=0; i<3; i++)
pljl += data_pt[il*R[i][j];

/] === check visibility, etc. -———-——--——--——-—-

// (see earlier part of this handout)

Even if you intend to work at the 10A level, please read the next part.

8.3. Using more advanced ideas

Functions The program above is crying out for some functions. Too many
pieces of it are repetitive—converting degrees to radians, making ro-
tation matrices, etc. Repetition leads to small editing errors that are
easy to miss.

[Classes] It isn’t easy to have a function return an array as a value;
you’d need to allocate the space for the array. It’s easier to use classes.

Some class declarations are suggested below. To keep things easy, let’s
use a vector class vec3 and a matrix class mat33 for three dimensions

T9

only, which means that memory allocation issues can be avoided en-
tirely.

With a class, you can still define [] so the result looks like an array:
R[i][j] and so on. You can also define * for matrices times matrices
and vectors times matrices so that you can write R = A*B for matrices.

Suggested classes, in outline:

class vec3

{
double ent[3]; // entries
friend ostream& operator<<(ostream&, const vec3&);
public:
vec3(); // (set entries to 0)
vec3(double a, double b, double c){ ent[0]l=a; ent[1]=b; ent[2]=c; }
vec3(const vec3& v); // copy constructor
// no destructor necessary
vec3& operator=(const vec3& v); // assignment
double& operator[](int i); // so can say vl[i] = 3, etc.
}; // (be sure to check 0 <= i < 3)

ostream& operator<<(ostream& o, const vec3& v);

class mat33

{
vec3 rows[3];
friend ostream& operator<<(ostream&, mat33%);
public:
mat33(){} // (entries will already be 0)
mat33(const mat33& m); // copy constructor
// no destructor necessary
mat33& operator=(const mat33& m); // assignment
vec3& operator[](int i); // so m[i] means a row, m[i] [j] an entry
mat33 operator*(const mat33& m); // returns this mat times m
mat33 transpose(); // returns transpose of this mat
};

mat33 identity33();
mat33 rot3(double theta, int i_from, int i_to);

vec3 operator*(const vec3& v, const mat33& m);

T 10

vec3 cartesian(double latitude, double longitude); // (can use prev fns)

ostream& operator<<(ostream& o, const mat33& m);

Of course, you will need to supply expansions for functions, either in-line or
separately.

Be sure to include any headers needed.

Technically, in the classes above, whenever a method does not change any
class member it is best to tag it with const, asinmat33 transpose() const;

Here are expansions of the identity() and rot3 functions—but let’s use
the name identity33() instead.

mat33 identity33()

{
mat33 M; // entries start out 0
for (int i=0; i<3; i++)
M[i][i] = 1.0;
return M;
}
mat33 rot3(double theta, int i_from, int i_to)
{
mat33 M = identity33Q);
M[i_from] [i_from] = cos(theta);
M[i_to] [i_to] = cos(theta);
M[i_from] [i_tol = sin(theta);
M[i_to] [i_from] = —-sin(theta);
return M; // don’t forget this line!
}

In writing the rot3 function, to keep things straight just focus on the case
where i_fromis 0 (x) and i_to is 1 (y). Notice that the rot3 function works
correctly no matter whether you want rot3(theta,x,y) orrot3(theta,y,x)

Assuming you have also included the matrix multiplication routine as a mem-
ber function of mat33, namely

mat33 operator*(mat33 m) or better,
mat33 operator*(const mat33& m), you can now say simply

mat33 R = rot3(view_long_rad + pi/2,y,x) * rot3(pi/2 - view_lat_rad,z,y);

T11

8.4. Doing it really right

If you want to be current, you can use the Standard Type Library (STL),
which has now been officially adopted as part of C++. There is a vector
class vector that is handy. To access it, use

#include <vector.h> or
#include <vector> depending on the compiler.

You can still define vec3 and mat33 for convenience, as derived classes:

class vec3: public vector<double>

{
public:
vec3() :vector<double>(3){}
};
class mat33: public vector<vec3>
{
public:
mat33() :vector<vec3>(3){}
};

One advantage is that vector is already debugged. Another is that you
don’t need to write copy constructors and assignment operators, since the
default ones work properly already on vectors. Also, [] is already defined
for vectors.

You do still need to write the * operator for matrices and for a vector times
a matrix. Also, if you want to be able to have debugging output you still
need to write an ostream operator for vectors and another one for matrices.
In addition, you’ll need to write the functions identity33(), rot3, and
cartesian

T 12

