Math 149 W02 S.

Convex sets and convex polyhedra

1. Convexity

Some subsets of R? are conver, and others are not, as in Figure 1.

Convex sets

Nonconvex sets

Figure 1: Convex and nonconvex sets

It is important to observe that convexity is a property of the whole set,
and not just of its boundary. For example, the circle 22 + y? = 1 in R? is
not convex, but the circular disk 22 + 32 < 1 is convex.

Convexity can be tested by looking at line segments with both end points
in the set. In fact, this test makes a good official definition, in any number
of dimensions:

Definition. A subset C of R" is convex if for every two points P,Q in C,
the whole line segment P(Q) is in C.

In R?, for example, a solid cube is convex, a tetrahedron is convex, and a
ball (solid sphere) is convex, but a torus is not and a (hollow) sphere is not.

2. The convex hull of a set

Let Sy be any subset of R", convex or not. For example, Sy could be a
subset of R? with an indentation, or it could even consist of finitely many
points. The convex hull of Sy is the smallest convex set containing Sy, which
does exist; see Figure 2 for examples.

Proposition 2.1. For any subset Sy of R", there is a convex set C' containing
So in R"™ that is smallest, in the sense that C' is contained in all other convex
sets that contain Sy.
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Proof. Let C be the intersection of all convex sets containing S;. Then
C'is clearly contained in all convex sets that contain Sy, so the only question
is whether C itself is convex. But it is, because if P and @) are two points in

C, then P and @ are in each convex set containing Sp, so all of the segment
PQ is, and so P(Q is all in the intersection of those convex sets, which is C.

1
©

Figure 2: Constructing convex hulls

Definition. For any subset Sy of R", the smallest convex set containing R"

is the convex hull of Sp.
3. Convex combinations

Definition. A conver combination of points (or equivalently, vectors) Py, ..., Py
is a linear combination ¢; P; + - - - + ¢, P in which

(i) the sum of the coefficients is 1 and

(ii) the coefficients are nonnegative.

Equivalently, a convex combination is a weighted average in which the
weights are nonnegative and add to 1. The term convezr combination comes
from the connection with convexity shown in Theorems 3.1 and 3.2 below.

Ezamples. (1) %Pl + %PQ, the ordinary average of P, and P, is a convex
combination of P; and Ps.

(2) More generally, the ordinary average of k points P, ... ,Py is a convex
combination of them.

(3) For two points P, @, the points on the line segment PQ) have the
form P+ t(P — Q) = (1 —t)P + tQ, where 0 < ¢t < 1, and so are convex
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combinations of P and Q.

Theorem 3.1. If Sy = {P,..., Py} (a finite subset of R"), then the convex
hull of Sy consists of every point that is a convex combination of Py, ... ,P.

Theorem 3.2. If Sy is any subset of R", then the convex hull of Sy consists
of every point that is a convex combination of a finite subset of Sy.

Note. A linear combination in which the coefficients have sum 1 is called a
barycentric combination. Thus a convex combination is a barycentric com-
bination in which the coefficients are also nonnegative.

4. Convex polyhedra

By a polyhedron let us mean a solid in R® whose boundary consists of
finitely many planar polygons. Examples are a cube and the “regular poly-
hedra” shown in Figures 5, 6, and 7.

This definition is too informal, however. We don’t want to allow a solid
that is in two or more pieces; we don’t want to allow a solid that extends
infinitely far (such as the part of R3 outside a tetrahedron); we don’t want
to allow a solid that doesn’t include its boundary (such as the “open” cube
described by 0 <z < 1,0 <y < 1,0 < z < 1); and we don’t want to allow
a solid with no thickness (for example, a single triangle).

A better definition is to say that a polyhedron is a solid that can be
obtained by gluing together finitely many tetrahedra. A cube could be made
in this way, for example.

Note that the plural of “polyhedron” is “polyhedra’®.

The easiest kind of polyhedron to deal with is a convex polyhedron.

Proposition 4.1. A subset C' of R? is a convex polyhedron if and only if C is
the convex hull of a finite set and is not contained in a plane.

5. Hidden-surface removal for convex polyhedra

Let us consider a convex polyhedron C and a projection of it on some
viewplane.

If the projection is perspective, let V be the viewpoint. In this case, we
assume of course that V} is not a point of C.

1 This a Greek plural like “one criterion, two criteria.” Some people mistakenly say “a
criteria” instead of “a criterion.”
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If the projection is parallel, let v be a vector giving the direction of the
viewpoint. In the past, we have considered v and —v to be equivalent;
now, though, we should not, because the question of which faces are hidden
depends on the direction from which we are looking. See Figure 3.

Vo

Y

Perspective Parallel

Figure 3: Viewing setups

Observation. Because C is convex, each face is (a) entirely visible, (b) entirely
hidden, or (c) seen edgewise.

Here (¢) means that the plane of the face contains V; or is parallel to v.

For a given face PyP, ... P;_1, here is a method for computing which
among (a), (b), (c) holds. Let’s assume that no three of these vertices are in
a straight line and that no other vertices of the polyhedron are in the plane
of this face.

Step 0. If the projection is perspective, let v.= Vy — Py. Thus whether the
projection is perspective or parallel, we have a “line-of-sight” vector v that,
if drawn at P,, points away from the polyhedron.

Step 1. Find a normal N to the face. One way is simply to let N = (P —
Pl) X (PQ_Pl)

Step 2. Choose another vertex () of the polyhedron, not on the given face,
and let w = Q — Py, a vector that definitely points inward. Check the sign
of the dot product w-N. If w-IN > 0, then N is an inward normal; define a
new normal N,,; = —N. If w-N < 0, then N is an outward normal already;
let N, = N.

Step 3. Check the dot product v - Nyy;.
(a) If v - Ny > 0, then the face is wvisible.
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(b) If v - Nyy: < 0, then the face is hidden.

(c) If v- Nyt = 0, then the face is seen edgewise.
N

Py

Py

P,

Q

Figure 4: Testing a face for visibility

Observe that the viewplane itself is irrelevant for this method (Figure 4).

To make a picture of a convex polyhedron with hidden faces removed,
simply plot the image of each visible face. If you have a pen plotter, for
example, just compute the images of the vertices of visible faces and plot
line segments between them corresponding to the edges of the those faces.

Remark. If three consecutive vertices of a face are allowed to be collinear,
then Step 1 may fail, because the cross product may be the zero vector. In
this case, either try different choices of three vertices until three are found
that are not collinear, or else let P be the average of all the vertices of the
face and let N = (P, — P) x (P, — P). (P will automatically be in the
interior of the face.) Similarly, if two different faces are allowed to lie in one
plane, then in Step 2, () may be in the plane of the given face and not tell
you anything about N; in this case, instead let ) be the average of all the

vertices of the polyhedron (a point definitely not on the given face).

6. Exercises

Problem S-1. Which of these subsets of R? are convex? (a) a single point,
(b) a line, (c) the upper half plane y > 0, (d) a filled-in semicircle, (e) the
whole plane, (f) the empty set. (Note: Any statement you make about “all
points of the empty set” is true, since there are no counterexamples. For
example, all points of the empty set are green.)

Problem S-2. Which of these sets are convex? (a) in R, an interval [a, b]; (b)

in R?, the sphere 22 +9?+2% = 1; (c) in R?, the solid ellipsoid 2% +2y%+32% <
1.
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Problem S-3. In R?, consider four points P, Q, R, S, one in each of the four
quadrants. Must the origin be in their convex hull? If yes, explain why; if
no, give an example.

Problem S-4. (a) In R?, is a line segment convex? (b) Is the answer the
same in R3?

Problem S-5. Find an explicit example to show that a linear combination
of points ¢; Py + - - - + ¢ P, might not be in the convex hull of {P,..., Py}

(a) if ¢; > 0 for all 4 but ¢; +--- + ¢ # 1;
(b)if ¢; +--- 4+ ¢, = 1 but not all of ¢, ..., ¢, are > 0.

(You may need to choose coordinate axes.)

Problem S-6. As mentioned in Section 3, a barycentric combination is a
linear combination in which the coefficients add to 1.

(a) Show that any translation preserves barycentric combinations. In other
words, if T(x) =x+band Q = 1Py + --- + ¢, P, with ¢; +--- + ¢, = 1,
then T(Q) = ;T (Py) + - - - + e, T (P)-

(b) Show, conversely, that if a linear combination is preserved by all trans-
lations, or even by one nontrivial translation, then the linear combination is
barycentric.

(c) Show that, in fact, if a linear combination is barycentric then it is pre-
served by all affine transformations. (Method: For =, use (a) and the ob-
servation that homogeneous linear combinations preserve all linear combina-
tions, so for affine ... ; for <=, use (b) and the observation that translations
are a particular kind of affine transformation.)

Problem S-7. Prove that the image of a convex set under an affine trans-
formation is convex. In other words, if S is a convex subset of R" and
T : R" — R™ is an affine transformation, then the image 7'(S) is also
convex. (You may assume the fact that the image under an affine trans-
formation of the line segment joining two given points is the line segment
joining the images of those points. In other words, T(PQ) = T(P)T(Q). To
prove the statement, just try to apply the definition of a convex set to T'(S).
Remember, every point in 7°(S) is of the form 7T'(P) for some point P in S.)

Problem S-8. Use Problem S-7 to show that the image of a convex set
under an orthogonal or oblique projection is still convex.
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Problem S-9. Invent an example to show that a point in R? can be a convex
combination of four given points in more than one way, i.e., with more than
one list of coefficients.

Problem S-10. Invent an example of a non-convex polyhedron that, when
viewed with an orthographic projection, partially hides one of its own edges.
(Your answer will be a sketch of the image. Use dotted lines to represent
hidden parts of edges.)

Problem S-11. Explain why the method of Section 5 is valid. (What does
the sign of a dot product say about the angle between the two vectors?)

Problem S-12. For the tetrahedron P = (2,0,0), @ = (0, 3,0), R = (0,0, 4),
S = (1,1,1), which faces are visible from above by an orthographic projec-
tion, i.e., from the direction k = (0,0,1)? Use a computer method that
would be valid for any tetrahedron.

Problem S-13. (a) In testing visibility for the case of a finite viewpoint V;,
as in §4, we choose v =V, — Py and then look at the value of Ng,; - v. Show
that this value is the same if we use any P; in place of P;. (Method: To
compare Ny - (Vo — Py) with Ny, - (Vo — P;), expand and subtract the two
and then try to isolate the factor Py — P;.)

(b) There is a similar issue for N - w, where w = ) — Py with @) being a test
point not on the face. State what the issue is and show something similar to

part (a).

Problem S-14. Suppose P and () are each a convex combination of Py, ..., P,.
Show that each point of the line segment joining P and () is a convex com-
bination of Py,..., P,. (Start from the definition of a convex combination,
without quoting Theorem 3.1 or Theorem 3.2. Suggestion: To get an idea,
try the case n = 3, first with some numerical coefficients and then with letters
as coefficients.)

Problem S-15. Show that any point () that is a convex combination of
points P, ..., P, can be obtained by constructing line segments repeatedly.
More specifically, as a first stage construct the segment P, P,; as a second
stage construct a segment from a point on the first segment to Ps; as a third
stage construct a segment from a point on the second segment to P;, and so
on; the problem is to show that at stage n — 1 you can get the desired point
@, if the line segments at each stage are chosen carefully.

Equivalently, show that any convex combination of P;,..., P, is on a line
segment from some convex combination of P;,..., P, | to P,.
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(Method for the case n = 3: For the point Q = ¢ P; + coPs + c3P3, with
¢; > 0 and ¢; + ¢y + c3 = 1, rewrite () as

Q= (c1+ cﬁ(ﬁﬂ + CICT2CQP2) + c3P3, or equivalently, as
Q= (1-1t)(c, P+ c,P,) +tPs, for t = c3 and suitable ¢..
1 2 7

Why is this point on a line segment from a convex combination of P, and
P, to P37 It would be bad if the denominator were zero, but then () = Ps,
which is an easy case.)

Problem S-16. Use Problem S-14 and Problem S-15 to prove Theorem 3.1.

(Method: For points P, ..., P,, let H be the convex hull of the P; and let
C be the set of all points that are linear combinations of the P;. You want
to show that H = C. Do this by showing that C C H (C is contained in H,
i.e., every point of C is a point of H) and also that H C C. Explain how
Problem S-14 shows that C is convex; since C' contains all the P; (why?), C
contains the smallest convex set containing the P;, which is what? Explain
how Problem S-15 shows that any point of C is contained in any convex set
containing the P;, in particular, what?)

Problem S-17. Prove Theorem 3.2, using any preceding exercises.

(Method: Do like Problem S-16, with suitably modified definitions of H and
C. The difference will be that in applying Problem S-14, the line segment will
be between two convex combinations of different lists of points, but that’s OK
since the two lists can be merged into one longer list; in applying Problem
S-15, even the list of P; will depend on which @ is used.)

Problem S-18. A regular octahedron is a polyhedron with six vertices and
eight faces, each an equilateral triangle. Consider the regular octahedron
with vertices (£2,0,0), (0,£2,0), and (0,0, +2). Find a face that is visible
from (3,3, 3) but not from (1,1,1). (You may use intuition to decide which
face, but for your final answer use a method that is suitable for computer.
See Figure 5.)

Problem S-19. A regular icosahedron is a polyhedron with twenty sides,
each an equilateral triangle. Five sides meet at each vertex. See Figure 6.

(a) How many vertices and how many edges does a regular icosahedron have?
(Method: “Overcount” by counting each vertex [or edge] of each face sepa-
rately, and then divide by the number of faces that each vertex [or edge] is
on.)

A regular icosahedron can be made from a regular octahedron As follows:
The “golden ratio” (a favorite number of the ancient Greeks) is the number
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Figure 5: An octahedron

p = (14++/5)/2 ~ 1.618034..., which is the positive root of the equation
2?2 = z + 1. Take the regular octahedron described in Problem S-5. Each
vertex of the icosahedron will be a point on the edge of the octahedron,
dividing the edge in the ratio p : 1. Of course, there are two choices of such
a point, and you need to choose just one.

(b) Give an example of such a vertex. (Method: Choose an edge, think of it
as a line segment, and notice that the two choices involve t = 1/(p + 1) and
t = p/(p+1). But choose just one vertex.)

(c) Find two more such points, so that the three are on the three edges of
one face of the octahedron.

(d) What is the length of each edge of the icosahedron?

(e) If you can, list all vertices.

Figure 6: An icosahedron

Problem S-20. A reqular dodecahedron is a polyhedron with twelve sides,
each a pentagon. Three sides meet at each vertex. See Figure 7.
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(a) How many vertices and how many edges does a regular dodecahedron
have? (Do as in (a) of Problem S-19.)

The regular dodecahedron and regular icosahedron are dual to each other.
This means that if you start with one of these shapes, and then take the
center point of each face, those points make the vertices of the other shape.

(b) If you have done Problem S-19 or if you have been provided with the
solution to it, then you can construct a regular dodecahedron as the dual of
the icosahedron. Find two vertices of this regular dodecahedron.

(c) What is the length of a side of the=<lar dodecahedron made this way?

Figure 7: A dodecahedron

Problem S-21. In Problem S-6, (c¢) states that affine transformations pre-
serve barycentric combinations. Show that, conversely, if a function 7T :
R" — R" preserves barycentric combinations then 7" must be an affine
transformation. (This is a strong statement, since T is not stated to have any
special property other than preserving barycentric combinations. Method:
Let b = T'(0) and show that the related function U : R" — R™ is a homo-
geneous linear transformation, where U(x) = T'(x) — 7(0). Keep in mind
the possibility of making a linear combination such as v + w barycentric by
rewriting it as v + w — 0, where the coefficients add to 1.)

Problem S-22. (a) An interesting convex polyhedron is the rhombic do-
decahedron, with twelve sides, each a rhombus, and fourteen vertices. (An
important property of rhombic dodecahedra is that they can be stacked with
no space between, just as cubes can.) One way to make one is to use ver-
tices (+2,0,0), (0,+£2,0,), (0,0,+2), and (£1,+1,£1), as shown. Is the face
with vertices (2,0,0), (1,1,1), (0,0,2), (1, —1,1) visible from the viewpoint
(3,5,—2)7 (Use a computer method. See Figure 8.)
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Figure 8: A rhombic dodecahedron

(b) Explain how a rhombic dodecahedron can be obtained by taking the
union of a suitable octahedron (Figure 5) and a suitable cube, both centered
at the origin, and then taking the convex hull. (You may use without proof
the fact that the rhombic dodecahedron is convex, being the convex hull of
its vertices.)

Problem S-23. For any kind of polyhedron, the Euler characteristic (Euler
= “oiler”), is V — E+ F, where V is the number of vertices, F is the number
of edges, and F' is the number of faces.

(a) Find the Euler characteristics of a tetrahedron, cube, octahedron, do-
decahedron (regular), icosahedron, and rhombic dodecahedron. (See various
Figures.) They should all have the same value! (But indicate your compu-
tation in each case.)

(b) If you take a polyhedron and on some face draw a new edge between two
vertices that are not already connected by an edge, what is the effect on the
Euler characteristic?

(c) If you take a polyhedron and on some face make a new vertex (somewhere
in the middle) and draw edges from it to the other vertices of the face, what
is the effect on the Euler characteristic?

Actually, all polyhedra that are ball-like have the same Euler characteristic,
and from (b) and (c) you can start to see why. In contrast, polyhedra that
are like a torus (doughtnut-shaped) have a different Euler characteristic.
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