Math 149 Wo02 O.
Projections from three dimensions to two

1. The setup

There are three ingredients: A viewplane, an object, and a viewpoint, which
can be at infinity. The viewplane is often taken to be the z, y-plane.

There are several versions:

#1: A right-handed coordinate system with the viewplane thought of as
horizontal. This is the usual picture from calculus. The viewpoint is regarded
as being in the positive z-direction.

#2: A right-handed coordinate system with the viewplane thought of as
vertical, as it would be if the x, y-plane is a display screen. The viewpoint is
regarded as being in the positive z-direction.

#3: A left-handed coordinate system with the viewplane thought of as ver-
tical. The viewpoint is regarded as being in the negative z-direction.

Notes.

(a) The first two versions are exactly the same mathematically! The same
computer program would give correct output for each.

(b) It doesn’t really matter whether the object is on the same side of the
viewplane as the viewpoint, or on the opposite side, or straddling it.
A formula valid for one case works for the other; it’s just that points
of the object may have positive z-values in one case and negative in
another.

(c) With a left-handed coordinate system, the algebraic computation of
cross products stays the same, while the geometric meaning of the
cross product obeys the left-hand rule instead of the right-hand rule.

(d) If the viewpoint is at infinity, we usually think of it as being on one
side of the viewplane or the other, even though in Pj3 it doesn’t really
make a difference. Otherwise, we couldn’t talk later about hidden lines
and faces.

(e) Although we usually talk about “an object”, of course the object could
be a whole complicated scene with many parts.

(f) For the present, we ignore the issue of hidden lines and faces, which is
quite complicated when you analyze it in detail. Solids, then, can be
wire-frame figures, where only edges are given and faces are not filled
in.
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Figure 1: Orthographic and oblique projections

(g) The viewpoint and viewplane are often called the center of projection
and the projection plane.

2. The main classification

Here the only things that matter are the viewplane and the viewpoint. Forget
about the object.

(I) Orthographic—a projection with parallel rays all perpendicular to the
viewplane. The viewpoint is at infinity on the z-axis.

(IT) Oblique—a projection with parallel rays slanted with respect to the
viewplane. The viewpoint is at infinity but not on the z-axis.

(IIT) Perspective—a projection from a finite viewpoint.

Here (I) and (II) can be grouped together under the heading “parallel pro-
jections.”

For pictures produced by each, see Carlbom and Paciorek [1] and Figures 4
and 6 below. In Figures 1 and 2, the rays shown, if extended, actually go
through the vertices of the cube and then to their images.

3. Characteristics of the main types

Here are some positive and negative features of each type:

(I) Orthographic

+ Orthographic projections are trivial to calculate.

+ Parallel lines in the object have parallel images.
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Figure 2: A perspective projection

+ If a face is parallel to the viewplane, then its image is undistorted—
you can even measure on it.

— A box-shaped object has a dull and uninformative image if some
faces are parallel to the viewplane.

(IT) Oblique

+ Oblique projections are easy to calculate.
+ Parallel lines in the object have parallel images.

+ If a face on the object is parallel to the viewplane, then the image
of that face is undistorted, as if seen straight-on. This is good for
engineering purposes.

-+ Oblique projections give a good psychological impression of the ob-
ject, since you can see some sides of the object even if one face is
seen undistorted.

— Oblique projections don’t correspond to reality, since in reality you
can’t see a face of a box undistorted (as if seen straight-on) and
also see some sides of the box.

(III) Perspective

+ Perspective projections correspond best to what the eye actually
sees.

— Parallel lines in the object do not stay parallel in the image (except
those that are parallel to the viewplane to start with).
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— Every face of the object is distorted in size or shape during projec-
tion.

— Perspective projections are harder to calculate.

4. How to calculate projections

The object is given as points in R®. For an object described by line segments
and polygons, all you need is the vertices; the images of the vertices can
be connected up with line segments just as the vertices were. (Again, this
ignores the question of hidden lines.)

The image is in the x, y-plane, which really consists of points (z,,0) in R?,
but we’d like images as points in R? so that they are ready to plot on paper
or on a screen.

(I) Orthographic
Basy: (z,1,2) = (&,1).

(IT) Oblique

Here the rays are parallel and slanted. To describe the direction of the
rays, we use a vector V. It turns out to be easiest if V is multiplied by a
scalar to make the third coordinate 1; this will still describe the same rays
Thus, we write V = (a, b,1). (The viewpoint is at infinity with homogeneous
coordinates (a,b,1,0)p.)

A good method is to apply a viewing transformation to make the rays perpen-
dicular to the viewplane while leaving the viewplane alone. After applying
this transformation to the object, we are back in Case (I). See Figure 3.

Since the origin stays fixed and parallel lines stay parallel, the transformation
is a homogeneous linear transformation. Thus, the transformation will be
given by a 3 x 3 matrix A taking (1,0,0) — (1,0,0), (0,1,0) — (0, 1,0) (since
these are both in the viewplane, which stays fixed), and (a,b,1) — (0,0, 1)
(to make V perpendicular to the z, y-plane).

Notice that it would be easier if the transformation did the opposite, since
then we’d have images of standard basis vectors. So, let B be a 3 x 3 matrix
taking

(1,0,0) — (1,0,0)
(0,1,0) — (0, 1,0)
(0,0,1) — (a,b,1)

Therefore B = Since B is the inverse of A, we have A =

L O
>N = O
=}
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Figure 3: Viewing transformation of oblique projection

1 00
0 1 0
—a —b 1

(Here we can use the special method of taking inverses of matrices that are
like I except in the off-diagonal entries of one row or one column.)

Now, to find the image of a point, just multiply by A and then project
orthographically:

1 0 0
(x,y,2) — (z,9, 2) 0 1 0| =(x—-azy—bzz2) — (r—az,y—bz),
—a —b 1
or briefly,
4.1 (z,y,2) = (x —az,y — bz) |

In practice, you can either apply this method with the matrix multiplication
or else program the final formula (z,y, z) — (z — az,y — bz). You can think
of this formula as saying that the image of (z,y, z) consists of (z,y) but offset
linearly somewhat, depending on z. See Figure 3.

Ezample: (a) Find the viewing transformation for an oblique projection from
the direction (2,3, 5). (b) Under this projection, find the image of the 2x2x2
cube with vertices (+1,+1 £ 1).

Solution: (a) Scaling (2,3,5) we get V = (0.4,0.6,1), so the viewing matrix
is

1 0 0
0 1 0
—04 —-06 1

(b) The top face, with points (£1,+1,+1), goes to points (+1—0.4, £1—0.6).
The bottom face, with points (£1,+1, —1) goes to points (+1+0.4, +1+0.6).
In R?, these are 2 x 2 squares offset from one another. Connect them up and
you have the traditional oblique picture of a cube, as shown in Figure 4.
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Figure 4: Oblique image of cube in plane

(Notice that in this example the cube straddles the viewplane, but this has
no effect on the formulas. Rather, there is one formula, and it works no
matter whether z is positive or negative.)

(IIT) Perspective

Let’s consider just the case where the viewpoint is on the z-axis, so it has
the form (0,0, H) for some height H. The object should lie entirely below
this height.

Following the idea used for oblique projections, let’s try to find a “viewing
transformation” that changes the picture to an orthographic projection. This
time the viewpoint is an ordinary point and needs to be changed to a point
at infinity, so we need to use a projective transformation.

Discussion. Recall that the key points for handling projective transforma-
tions are
X = pt(1,0,0,0)4, at infinity on the z-axis,
Y pt(0,1,0,0)p, at infinity on the y-axis,
= pt(0,0,1,0)p, at infinity on the z-axis,
O pt(0,0,0,1)y, the origin.
(There was also E, but we won’t need it.)

The given viewpoint is (0,0, H) = pt(0,0, H, 1), but it turns out to be best
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to use the equivalent homogeneous coordinates pt(0,0,1,1/H),. The new
viewpoint, at infinity on the z-axis, is to be Z. Since X,Y,O are in the
z.y-plane, they should stay fixed. Then we want to find a 4 x 4 matrix A
that gives a projective transformation taking

X=X, YeY, pt0,0,1,1/Hy— 2, O—O.
Notice that it is easy to find a 4 x 4 matrix B to go in the opposite direction,

since the coordinates of X,Y, Z, O are standard basis vectors in R*: Just let
the rows of B be the images of these standard basis vectors, so that

1 00 O
0100
B_OOI%'Then
0 0 0 1
1 00 O
010 O
_ -1 _
A=B"=1g901 -1 |
000 1

again since B is like I except for the off-diagonal entries in one row. A gives
the viewing transformation.

Now, under the viewing transformation, (z,y, z) = pt(z,y,z,1) — pt(z,y,2,1)A =
pt(x,y,z,1—2z/H)p. To find the equivalent ordinary point, divide through by

the last homogeneous coordinate, to get pt(z/(1—2/H),y/(1—2/H),z/(1—
z/H), 1), = (x/(1 —2/H),y/(1 —2/H),z/(1 — z/H)). Finally, we need to
project orthographically by discarding the third coordinate. This gives the

final result that

4.2 (m,y,z)H<1_z/H,1_i/H>.

As before, you can either apply this method as a formula, or actually trans-
form points with a viewing transformation and then project. Since we as-
sumed that the object lies below the height H of the viewpoint, the denom-
inator (1 — z/H) is always positive. See Figure 5.

FEzample. Suppose we want a perspective picture of the cube (+1,+1,+1)
on the z, y-plane from the viewpoint (0,0,4). This is the case H = 4. Using
the perspective transformation, for the vertices (+1,+1,+1) on the top face
we get

1 00 0
A1) =pt (b1, 21,1 ) pt (k1,1 |00 0
001 —3
1
0 00 1
= pt(+1,+£1,1, %)h = pt(:l:%, i%, %, 1), = (i%, i%, %), which projects ortho-
graphically to (i%, j:%).
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Figure 5: Viewing transformation of perspective projection

Similarly, for the vertices on the bottom face we get

1 00 0

010 0

(j:l,j:l,—l) =pt (:l:l,:l:l,—l,l)h — pt (ilila_lal) 00 1 _1
4

0 0O 1

= pt(+1,+1,-1,3), = pt(+%, +3,—%,1), = (+3,+%, 1), which projects
orthographically to (i%,i%). Joining up these eight points, you get the
“square inside a square” perspective image of the cube. See Figure 6.

5. Projections on a slanted viewplane

To make an interesting picture of a scene, for example a street with houses,
it’s often desirable to use a slanted viewplane. Then even an orthographic
projection becomes interesting.

To compute a projection on a viewplane numerically, the viewplane has
to have some sort of coordinate system. For simplicity, we’ll always assume
that the viewplane goes through the origin in R® and that its coordinate
system has the same origin and scale as the ordinary coordinate system in
all of R®. As usual, our goal will be to start with a point in R?, project it
on the viewplane, and get a pair of numbers that can be used for plotting.
We are not interested in the actual three-dimensional position of the image
points on the viewplane, but rather just the two-dimensional location of the
image points in the coordinate system of the viewplane.

A coordinate system for a plane is best described by giving its two stan-

08



0.5+

-0.5¢+

Figure 6: Perspective image of cube in plane

dard basis vectors as vectors in R?. In other words, we give the unit vector v
in R? that is (1,0) in the coordinate system of the plane, and the unit vector
w in R? that is (0, 1) in the coordinate system of the plane. The two vectors
v and w constitute the coordinate frame of the coordinate system for the
plane. (The coordinate frame information would normally also include the
location in R? of the origin of the plane, but we don’t need that information
since we're assuming the origin of the viewplane is the origin in R?.)

In notation, let’s continue to write vectors in lower case if they are known to
be unit vectors, and in upper case otherwise.

Problem: Project an object orthographically on a slanted viewplane
through the origin.

Case 1: We are given a coordinate frame for the viewplane—orthonormal
vectors v and w.

Method (i): Given a point x = (z,y, 2) in the object, its projection in
terms of the viewplane coordinates is (x - v,x - w). Reason: As you may
recall, these are the projections of x in the directions of v and w.

Method (ii): In outline: We find a 3 x 3 rotation matrix P taking the
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viewplane to the x,y-plane, with v +— i and w — j. We apply P to the
object, and then project on the z,y-plane. The two numbers we get are the
desired ones, since they are the same ones we would get by projecting on
the original slanted viewplane and finding the image points in terms of the
coordinate system of the viewplane. See Figure 7.

Details: Let n = v X w. Then n is a unit normal to the viewplane, and

v, w,n are an orthonormal set of vectors in R®>. We want a rotation matrix

P taking v i—» i, w = j, n — k, ie, vP =i, wP = j, nP = k. The

other direction is easier, since then standard basis vectors are going to other

vectors. In other words, we find @) taking i — v, j — w, k — n; @) is simply
v

the 3 x 3 matrix @ = | w |. Then P = Q7! = Q' = [v|w|n]. To find
n

the projection of x, we first find xP and then project on the z,y-plane by

discarding the third coordinate.

But notice that xP = x[vf|w’|n'] = (x - v,x - w,x - n), which projects to

(x-v,x-w), the same answer as in the earlier method.

Why bother with the second method? One answer is that if we want to do
hidden-line elimination later, the third-coordinate information can be used
to tell which points on the object are closer to the viewplane than others.
Another answer is that if we want to do, say, a perspective projection, then
the first method no longer applies, but the idea of rotating does. See Figure
7.

Case 1': We are given non-unit vectors V and W along the positive axes of
the viewplane.

Method: Just normalize V and W by letting v =V/|V| and w = W/|W|.

Remark: 1f we need the information that comes from n, instead of finding
v,w and then n it is simpler to let N = V x W and then normalize N, if
we are working by hand.

Case 2: We are given a normal vector N to the viewplane.

Method?? This isn’t enough information, since we don’t know how the coor-
dinate system of the viewplane is situated. It could be turned various ways
and we would still have the same normal. If we make a projection of a house
and pick a viewplane coordinate system at random, then when we plot the
results on a screen the house might be turned sideways or upside down.

Case 2": We are given a normal vector N to the viewplane and an up-
vector—a vector U in R? whose image is supposed to be “up” in the picture.
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Figure 7: Rotating an orthographic view
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In other words, the projection of U on the viewplane is supposed to be in
the positive w direction, since that’s the “y-axis” of the viewplane.

Method: Observe that the v direction of the viewplane is perpendicular to
U. It is also perpendicular to N. So, not worrying about normalizing, do
this:

Step (1): find V = U x N. (We should ask why it’s this order instead of
the opposite, but this order is the one that makes V point in the correct
direction, as you can see from a picture.)

Step (2): Let W =N x V.

Step 3: Normalize V and W (and N, if you are using the rotation method).
We are now in Case 1.

Note: To remember which way around the cross products go, think this way:
V is like i, W is like j, and N is like k, and U is sort of like j also since it
is to project to the W direction. Then Step 1 is like j x k =1 and Step 2 is
like k x 1 =].

Also observe that it might seem more natural to normalize vectors as soon
as you compute them, but by hand it’s easier to save normalization to the
end, as in Step 3.

Ezample: Suppose that a house is described by giving its vertices in R?, with
the z,y-plane as the ground. In order to make an interesting picture, the
viewplane z + y + z = 0 is to be used. What coordinate frame and rotation
matrix should be used?

Solution: Since the z.y-plane is the ground, take U = k. The viewplane
normal is N = (1,1,1). Then

k
V=UXxN=kxN =det 1| =(-1,1,0)
1

I

1

0

1

|

1| =(=1,-1,2)
0

0 N/N| - (- 7—7 — ). Then
1 1 1
V2 V6 VB
p—| & _1 _T
V2 NG V3
0 2 1
NG Ve

As a check, we could verify that vP =i, wP = j, nP = k, and, since U is
supposed to project perpendicularly on the positive w-axis of the viewplane,
UP should project perpendicularly on the positive y-axis of the x, y-plane.
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Figure 8: Rotating a perspective view

Problem. Make a perspective projection of an object on a slanted view-
plane through the origin.

Method: Again, we are either given a coordinate frame for the viewplane
or else we need to find one. This time, it is best to find the rotation P that
takes the coordinate frame and normal to i,j,k in R®. We must rotate the
viewpoint as well as the object! Then we do a perspective projection on the
x,y-plane. See Figure 8.

Note: With oblique projections it is rare to use a slanted viewplane, because
it is desirable to have a face of the object be parallel to the viewplane and
the object is usually not given slanted. (Remember that if a face is parallel
to the viewplane then its projection is undistorted, and this possibility is one
of the main virtues of oblique projections.)

6. Specifying viewing direction by angles
6.1 The use of angles.

For the moment, consider orthographic projections only, on a possibly
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slanted viewplane, with up-vector k. Then the only piece of information
needed is a viewplane normal N, which is the same thing as the viewing
direction.

It is often handy to be able to specify the viewplane normal by using
angles, rather than by a vector such as (1,1,1). For example, suppose you
want to show successive views as you walk around the object; in that case,
it would be good to give the angle at which the viewing direction is slanted
with respect to the ground, and an angle to tell how far around the object
you have gone.

To tie angles to vectors, several schemes are possible: latitude-longitude,
alt-azimuth, and spherical coordinates. These schemes are practically the
same except for the choice of reference directions from which angles are mea-
sured. Let’s concentrate first on latitude-longitude.

6.2 The latitude-longitude system

On the earth, a “great circle” is a circle that divides the earth into equal
halves; an example is the equator. Recall that the latitude of a point on
the earth is its angular distance above the equator, and the longitude is its
angular distance east of a great circle through the north pole and Greenwich,
England (“gren’-itch”). South latitude and west longitude count as negative
angles. For example, Los Angeles is approximately at latitude 34°, longitude
—118°.

Regard the earth as a unit sphere centered at the origin in R®, with the
north pole at (0,0, 1) and the point of latitude zero, longitude zero at (1,0, 0).
See Figure 9, which however does not indicate the viewplane and whatever
object we are trying to project.

Problem. Compute an orthographic projection of an object on the viewplane,
with viewplane normal going through the point on the earth with latitude 0
and longitude ¢, and with up-vector k.

Method #1. Convert the angular description of the viewplane normal to a
Cartesian description, and then use our previous slanted-viewplane method.

Details: The point on the earth with latitude # and longitude ¢ can be found
by starting at (1,0, 0) on the z-axis, then rotating by 6 upwards towards the
z-axis, and then rotating east by ¢ around the z-axis. In other words, N =
(1,0,0)Rg~*R; ™Y, which comes out N =n = (cosf cos ¢, cosf sin ¢,sin ).

Ezxception: Our previous slanted-viewplane method doesn’t work when the
normal is along the same line as the up-vector. On the earth, this corresponds
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Figure 9: A coordinatization of the earth

to views from above the north pole or below the south pole. For those, just
project directly on the z, y-plane.

Method #2. Find directly the rotation that rotates the viewplane to the
x, y-plane and then project orthographically on the z, y-plane.

Details: Recall that under this rotation v — i, w — j, n — k. Although
we haven’t found v and w, we at least know that the up-vector k projects
orthographically to the positive w-direction in the viewplane. In other words,
the specified point on the earth (which is at the end of the vector n) should
rotate to where the north pole used to be (i.e., at (0,0,1)), and the north
pole after the rotation should project orthographically on the positive y-axis.
How can we accomplish this?

First attempt: Compose two standard rotations: Rotate the specified point
west by an angle ¢ to the x, z-plane and then north by % — 6. This does take
the specified point to (0,0, 1), but unfortunately the north pole stays fixed
under the first rotation and moves to a position over the z-axis under the
second. A picture of the earth made this way would have the north pole at
the side of the picture.

Second attempt: Plan ahead better. Rotate the specified point west by an
angle  + ¢, to the y, z-plane, and then rotate north, as shown in Figure 10.
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Figure 10: The direct method

This does work, and the rotation is thus

YT HZ—Y
6.3 RY R

Bonus: This method works even for a view from above the north pole, where
0 = %, or from below the south pole, where 6 = —%. Although the view-
plane is the x,y-plane in these cases, so that the up-vector does not give
any information about which way to orient the picture, you have given that
information yourself in specifying the viewing longitude ¢!

6.4 Other schemes

e In the alt-azimuth scheme, imagine yourself standing on the earth
facing north. Stretch out your arm horizontally. Now raise it to an
angle of 30° from horizontal. This angle is the altitude of your arm.
Now, holding your arm steady, rotate 40° clockwise. Your arm now has
an azimuth of 40°. As you see, any direction can be described in terms
of an altitude and azimuth.

Now, to tie this to Cartesian coordinates, impose a coordinate system
with the origin at your shoulder, the x-axis headed north, the y-axis
headed east, and the z-axis pointing up.
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e In spherical coordinates, the earth is a unit sphere again. The loca-
tion of a point is described exactly the same as in the latitude-longitude
system, except that in place of latitude we use co-latitude, the angle
measured from the north pole down towards the equator, or past the
equator. Thus the co-latitude has a value between 0 and 7 (for the
south pole).

6.5 Perspective projections

As usual, consider only viewplanes that go through the origin. A per-
spective projection can be described by giving the direction of the viewpoint
from the origin and the distance of the viewpoint from the origin. The di-
rection can be described using angles, just as in the orthographic case. The
viewplane is taken to be perpendicular to the line from the origin to the
viewpoint.

7. Subclassifications of projections

For each main kind of projection, there is a different question to ask. We’ll
assume the object is box-like and that one face is designated the top and
another as the front.

(I) Orthographic projections. First ask: “Is the object shown face-on (a
”principal! view*), or corner-on (”axonometric*)?”

(In other words, is a face parallel to the viewplane, or is some corner closer
to the viewplane than any other corner is? If the object is lined up with
the z,y, z-axes of R?, then in terms of a normal N to the viewplane we are
asking whether only one coordinate of N is nonzero, or all three. We don’t
consider “edge-on”, which would be the case where an edge is parallel to the
viewplane but no face is, or equivalently, exactly two of the coordinates of N
are nonzero. )

If the object is shown face-on, we ask: “Are we looking towards the front,
a side, or the top?” As in architecture, these principal views are called
respectively, a “front elevation”, a “side elevation”, and a “plan”. If all three
are given, we have “multiview orthographic”.

If the object is shown corner-on (axonometric projection), then we ask: “At
the image of a corner, how many different angles are there?”

If only one angle (i.e., three angles of 120° each), the projection is isometric,
if two (so exactly two are the same), dimetric, and if three (all different),
trimetric. If the object is lined up with the z,y, z-axes of R?, you can tell

!Notice that “principal” ends in “al”, in contrast to the word “principle” that means
a rule. To remember which is which, notice that “principle” and “rule” both end in “le”.
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the subtype by seeing how many different numbers are involved in the three
coordinates of N—one, two, or three.

(IT) Oblique projections. Here we’ll assume that one face is shown undis-
torted, which means it’s parallel to the viewplane—again, this could be called
a “principal view”. We ask: What is the “foreshortening ratio”? Consider a
line segment perpendicular to the viewplane. The foreshortening ratio is the
length of its image divided by its original length.

If the foreshortening ratio is %, there is a special name: cabinet projection. If
the ratio is 1, the projection is a cavalier projection.

Otherwise, there is no special name. Furthermore, it doesn’t make any dif-
ference how the object is turned compared to the viewing direction V; only
the foreshortening ratio matters, in this terminology.

If the viewplane is the z,y-plane and the viewing direction is V = (a, b, ¢),
or equivalently, (a/c,b/c,1), then the perpendicular line segment (0,0, 0) to
(0,0,1) projects to (—a/c,—b/c), and so the foreshortening ratio is
|(—a/c,—b/c)|/1 = va? + b?/|c|.

In terms of trigonometry, if V makes an angle # with the x, y-plane, then the
foreshortening ratio is “adjacent over opposite”, which is cot 6.

(IIT) Perspective projections. Ask: Of the three families of parallel edges
of the box, how many are not parallel to the viewplane (so that their images
are nonparallel and meet at a finite point)?

If one, it is a one-point projection; if two, it is a two-point projection, and
if all three, it is a three-point projection. Each has a distinctive look.

In terms of the viewplane normal N, these are equivalent to asking how many
of the coordinates are nonzero—one, two, or three?

8. Recognizing kinds of projections

Again, we assume that the object is box-like or at least has three obvious
families of parallel lines, mutually perpendicular. We’ll also agree in advance
that oblique projections will be used only for a “principal oblique view”—the
situation where one face is parallel to the viewplane, so that the face is shown
undistorted and yet you can see some sides of the object.

First, by looking at images of rectangles, decide whether the view is parallel
or perspective.

e If parallel: next observe whether one face is seen undistorted (still a
rectangle).
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— If a face is undistorted, the projection is either a principal or-
thographic view or is oblique. To tell which, see if you can also
see a side of the object or not.

x If you can see a side, then the projection is oblique. Do you
know the sides of the object in R®*? Then you may be able to
determine the foreshortening ratio and subtype—

- cabinet?
- cavalier?
- nothing in particular?

x If you see no sides, then the projection is principal ortho-

graphic. Is it a
- front elevation?
- side elevation?
- plan?
— If all faces are distorted, the projection is axonometric. Count
the number of different angles to tell the subtype. Is it
x isometric?
x dimetric?

x trimetric?
o If perspective: Count the number of families of parallel lines in the
object that are not parallel in the image. Is the view
— one-point?
— two-point? or

— three-point?

Advice: We are examining a two-dimensional image as lines on paper, and
we have to try hard to think of the picture as something two-dimensional
rather than three. For example, lines on the paper may not be parallel,
but they may represent parallel lines of the object in three dimensions, and
so the visual circuitry in our brain tries to regard them as parallel. Useful
techniques:

(a) To tell if two lines are parallel, extend them with a ruler.

(b) To tell if two adjacent oblique angles are equal, extend the middle ray
across the vertex with a ruler and compare the acute angles you get.

(c) To tell if two line segments are equal, transfer one segment to the other
by marking the edge of a piece of paper.
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9. Problems
Problem O-1. Give the main classification of the projections used to make
(a) the picture of the earth in Figure 9.

(b) our usual drawing of z,y,z axes (with z vertical, y horizontal, and z
slanted);

(c) the 3-d engineering graph paper shown at the end of this handout;

(d) the map of Math Sciences and Boelter Hall displayed by the elevator in
the MS 5th floor lobby off the breezeway.

Problem O-2. In the article by Carlbom and Paciorek [1] , two picture
captions have accidentally been switched. Which ones?

Problem O-3. Imagine a large cubical storage shed, 10 feet in each dimen-
sion and open in the front. It sits on horizontal ground. Sketch views of the
shed as seen from these locations, and say what kind of projection each is.
(No computations expected. Classify by major kind (orthographic, oblique,
perspective) and by subclassification if relevant. Imagine a viewplane per-
pendicular to the line of sight described.)

(a) with your eye at ground level, 30 feet in front of the shed, looking directly
toward it (in other words, along a line on the ground going to the middle of
the front of the shed).

(b) Corner-on from 40 feet away, along a line passing directly through the top
front left corner and the bottom back right corner. (Here “left” and “right”
are interpreted with respect to you.)

(c) From very far away, along the same line as in (b). (“Very far” = “from
infinity”. Imagine using a telescope, so the shed still does not appear tiny.)

(d) From very far away, along a vertical line of sight.

Problem O-4. Find a right-handed orthonormal coordinate frame v, w, n
for a viewplane with normal N = (1,2, 3) and up-vector U =k = (0,0, 1).

Problem O-5. Find a right-handed orthonormal coordinate frame v, w,n
for a viewplane with normal N = (a, b, ¢), using k = (0,0, 1) as an up-vector.
Assume a® + b? # 0. (Be sure to use the unit normal n where needed. Of
course, your answer will be in terms of letters. It is easiest to normalize
lengths last.)
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Problem O-6. (a) For a perspective projection from an arbitrary viewpoint
(a,b,c) onto the x,y-plane, by what 4 x 4 matrix should the homogeneous
coordinates of the points of the object be transformed?

(b) Compute and sketch a picture of the standard tetrahedron, with vertices
e e eB and the origin, as projected on the z,y-plane from (1,2,2).

Problem O-7. Consider the cube (£1,+1, +1), viewplane z + 2y + 2z = 0,
and up-vector k = (0,0, 1).

(a) Find the coordinate frame and rotation matrix that go with this setup.

(b) Find expressions for the images of the vertices in the z,y-plane, after
rotation, using an orthographic projection. Your answer may be left as a
matrix product (with the first matrix being a row vector). The matrix on
the right can be 3 x 2, since the missing third column has the effect of
discarding the third entry.

(c) Repeat (b) using a perspective projection with viewpoint (4, 8, 8) (before
rotation). You may leave the answers in homogeneous coordinates. (In other
words, after doing the same rotation as for the orthographic problem, multi-
ply by an additional viewing transformation to take care of the perspective,
and finally project orthographically to two dimensions. The last two steps
can be combined by taking the 4 x 4 matrix for the viewing transformation
and then deleting the third column and use the resulting 4 x 3 matrix.)

(In all parts, you may combine cases by using +.)

Problem O-8. Consider the “standard unit cube” in R?, in other words, the
cube whose vertices have coordinates with entries 0 and/or 1 only. Give the
main and sub-classification of each of the following projections of the cube.
You are not asked to compute images.

a) viewplane x + y + z = 0, viewpoint pt(5, 5,5, 0);

b) viewplane z + y + 2z = 0, viewpoint pt(1,1,2,0);

c) viewplane z + y + z = 0, viewpoint pt(5,5, 5, 1)p;

d) viewplane = + 2z = 0, viewpoint pt(5,0, 10, 1);

e) viewplane z = 0, viewpoint pt(1,1,2v/2,0)p;
)

(
(
(
(
(
(f

viewplane z = 0, viewpoint pt(0,0,5,1)p.

Problem O-9. The three-dimensional analogue of a window in user (world)
coordinates is a box-shaped viewing volume. Parts of the object that are in
front of the viewing volume or in back of it would not be shown. Suppose
your viewing volume is —4 < x <4, -3 <y < 3,0 < z <1, and you are
making a perspective projection on the z,y-plane with viewpoint (0,0, 5).
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After you apply the projective transformation in P35 to move the viewpoint
to infinity on the z-axis, where has each of the corners of the viewing volume
moved to?

Problem O-10. Consider a perspective projection on the z,y-plane from
the viewpoint (0,0, H), and the projective transformation on P3 that moves
the viewpoint to infinity on the z-axis (the viewing transformation).

(a) Under the projection, what ultimately happens to the viewpoint itself?
(Apply the projective transformation and then the orthographic projection
to the viewpoint and interpret what your answer means.)

(b) In (a), what happens to other points (a,b, H) where a,b are not both
zero?!

(c) Under just the viewing transformation, as the viewpoint is being taken
to Z at infinity, the point Z is being taken to some other point. What point?

Problem O-11. In our usual setup for a perspective projection, the view-
plane is the z = 0 plane and the viewpoint is at (0,0, H). As in formula 4.2,
the result of the projecting is (z,y,2) = (z/(1 — %), y/(1 — %))

What formula is obtained instead if the viewplane is the z = H plane and
the viewpoint is the origin?

Suggestion: Instead of trying to do this from the beginning, make the trans-
formation (z,vy,z) — (z,y, H — z) that trades the z = 0 and z = H planes
and then use formula 4.2 (so you put H — z for z in that formula). Simplify
algebraically.

Problem O-12. Suppose that a car is represented in three dimensions in
a coordinate system for which the positive z-axis is horizontal and points
forward on the car, the positive z-axis is horizontal and points to the left,
and the positive y-axis is up. For the origin, take some point that is roughly
in the center of the car, and for the units use meters.

(a) Is this coordinate system right-handed or left-handed?

(b) Suppose you want to make an a view of the car from the outside, looking
toward the right front corner of the car (right as seen by the driver). Specif-
ically, suppose that you use an orthographic projection along rays slanted at
30° to the ground and at 45° sideways from forward. Give an appropriate
normal vector for the viewplane and an appropriate up-vector. (You may
leave your answer as a matrix product.)

(c) Suppose you want to make successive views as if you are walking around
the car in a circle five meters in radius and centered on the ground under
the origin you chose. Use a perspective projection with a viewpoint at your
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Figure 11: Two oblique projections of an I-beam

eyes, one meter higher than the origin. For a viewplane normal, use the line
from your eyes to the origin. Give the viewplane normal, the distance of
the viewpoint from the viewplane, and the up-vector to use. (You may leave
your answer in the form of a matrix product. The normal will be in terms of
some angle or time parameter.)

Problem O-13. A puzzle: Figure 11, similar to one in Carlbom and Pa-
ciorek [1], shows two oblique projections of the same I-beam, but with differ-
ent faces being undistorted and with possibly different foreshortening ratios.
Find these foreshortening ratios and (if relevant) give the name(s) of the pro-
jection(s). (Measure the pictures with a ruler in millimeters and use what
logic you can. A good idea is to find a distance that is shown undistorted
in both pictures and use that as a “unit”, in terms of which to measure all
distances on the picture and on the object. One catch is that the pictures
are not to the same scale.)

Problem O-14. Reconstruction of a cube from its image: the orthographic
case. Consider a cube with one vertex at the origin in R? but otherwise in no
special position or orientation and of no special size. Suppose that this cube
is projected orthographically on the x, y-plane, and consider the problem of
reconstructing the cube from just knowing its image. Specifically, let the
vertices adjacent to the vertex at the origin be (z1,y1,21), (%2, Y2, 22), and
(x3,ys,23). Looking at the image, you can see the pairs (z;,v;) for each i,
but the values of the z; are not obvious. This problem shows how the z; can
be found.

It is handy to define the three vectors x = (z1,%2,23), ¥y = (y1, %2, ¥3), and
z = (z1, 22, 23), even though these have no obvious pictorial interpretation
in terms of the original cube. (If the cube is a unit cube, they are triples
consisting of the cosines of the angles that the axes of the cube make with
the z-, y-, and z-axes.)
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(a) Show that if the cube is a unit cube then x and y are orthogonal to each
other and of length 1, and that z is plus or minus x X y.

(Method: Write the original vertices as rows of a 3 X 3 matrix. What is
special about this matrix? x and y are two of its columns.)

(b) Explain why if the cube is not necessarily a unit cube, x and y are still
orthogonal to each other and have equal lengths S, where S is the length of
the sides of the cube. (Method: x/S, y/S, z/S are as in (a).)

(c) Invent a way of finding 21, 29, 23 (except for a factor of £1) from a knowl-
edge of the three image points (x;, ;). (The factor of +1 is needed because if
you have one solution then its reflection in the x, y-plane is another solution.
The method is the same idea as in (b).)

Problem O-15. Reconstruction of a cube from its image: the general parallel
case. Suppose a picture of a cube with sides of length S is using with a parallel
projection on the z, y-plane from the viewpoint pt(a, b, 1,0)p. If « and b are 0,
the projection is orthographic; otherwise, it is oblique. In either case, allow
the cube to be tilted with respect to the viewplane. (In the oblique case
this is contrary to our usual guarantee that we won’t use oblique projections
unless one face is parallel to the viewplane.)

As in Problem O-14, let one vertex of the cube be the origin and let the
adjacent vertices be (z;,y;, 2;) for i = 1,2,3. This time, since the projection
rays might be slanted, the images in the viewplane are not just the first two
coordinates of the points, so let the images be called (u;, w;) for i = 1,2, 3.
As in Problem O-14, define vectors u = (ug, us, ug) and w = (w, wq, w3).

(a) It is a fact that u = x — az and w = y — bz. These sound similar
to something you know for oblique projections, but notice that these are
vector equations, not scalar equations. Why are they true? (Method: Think
coordinatewise.)

(b) For short, let U = u-u, W = w-w, D = u-w. Explain why, if the
projection is orthographic, then U = W and D = 0. (You may quote what
you need from (b) of Problem O-14, which makes this very easy.)

(c) Show that, conversely, if U = W and D = 0, then the projection is
orthographic. (Method: You may quote what you need from Problem O-
14. Start by finding U, W, D in terms of x,y, z, carefully using rules for dot
products that are like rules of high-school algebra. Then use what you know
about x,y, z.)

Note. By (b) and (c), you can tell just from the image of a cube whether
a parallel projection is orthographic or oblique, if you’re willing to measure
the coordinates of the images of the vertices. (In fact, since it’s also easy to
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see if a projection is perspective, all three of the possibilities orthographic,
oblique, and perspective can be determined from the image alone.)

Problem O-16. This problem carries Problem O-15 further for the case
of a unit cube, S = 1. Show how to compute the points (z;,v;, 2;) and
the oblique projection direction (a,b,1) just from the image points (u;, w;).
In other words, from an oblique image of a tilted unit cube show how to
reconstruct the whole projection setup precisely.

(It is not required to find a formula for everything in terms of the image
points; rather, you can solve for unknowns in stages, with a recipe for a
solution at each stage in terms of quantities already computed at preceding
stages. Outline: In the notation of Problem O-15, (c) of that problem gives
M=1+a? N =1+0b% D = ab, so you can solve for a and b up to a factor
of +1. Next concentrate on finding z, the list of z coordinates, as follows.
Using the equations of (a) of Problem O-15 and facts about x, y, z, you get
z-u= —a, z-w = —b. Notice that these are equations of planes in R?; since
z is of length 1, it lies where the line of intersection of these planes cuts the
unit sphere 2% + 22 4+ 22 = 1. [There could be two possibilities. To find them,
you’d need to represent the line parametrically, then substitute coordinates
in the equation for the sphere and simplify to get a quadratic equation in %;
solve.] Then, knowing z, how can you get x, y?)

Problem O-17. This problem generalizes Problem O-16 by allowing a cube
of any side S. Show how to compute the points (x;,¥;, z;) and the oblique
projection direction (a,b,1) just from the image points (u;, w;). In other
words, from an oblique image of a tilted cube show how to reconstruct the
whole projection setup precisely, even without knowing the length of the side
of the cube.

(Method: With notation as in Problem O-15 and Problem O-16 you get
M = S*(1 +a*), N = S*(1 +b*), D = S%ab. Here M, N, and D are
constants known from the coordinates of the images of the vertices, and a, b, S
are unknown. For convenience let A = Sa and B = Sb, so that M = 5?+ A2,
N=5?2+B? D=AB. Then M — N = ... and D = AB are two equations
in just the unknowns A, B. Solve the second for B and substitute in the first
to get an equation in A alone, which clears to a quadratic equation in A2,
Solve for A? using the quadratic formula. Then use M = ... to solve for S2.
You should get S% = L(M + N — ((M — N)? +4D?)3). Now, knowing S, try
to reduce everything to Problem O-16.)

Problem O-18. You wish to view the earth from above Los Angeles, which
is approximately at latitude 34°, longitude —118°. What rotation should you
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use? (You may leave your answer as a product of standard rotations, without
explicit entries. Don’t bother to convert to radians.)

Problem O-19. If you use the latitude-longitude method to make a picture
of the earth from above a point in the southern hemisphere, does the north
pole come out at the top of your picture (i.e., after being rotated does it
project to the positive y-axis), or at the bottom (negative y-axis)?

Problem O-20. (a) Find a rotation formula, similar to the one in formula
6.3, for a viewing direction with altitude o and azimuth 3. (b) Find a rotation
formula for a viewing direction with co-latitude A and longitude ¢.
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