next up previous
Next: m_hcoords Up: m_hcoords Previous: m_hcoords

2. Projective transformations

A projective transformation of the plane is simply a transformation that is a homogeneous linear transformation for homogeneous coordinates. Thus a projective transformation corresponds to a $ 3 \times 3$ matrix $ A$ so that the point whose name in homogeneous coordinates is $ (x,y,s)_h$ is mapped to the point whose name in homogeneous coordinates is $ (x,y,s)_h
A$. In symbols,

$ T(pt$   x$ _h) = pt ~$   x$ _h A$.

Actually, this definition of a projective transformation requires a few clarifications. First, $ A$ should be nonsingular. The others can wait until Section 4 below.



Example 2.1 . Let's transform the corners of the rectangle with vertices $ (1,1)$, $ (-1,1)$, $ (-1,0)$, $ (1,0)$ using $ A =
\left[\begin{array}{ccc} 1&0&0\\  0&1& \frac 12\\  0&0&1 \end{array}\right]$. First,

$ (1,1) = pt (1,1,1)_h \rightarrow pt ~ (1,1,1) \left[\begin{array}{ccc} 1&0&0\\
0&1& {\frac 1 2}\\  0&0&1 \end{array}\right]$ $ =$ $ pt (1,1, {\frac{3}
{2}})_h$ $ =$ $ pt ( {\frac{2} {3}}, {\frac{2} {3}},1)_h$ $ =$ $ ( {\frac{2} {3}}, {\frac{2} {3}})$.

Thus $ T(1,1) = ( {\frac{2} {3}}, {\frac{2} {3}})$. The same sort of calculation gives $ T(-1,1) = (- {\frac{2} {3}},
{\frac{2} {3}})$, $ T(-1,0) = (-1,0)$, $ T(1,0) = (1,0)$. This gives a picture somewhat like that of the football field:



book/04dir/example.1.eps



Kirby A. Baker 2002-01-23