Math 149 W02 M.

Homogeneous coordinates and the real projective
plane

1. Overview

The transformations involved in making perspective images do not pre-
serve parallelism of lines. For example, a football field is flat and its yard
lines are parallel, but on a television screen it might look like the picture on

the right:

On the other hand, members of a band on the field might be standing in
two non-parallel lines, but the lines could become parallel on the screen:

The kind of transformations that can handle distortions of this kind,
while keeping straight lines straight, are called projective transformations.
To describe them, we first need a new system of coordinatizing the plane.

2. Homogeneous coordinates for points in the plane

The ordinary system for naming points in the real plane is called Carte-
sian coordinates (after Descartes, who invented analytic geometry). In this
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system, each point of the plane has exactly one name, consisting of a pair of
numbers. (Often a point is even thought of as being a pair of numbers, as
when we write R? for the real plane.)

You know one other system for naming points in the real plane: polar
coordinates. In polar coordinates, each point has many names of the form
(r,0); for example, the ordinary point (—1,0) has the polar name (1, 7) and
also (1,3m); the origin is (0, 8) for every 6.

In computer graphics it is often helpful to use homogeneous coordinates.
With homogeneous coordinates, each point of the plane has many names,
each one being a triple of numbers. You have already seen one example of
homogeneous coordinates, although we didn’t call it that: In using extended
vectors for affine transformation, the ordinary name (3,2) became (3,2, 1).

Let’s put a subscript , after a triple when it means the homogeneous
coordinates of a point in the plane. That way it won’t be confused with a
triple meaning a point in R®. The subscript doesn’t do anything; it’s just a
reminder.

What are all the names in homogeneous coordinates of the point whose
ordinary name is (3,2)? They are simply the non-zero scalar multiples of the
extended-vector name. Some examples of names for (3,2) are

(3,2, D, (30,20, 10)5, (300,200,100, (0.3,0.2,0.1), (=3, =2, —1)a,
(12,8,4), and so on.
Problem. What is the ordinary name of (8,20,4),7

Solution. First scale so the 4 becomes 1. Thus (8, 20, 4),, describes the same
point as (2,5, 1)y, which is the point with ordinary name (2, 5).

Because one point has many names in homogeneous coordinates, it is
a good idea to distinguish between a name of a point and the point itself.
Let’s write pt for “the point whose name is”. Thus in the solution to the
last problem, we could have written pt(8,20,4), = pt(2,5,1), = (2,5). (It
wouldn’t really have made sense just to say the names themselves are equal,
because they aren’t. This notes will use pt when it’s appropriate, but you
don’t have to.)

Problem. What is the ordinary name of (z,y,s) (assuming that s # 0)?

Solution. pt(z,y,s), = pt(%,4,1), = (2, %).

s’s

3. Projective transformations

A projective transformation of the plane is simply a transformation that
is a homogeneous linear transformation for homogeneous coordinates. Thus
a projective transformation corresponds to a 3 x 3 matrix A so that the point
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whose name in homogeneous coordinates is (z,y, s), is mapped to the point
whose name in homogeneous coordinates is (z,y, s),A. In symbols,

T(ptxp) = pt x,A.

Actually, this definition of a projective transformation requires a few clar-
ifications. First, A should be nonsingular. The others can wait until Section
4 below.

Ezample 3.1 . Let’s transform the corners of the rectangle with vertices (1, 1),

100
(-1,1), (-1,0), (1,0) using A= | 0 1 3 |. First,
001
100
(1,1) =pt(1,1,1), = pt (1,1,1) | 0 1 £ | =pt(1,1,3), = pt(3,2,1), =
001

(5:3)-

Thus T'(1,1) = (%,%). The same sort of calculation gives T'(—1,1) =

Y

(—2,2), T(-1,0) = (=1,0), T(1,0) = (1,0). This gives a picture somewhat

like that of the football field:

A

4. Points at infinity

So far we have discussed homogeneous coordinates for ordinary points
such as (3,4). Because these coordinates result from multiplying an extended
vector such as (3,4, 1), by a nonzero scalar, the third number is never 0.

On the other hand, applying a projective transformation could very well
result in a triple ending in 0. In Example 3.1 above, for instance, we could
compute

1
T(3,-2)=pt(3,-2,1), | 0 = pt(3,—-2,0)p,
0

00
13
01
but it’s not clear what pt(3, —2,0); means, since there’s no such point in the

usual sense.
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Can a meaning be attached to a triple ending in 07 The answer is yes
(except for the hopeless case (0,0,0) ). Let’s sneak up on pt(3,—2,0);, by
looking at the sequence of points

pt(3a _25 1)ha pt(?’a _2a %)h: pt(3a _25 %)ha pt(3a _25 %)h: pt(3a _25 %)h,

pt(?), —2, %)h: .

Algebraically, these triples have limit (3, —2,0). To picture them graphically,
just represent them in Cartesian coordinates. For example, pt(3, —2, %)h =
pt(6,—4,1), = (6, —4). We get the points (3, —2), (6,—4), (9, —6), (12, —8),
(15, —-10), (18, —12), and so on:

As you see, this sequence of points is headed off the real plane, in the
direction given by the vector v = (3, —2). We get the following idea:

The homogeneous coordinates (a,b,0);, represent a point at infinity
along the line through the origin with direction vector (a,b).

Of course, a point at infinity is in one sense an imaginary invention, but
it does have a concrete reality in that it is representable by numbers and
corresponds to a line through the origin. For these reasons, we can talk
about points at infinity and be sure that we will not run into trouble.
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Let us call the usual points of the Cartesian plane ordinary points, in
contrast to the points at infinity.

Several interesting observations:

Observation 4.1 . Because (3, —2,0), and (-3, 2,0), differ by a scalar factor,
namely —1, they represent the same point at infinity. Thus the point at
infinity corresponds more to the line itself than to one direction on the line.
You can picture the line as somehow “wrapping around” at its point at
infinity.

Observation 4.2 . Ewvery line with direction (3,—2) goes towards the same
point at infinity. For example, the line P(t) = (4,5) + ¢(3,—2) has points
(4 + 3t,5 — 2t), which in homogeneous coordinates are pt(4 + 3t,5 — 2t, 1),
= pt($ +3,2 —2,1). As t — oo, this triple has limit (3, —2,0).

Thus a point at infinity corresponds to a family of parallel lines (i.e., the
set of all lines parallel to a given line). In some sense, the parallel lines meet
at that point at infinity.

Problem 4.3 . What point at infinity lies on the line through (2, 3) and (3, 5)?

Solution. The vector between the two points is (1,2). This vector gives the
direction of the family of all lines parallel to the given line. Therefore the
given line goes through the point pt(1,2,0), at infinity.

Observation 4.4 . A projective transformation can take points at infinity to
ordinary points, and vice-versa. For example, in going from the real football
field to the television screen, the point at infinity where the yard-lines “meet”
is mapped to the ordinary point where their images meet, off the top of the
page. Also, the ordinary point off the field where the two lines of the band
would meet (if extended), is mapped to a point at infinity (because the images
of the two lines are parallel).

5. The real projective plane

This last observation means that a projective transformation is not just
a function on R* — R?. After all, the function notation f : A — B is
supposed to mean that one is considering the domain of f to be A and that
all values of f are in B. The following definition is therefore handy:

Definition. The (real) projective plane, denoted Py, is the set of all
ordinary points and points at infinity.
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To summarize:

Fact 1. The projective plane Py has two kinds of points: ordinary points
and points at infinity.

Fact 2. Each point of the projective plane Py can be represented by homo-
geneous coordinates, in many ways.

Fact 3. Every triple (a,b, ), except (0,0,0), represents a point of Py. If
c # 0 then the point is the ordinary point (2, %), if ¢ = 0 then the point is a
point at infinity in the direction given by the direction vector (a,b).

Fact 4. If (a, b, c), is one name for a point, its other names have the form
(ra,rb,rc),, where r is any nonzero scalar.

Fact 5. A projective transformation of the projective plane is a transfor-
mation 7" : Py — P5 that is a nonsingular homogeneous linear transforma-
tion in homogeneous coordinates. A projective transformation has the form
T(ptxy) = pt x, A, where A is a nonsingular 3 x 3 matrix.

6. Geometry of the real projective plane

The real projective plane is useful in geometry, specifically projective ge-
ometry. You already know that its points are the ordinary points together
with the points at infinity (which may be regarded as corresponding to fam-
ilies of parallel lines in the ordinary plane). Its lines consist of (a) ordinary
lines, except that each ordinary line is considered to contain its correspond-
ing point at infinity, and (b) the “line at infinity” consisting of all points at
infinity.

With this definition, geometry in the real projective plane obeys very
simple rules:

Rule 1. Every two lines meet in exactly one point.

Rule 2. Every two points lie on exactly one line.

Rule 1 says that in projective geometry there are no parallel lines. Rule
2 is the same as in ordinary plane geometry.

There is one theorem in projective geometry that shows why projec-
tive transformations are important and is useful as background in computer
graphics.
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The Fundamental Theorem of Real Projective Geometry: Any one-
to-one function 7' : P, — P, that takes lines to lines is a projective trans-
formation.

(In other words, T actually comes from some nonsingular 3 x 3 matrix
A.)

7. Making projective transformations

First, we need to choose names for special points. The first three have
homogeneous coordinates that are standard basis vectors and so will be handy
for working with matrices.

Let X = pt(1,0,0), (at infinity on the z-axis);

let Y = pt(0,1,0); (at infinity on the y-axis);

let O = pt(0,0,1);, (the ordinary point (0, 0), i.e., the origin);
let £ = pt(1,1,1), (the ordinary point (1,1)).

It is important not to confuse X with (1,0), which is not at infinity and
has homogeneous coordinates (1,0, 1)p.

Problem 7.1 . Find a projective transformation 7' : P, — P, for which
T(X)=P, T(Y) =@, and T(O) = R, where P = (2,4), @ = (4,1), and
R = (6,3).

Solution. Just write down a matrix whose rows are P, (), R in homogeneous
2 41

coordinates: A= | 4 1 1 |. Then T(X) = pt(1,0,0)A = P, and so on.
6 3 1
Problem 7.2 . In Problem 7.1, was that the only solution?

Solution. No: Any choice of homogeneous coordinates for P,Q, R would
work. In other words, if r,s,¢ are any nonzero scalars, any matrix of the
r-2 r-4 r.

1
form 1 | is an answer to Problem 7.1.
1

s-4 s-1 s-

t-6 t-3 t-
Because there is some freedom in the answer, let’s see if we can use that

freedom to specify where another point goes:

Problem 7.3 . Find a projective transformation T for which T'(X) = P,

T(Y)=Q, T(O) =R, and also T(F) = S, where P,Q, R are as in Problem

7.1 and S = (6, 8).
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Solution. Write down the more general solution to Problem 7.1 with r, s, t,
as described in the solution to Problem 7.2. We would like

r-2 r-4 r-1
(1,1,1)p | s-4 s-1 s-1 | =(6,8,1).
t-6 t-3 t-1

This is the same as the set of linear equations
2r4+4s+6t==6
Adr+1s+ 3t =8
1Ir+1s+ 1t = 1.

2 4 6 T 6
In matrix form: 4 1 3 s | =18
1 1 1 t 1

Here we see that the coefficient matrix has columns that are the extended-
vector forms of P, @, R. (In other words, it is the transpose of the simplest
answer to Problem 7.1.) These equations also say that S=rP+ sQ +tR
(extended vectors).

Calculation (say by Gauss-Jordan) shows that the solution is r = 1,
s = —2,t = 2. In the general solution to Problem 7.1, substitute these
2 4 1
values. We get the answer | —8 —2 -2 |,
126 2

Definition. Four points in R* or P, are said to be in general position if
no three are collinear (i.e., on the same line). Let’s say that four points in
general position form a quartet'.

For example, in Problem 7.3, P,@Q, R, S are in general position and so
make a quartet. X, Y, O, E also make a quartet, which we can call the stan-
dard quartet.

Fact 7.4 . There is a projective transformation taking X, Y, O, E to any given
quartet P,Q, R, S in Py, with X — P and so on.

The reason is that having no three of the four points be in a line is just
what is needed to guarantee that in the method of Problem 7.3, the coefficient
matrix is nonsingular and none of r, s, come out zero.

Problem 7.5 . Describe a general method of finding a projective transfor-
mation that takes one given quartet P,Q, R, S to another P, @', R', S’, with
P — P’ and so on.

1Some people say “quadrangle”, but that’s misleading because angles don’t make sense
in P2.
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Solution. We can use the same idea as for affine transformations, but with
the standard quartet in place of the standard triangle. First find a 3 x 3 ma-
trix A that gives a projective transformation taking X, Y, O, E to P,Q, R, S.
Then find another matrix B that gives a projective transformation taking
X,Y,0,E to P',Q',R',S". The answer to the problem is A~'B. (By Prob-
lem 7.5, A and B are guaranteed to be nonsingular, so A~!B exists and is
nonsingular, as it should be for a projective transformation.)

Problem 7.6 . Find a projective transformation taking the four points (1,0),
(0,1), (0,0), (1,1) (the vertices of the standard square) to P, @, R, S of Prob-
lem 7.3.

Solution. Use the method of Problem 7.5. To take the standard quartet to
the square, we must solve

(1 0 0 r 1
010 s | =11

|1 11 t 1

The solution is easily found to be r = 1, s = 1, t = —1. Therefore A =
10 1
0 1 1 |. We can invert A, and for this particular A it turns out
0 0 —1

that AL = A. B was already found in Problem 7.3. We get A7'B =
1 0 1 2 4 1 14 10 3
01 1 -8 -2 2| = 4 4 0

| 0 0 —1 12 6 2 -12 -6 -2

8. How much freedom in making projective transformations of the
plane?

A homogeneous linear transformation is a special instance of an affine
transformation, and an affine transformation is a special instance of a pro-
jective transformation.

With a homogeneous linear transformation we can map two given vectors,
not along the same line, to two other given vectors. In terms of points, the
origin must go to the origin, but we could take two other points, not on the
same line through the origin, to two given points.

With an affine transformation we can take a triangle to a triangle. (The
three points of the first triangle must not be collinear.)

With a projective transformation of P, — Py, we can take a quartet to a
quartet.
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Fact. The projective transformation taking one given quartet to another is
unique.

Note. Its matrix is not unique, since multiplying the whole matrix by a
nonzero scalar has no effect on the transformation. That’s the only way the
matrix can vary, though. In particular, you cannot multiply each row of the
matrix by a separate nonzero scalar. That would not change the images of
X, Y, and O, but it does change the images of other points, such as E.

9. Three-dimensional projective space

All the ideas discussed above can be adapted to three-dimensional space.
An overview:

(1) Homogeneous coordinates are (z,y, 2,s),. The names of each point
differ by nonzero scalar factors. pt(z,y, 2, s) is an ordinary point if
s # 0 and is a point at infinity if s = 0.

(2) Each point at infinity corresponds to a family of parallel lines in R®.
These lines meet in P3 at their point at infinity.

(In R3, two lines are parallel if they lie in the same plane and do not
intersect. Two lines that do not intersect and do not lie in the same
plane are said to be skew.)

(3) Real projective 3-space P3 consists of R® together with points at infin-
ity.

(4) A projective transformation T : P3 — Pj is a transformation obtained
by multiplying the homogeneous coordinates of each point by a non-
singular 4 x 4 matrix A.

(5) Five points in P3 are said to be in general position if no four are
coplanar. If Pj,...P5; are in general position and @)q,...Q5 are in
general position, then there exists a projective transformation 7" : P3 —
P3 such that T(Pl) = Ql, ey T(P5) = Q5.
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10. Problems

Problem M-1. Give homogeneous coordinates for each of the points indi-
cated below. Points indicated with arrows are at infinity. (Remember, the
point at infinity is determined by the direction of the line to it.)

\F T D 7

! /

|
|
|
! 3
|
|
|
|

ZE A e . 2

Problem M-2. Recall the definition of a projective transformation: To
transform a point, you choose some triple representing the point in homoge-
neous coordinates, multiply the triple by the matrix to get a new triple, and
then take the point represented by the new triple. Why doesn’t it matter
which triple you choose to represent the first point?

Problem M-3. (a) Is the standard square the same thing as the standard
quartet? (b) If it is, explain why. If it is not, say whether the standard
square is even a quartet at all, and why.

Problem M-4. (a) In Py, find a matrix for the projective transforma-
tion that takes the ordinary points (0,0),(1,0),(1,1),(0,1) (the “standard
square”) to the ordinary points (0, 0), (2,0), (3, 3), (0, 2), respectively. (If you
wish you may list the vertices in another order, as long as you list the image
vertices in the corresponding order. You may be able to take advantage of
Problem 7.6.)

(b) Give all possible answers to (a).

(c) If one person took advantage of the possibility of listing the vertices
in another order and another person did not, would their answers to (a)
necessarily be the same? Their answers to (b)?

Problem M-5. Is there a projective transformation that takes X,Y, O, F
respectively to (1,0), (1,1) (ordinary points), X,Y ? Why or why not?

Problem M-6. Check that the matrix given as the solution to Problem 7.6
above does give a projective transformation that does what it is supposed to.
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Problem M-7.

Show that the only projective transformation of P, that leaves each of
X, Y, 0O, E fixed is the identity transformation, i.e., the transformation that
leaves all points fixed.

(Method: If T is such a transformation, then 7" comes from a 3 x 3 matrix M.
Show that M must be a nonzero scalar matrix; i.e., M = rI, by using the
fact that x (1,0,0),M is a scalar times (1,0, 0),, etc. What transformation
is produced by a scalar matrix?)

Problem M-8. (a) Show that if P,Q, R, S is a quartet in Py, then the only
projective transformation that leaves each of P,Q, R, S fixed is the identity
transformation.

(Method: Suppose T leaves P, @, R, S fixed. Choose a projective transfor-
mation W taking X,Y, O, E to P,Q, R, S respectively. Apply the result of
Problem M-7 to show W~='TW = 1, the identity transformation. Here the
composition W~'T'W means to apply W, then T, then W~!. Solve for T,
just as you would using matrices.)

(b) Show that if P,Q, R, S and P',Q', R', S’ are two quartets in Py, there is
only one projective transformation that takes P to P’ and so on.

(Method: Suppose both T and U take P to P' and so on. Apply (a) to
T-U.)

Problem M-9. (a) Explain why it is not possible to define the value of
the determinant for a projective transformation. (Method: As in Problem
M-7, there is more than one possible matrix for the transformation. Do all
possible matrices have the same determinant? Be careful in saying what
happens to the determinant of a matrix when all entries are multiplied by
the same scalar.)

(b) Explain why in P, it is not even possible to talk about the sign of the
determinant. (Method: If all entries of the 3 x 3 matrix are multiplied by
—1, what happens to the sign of the determinant?)

(c) Explain how it is possible to define the sign of a projective transformation
in P3 using determinants, even though the value of the determinant itself
cannot be defined.

(For homogeneous linear transformations, the sign of the determinant tells
whether the transformation preserves orientation or reverses it. The same
is true for affine transformations. The facts (b) and (c) say in effect that
orientation of objects cannot be defined in Py but can be defined in Pj.)
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Problem M-10. In the one-dimensional space R, a linear fractional function
is a function of the form f(z) = Z;”I;, where ad — bec # 0. Of course, the
domain of f may not be all of R. Explain how a linear fractional function
is really the same as a projective transformation in P;. (Method: Make the
extended vector [z1]p,, transform it by an appropriate matrix, and scale to
put the answer in the form [y1],. What is y in terms of 27 Linear fractional
functions are important in the theory of complex variables, where x and y

can be complex.)

Problem M-11. Find all 4 x 4 matrices that give projective transformations
on Pj3 leaving the x, y-plane fixed. (In other words, T(Q) = @ for every point
@ in the x, y-plane.)

Problem M-12. Find an example to show that a projective transformation
in Py does not preserve ratios of line segments on the same line. In other
words, if PR is a line segment and () is between P and R on the segment,
the ratio of the length of PQ to the length of PR may not be preserved. (In
contrast, affine transformations do preserve such ratios; see the exercises of
the first handout on affine transformations.)

Problem M-13. Let T be the projective transformation on P, that takes
X,Y,0, F to the standard square eq, ey, (0,0),(1,1), in that order. A ma-
trix for 7" was found as part of the solution to Problem 7.6 above, namely,
10 1
0 1 1 |[. (a)Sketch the images under T of the edges of the standard
0 0 -1
square (between vertices in the usual order). (Suggestion: Represent each
edge parametrically and transform. Indicate just ordinary points.) (b) On
your sketch, indicate the image under 7" of the whole standard square region,
with interior. (c) What is the image of the diagonal line z +y = 1?7 (d)
Sketch the image of the line x + y = 2.

Problem M-14. Describe the image of the hyperbola y = % under the
0 01

projective transformation with matrix | 0 1 0
1 00

(Method: Express the hyperbola parametrically as (%, %) for t # 0. Rewrite
in homogeneous coordinates, transform, and find the Cartesian coordinates

again in terms of ¢. Finally, try to re-express the answer as a curve y = .. ..)

Note. Actually, projective transformations can map any kind of conic to any
other, for instance, a circle to a parabola.

M 13



Problem M-15. Verify Rules 1 and 2 of Section 6 above, by discussing the
different cases that can occur. (For example, in considering two lines, one
might be an ordinary line and the other the line at infinity.)

Problem M-16. Prove Fact 7.4. In other words, prove that the method of
Problem 7.3 works for any quartet with vertices P,Q, R, S.

(Method: You may assume this useful fact: If P, @), R are points of Ps
whose homogeneous coordinates are linearly dependent as three vectors in
R3, then P, Q, R are collinear. Using this fact, explain why, in the method
of Problem 7.6 above, the coefficient matrix is nonsingular and none of r, s,
can be zero.)

Problem M-17. Explain how the extended matrix of an affine transforma-
tion on R? — R? can be regarded as the matrix of a projective transformation
on P, — Py. What does each row of the matrix mean, in terms of X, Y, O7

Problem M-18. As you now know, the extended vectors used for affine
transformations were really homogeneous coordinates. Further, the 3 x 3
extended matrices used for an affine transformation in R? can be applied even
to points at infinity, so that the affine transformation becomes a projective
transformation.

Show that nonsingular affine transformations, if applied in Py, have the
special property that they take points at infinity only to points at infinity.
Do this two ways:

(a) algebraically, by transforming points with coordinates (a, b, 0)s;

(b) geometrically, by using the fact that affine transformations on R? take
parallel lines to parallel lines.

Problem M-19. Let T : P, — P, be a projective transformation. This
problem shows how to tell if 7" is really an affine transformation.

(a) For X, Y as usual, show that if 7(X) and T'(Y’) both are points at infinity,
then T is affine. (Method: Narrow down possibilities for the matrix of 7.
See if you can get the desired entries to be zero. Scale the whole matriz by
a nonzero scalar to get the desired entry to be a 1.)

(b) Explain why if 7' takes points at infinity to points at infinity only (in
other words, the line at infinity stays at infinity), then 7" must be affine.

(c) Explain why if T takes even two points at infinity to points at infinity,
then T must be affine. (Part (a) showed one example of this fact. Method:
T takes lines to lines. Where does the line at infinity go?)
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(d) Explain why, if 7' takes even one parallelogram to a parallelogram, then
T must be affine. (Method: Use (c).)

This last part shows that even with a little information you can tell that T’
is affine. An equivalent statement is this: If 7" is not affine, then T distorts
every parallelogram into a non-parallelogram.

Problem M-20. Consider all projective transformations on P, that leave
X,Y, O fixed. These are the same as some transformations you knew about
before ever hearing of Py. Which ones, exactly?

Problem M-21. (a) Explain why each real eigenvector of a nonsingular real
3x 3 matrix gives a fixed point of the corresponding projective transformation
on PQ.

(b) Show that every projective transformation on Py — P, has at least one
fixed point. (Notice that the characteristic polynomial is cubic, and recall
that every cubic polynomial has at least one real root, since its graph goes
from the third quadrant to the first quadrant and so crosses the x axis.
Mention why the eigenvalue 0 can’t occur.)

(c) For a translation, regarded as a projective transformation, describe one
fixed point. Are there any others?

Problem M-22. In Pj3, (a) define the standard points X, Y, Z, O, E; (b) find
a projective transformation taking X,Y, Z, O, E to (1,0,0), (0,1,0), (0,0, 1),
(0,0,0), (1,1,1) respectively.

Problem M-23. Surprisingly, the intersection of two lines in Py can be
found by using a cross product. Consider the two lines whose equations in
ordinary coordinates are x + 3y +4 =0 and 4o +y + 5= 0.

(a) Find equations for these two lines in homogeneous coordinates. (Method:
Given a line azx + by + ¢ = 0 in ordinary coordinates, put z/z for  and y/z
for y and then clear the denominator; you get simply az + by + cz = 0.)

(b) Use a cross product to find the homogeneous coordinates of the point
where the two lines intersect. (Method: Solving the two equations simul-
taneously will give the desired homogeneous coordinates. If you regard the
triples as being in R? instead, you are finding the line of intersection of two
planes, and you know how to do this using a cross product.)

(c) Express the answer in ordinary coordinates.

(d) Does this method work even if one line is the line at infinity? Give an
example.
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Problem M-24. Projective geometry is concerned with theorems that men-
tion only which lines meet at which points, and not with angles and distances.
There are actually some good theorems of this type that could have been un-
derstood in high school geometry but were probably not mentioned. Here is
one [with problems following the diagram]:

Desargues’ Theorem. Choose a point P in the ordinary plane. Draw three
lines from P. Choose two triangles, each with a vertex on each line (but
not using P), as in the left diagram. If corresponding sides are not parallel,
extend the corresponding sides until they meet. Then the three points of
intersection are collinear (i.e., they all lie on one line).

P P

There are also versions of the theorem covering cases where one pair of cor-
responding sides is parallel but the other two pairs are not; where at least
two pairs of corresponding sides are parallel; and similar cases for a draw-
ing where the original three lines are chosen to be parallel instead of going
through a point P.

(a) Write down statements for five of these cases. (Choose interesting ones.)

(b) Explain how in the projective plane there is only one case, of which
all your cases are really instances. (This is an example of how using the
projective plane can actually make some kinds of geometry simpler and yet
more powerful at the same time.)

Problem M-25. The diagram of Desargues’ Theorem looks somewhat three-
dimensional, even though it isn’t. However, you can invent a three-dimensional
version of Desargues’ Theorem in which the lines through P may not be not
coplanar.

(a) Give such a three-dimensional statement.
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(b) Actually prove your statement in the case where the lines through P are
not coplanar. To keep things simple, assume that no two lines in the whole
diagram are parallel in R?.

Note. One good proof in the two-dimensional case is this: Given the
diagram, imagine constructing a three-dimensional diagram whose perpen-
dicular projection in two dimensions is the given diagram. The line in three
dimensions containing the three intersection points of the sides of the trian-
gles projects to a line in two dimensions with the same property.

Problem M-26. An affine transformation in extended coordinates had a
“hidden” geometrical interpretation as a map on R®* — R?, in which the
transformation acted on the z = 1 plane. The extended matrix of an affine
transformation always takes the z = 1 plane to itself. Develop a similar “hid-
den” geometrical interpretation for how you use projective transformations
when you take (z,y) — (z,y,1), — (2,9, 1),A and then normalize the result
to the form (u,v,1),. (This time the matrix will usually take the z = 1 plane
to another plane. However, the final step of normalizing projects points back
to the z = 1 plane. Make a sketch.)

Problem M-27. In the survey article by Carlbom and Paciorek it is stated
that various entries of 4 x 4 matrix represent a homogeneous linear trans-

formation, a translation, a projection, and a scaling. This would seem to
t

suggest that an arbitrary nonsingular 4 x 4 matrix b P s the product
. A 0 I 0 I pt I o] .
of the matrices [ 0 1 ], [ b1 ], [ 0o 11| o ¢ |/1nsome order.

Is this true?

Problem M-28. Suppose we take a 4 x 3 matrix A and attempt to define
a transformation on Py — P, by setting T'(x;) = x,A. (a) Why doesn’t
this define a transformation on all of P3, even if A has rank 3 (the largest
possible)? (Method: Is x;, A always a nonzero vector?) (b) Even so, this does
define a transformation whose domain is contained in P3. Describe how you
could find A taking each of X Y, Z, O to given points of Ps.

(Essentially, you have made a two-dimensional picture of [most of] P3 in
which the images of X,Y, Z are “vanishing points” for the corresponding
families of parallel lines in R>.)

Problem M-29. Suppose you want to make a perspective picture of a box-
shaped building whose families of parallel lines are lined up with the coordi-

nate axes. Suppose you want a 3-point perspective projection, with vanishing
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points on the viewplane being Q = (4,—2), R = (—4,-2), S = (0,6), with
X —>Q,Y —> R, Z— S50 — O (where O means an origin in each dimen-
sion).

(a) By a direct method as in Problem M-28, find a 4-by-3 matrix M that

accomplishes this projection, when homogeneous coordinates are used in Pg
and PQ.

(b) Observe that M makes a transformation that is not defined on all of
P3, because some legitimate points are mapped to a triple (0,0,0),. Find
such a point. Geometrically, why should there be such undefined points for
a perspective projection?

(c) Is there more than one transformation possible, depending on the choice
of M? (In other words, are there choices of (a) that are not just scalar
multiples of each other?)
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