Math 149 W02 L.

Lab #1: Looking inside PostScript

This lab has a target due date of Wednesday, January 23. It counts three
points.

1. What is PostScript?

PostScript is a “page description language”—a graphics language for
printing text and pictures. It was developed by Adobe Systems, Inc. Its
primary use is to be generated by programs to drive graphic output devices,
but it is also human-readable. Some of its interesting characteristics:

e It is in ASCII text and is used that way; there is no binary version. A
language that is meant to be used directly rather than being compiled
first is often called a “script”, as in the name “PostScript”.

e PostScript uses “reverse Polish” or “postfix” notation: Rather than
use 2+3 it uses 2 3 add, with the operation written at the end. This
notation explains the “Post” in “PostScript”. (Of course, the name
“PostScript” is a pun in that it’s also an English word.)

e Because of the postfix notation, no parentheses are necessary in com-
plicated expressions. For example, instead of 7*(2+3) PostScript uses
7 2 3 add mult. In evaluating this expression, the numbers are ex-
amined left to right, with results so far kept on a stack. Initially the
stack is 7, then 7 2, then 7 2 3. When add is reached, the top two
numbers on the stack are replaced by their sum, making the stack be
7 5, and when mult is reached, the remaining two numbers on the
stack are replaced by their product, leaving 35.

It is also not necessary to use separators such as ; between com-
mands; commands can be written on separate lines or strung together.
Computer-produced files can be incomprhensibly messy, but files you
make should be kept neat.

e Comments start with % and continue to the end of the line.

e The very first line starts with %!
So if you send a file to a printer that knows PostScript (such as popeye),
if the file starts with %! then it is interpreted as a PostScript file;
otherwise it is just printed as straight text.

e As mentioned, PostScript is intended mainly for computers to talk to
devices. Debugging information is minimal or absent! If you display

L1



an incorrect PostScript file, you get an error comment on-screen, but it
may be obscure. If you send an incorrect PostScript file to the printer
nothing happens (and maybe nothing happens for the next person to
use the printer).

PostScript is licensed by Adobe for use in particular printers, display
software, etc. Therefore some printers are “PostScript printers” and
others are not. PostScript printers have a built-in microprocessor,
memory, and software for interpreting the PostScript language.

To display a PostScript file named myfile.ps just double-click on it;
the system should automatically open it using the Ghostview program
(= GSView).

To print the display on paper in the lab, just print it like any other file.
However, it is dangerous: If there is a bug in your file it may make the
printer hang for everyone! For safety, display the file on your PC first.

On the other hand, to see a file as script (showing the PostScript com-
mands themselves), on the NT system use the Notepad editor, found
under Accessories on the START menu. To print a file as script, you
need to prevent the printer from seeing the first line with #! | so one
way is to make a copy, edit the copy to delete the first line, and then
print the copy.

When you draw lines you first say where the lines go and then use the
command stroke . To draw a closed figure, you can draw point to
point until the last point and then use the command closepath along
with stroke . A closed path is essential to draw a shaded figure.

The basic unit for drawing is 1/72 inch. However, other units can be
used, either by scaling every coordinate each time it is mentioned, or
by changing to a coordinate system with a different scale.

Initially the origin for drawing is in the lower left corner of the page.
However, when using ghostview (GSView) you may find that the lower
left corner is below the current window, so scrolling may be necessary
to see things drawn near the origin.

Sometimes a software package will output a PostScript file without the
final showpage . That should not be the case in this assignment, but
you should be aware of the possibility. Ghostview seems not to care
about this but a PostScript printer will sit there and do nothing.

There are some manuals on PostScript, but they are not needed for this
assignment. If you are interested, I can show you my copies, and there
are possibly copies in the UCLA Store General Books department.

L2



e You will often see references to “Encapsulated PostScript”. This is the
same as a PostScript file except that near the beginning of the file there
is extra information about the ranges of x and y coordinates used (the
“bounding box”). This information enables programs such as TeX to
incorporate the file with other output, e.g., a diagram in a page of text.

Philosophy of this assignment: In the future, you will often run into
a situation where there is something complicated that you need to go in
and alter without having full knowledge—perhaps it will be a big program
written by the employee you replaced, or a smaller program written in a
special language with an obscure manual. In confronting such a situation,
try to look for pieces of examples that you can follow.

This assignment is somewhat similar, since you are to write and modify
PostScript using examples instead of the manuals. However, a few comments
are provided in the examples.

Task A: “Pure” PostScript. Some example files named demol . ps, demo2.ps,
etc., can be found in the handout directories on both the NT and UNIX sys-
tems, whose locations were given in the previous paper handout.

The task is to use the ideas in these demos to make some Postscript file that
is distinctly your own. If you can, do something interesting. If you’re too
pressed for time, do something more rudimentary. One or more interesting
submissions may be posted for everyone to see.

Because debugging is so difficult, proceed in steps, starting with something
that is almost like a demo and modifying it, while checking it with ghostview.

Submit your file as described in the previous handout. Name it 1ablA.ps .

Task B. Landscape versus Portrait modes

PostScript initially assumes that the coordinate system has its origin at the
lower left corner of the page when the paper is held with the longer way
vertical (portrait mode). Suppose that the picture you want to draw is wider
than it is long and you want to print it that way (landscape mode). The way
to do this is to rotate and translate so that your data is changed to portrait
mode (although it will be on its side when displayed on the screen), print it,
and then hold the printed copy the landscape way.

In the handout directory you will find a file chi.ps, done by a former student
in this course. It is presently in portrait mode. Put in extra changes of
coordinates to make the picture come out turned sideways on the screen,
so that if printed on paper it will be in landscape mode. A good place to
to do this is marked in the file. You should decide what combination of

L3



translations and rotations is needed. Don’t forget to change distances to
inches if that’s what you need. Notice that you can’t just rotate the picture
from a corner, since you’ll be rotating it right off the screen; a translation
will also be involved.

Submit the modified file, named 1ab1B.ps .

L4



