Math 149 W02 KK.

Some tools from linear geometry

1. Review: Describing straight lines

You have in the past seen three ways to express a straight line in R?
algebraically:

Functionally, as the graph y = mx + b of a linear function.

Relationally, as the graph of an equation ax + by + ¢ = 0 giving a linear
relation between z and y. (Not both of ¢ and b are 0.)

Parametrically, by an equation x(t) = P+ tv giving the path of a moving
point. (Here v # 0.)

For the functional form, a disadvantage is that vertical lines cannot be ex-
pressed. In fact, any graph of this kind is closely tied to the orientation of
the axes; it would be messy to rotate the graph and then re-express it in the
same way, for example. Advantages of this form are that there is only one
way to express each non-vertical line and that there is no restriction on the
numbers m and b that can be used.

For the relational form, an advantage is that any line can be expressed.
For example, 1z + Oy + 2 = 0 gives a vertical line. A disadvantage is that
there is more than one way to express each line. For example, multiplying
the equation through by 2 gives the same line.

The parametric form can be viewed as the path of a moving point with
velocity vector v and with P(0) = P,. An advantage is that any line can be
expressed. A disadvantage is that there are many ways to express each line:
Py can be changed to any other point on the line, and v can be multiplied
by any nonzero scalar, without changing the line represented.

In computer graphics, there are many applications for the relational and
parametric forms, as you will see. The functional form is rarely used. It’s
easy to take a line written functionally and re-express it either relationally
or parametrically. Therefore, in these notes we’ll consider only these last two
forms.

2. More on the parametric form

Suppose two different points P and () are given. A parametric equations
for the line through P and @ is found by letting v = ) — P, so that you get
the two-point parametric form:
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x(t) = P +t(Q — P).

If you multiply out and condense the terms a different way, you get another
way of writing the same thing:

x(t) = (1 —-1t)P +tQ,

which expresses points on the line as linear combinations of the two given
points, as t changes. Notice that x(0) = P and x(1) = Q. The expression
can be regarded as a weighted average of the two points, with weights 1 — ¢
and t. If t = %, you have the usual average, the midpoint of the line segment.
If t = 1 (say), you get the point 3P + 1@Q, which is a fourth of the way from
P to (). In particular, notice that this point is closer to P, which has the
larger of the two weights.

Observe also that points on the line segment PQ are those for which
0<t<1;ift <0ort > 1 then you get points on the line outside the
segment.

The parametric form is useful even for describing individual points on a
line segment. If you want the point that is 0.30 of the way from P to Q, for
example, you can describe it as P + 0.30(Q — P).

Although we’re only considering lines in R? for the moment, the para-
metric form works in exactly the same way to describe lines in R?. In fact,
in R?, the parametric form is by far the best way to describe a line or line
segment.

3. More on the relational form

Let’s write f(z,y) = ax + by + ¢, and let’s always assume that at least
one of a and b is not zero. Let L be the line with equation f(z,y) = 0.

Observation 1. For any such f with not both a and b equal to 0, the plane
R? is divided into three subsets: L itself, with equation f(z,y) = 0; the
half-plane f(z,y) > 0, and the half-plane f(z,y) < 0.

Observation 2. For any constant k # 0, the equation f(z,y) = k describes a
line parallel to L. (In terms of concepts from calculus, f(z,y) = k describes
a level curve of f. Thus, for such an f the level curves happen to be parallel
lines.)

Observation 3. The vector N = [a, b] is a normal (i.e., a perpendicular) to L.

(This is the two-dimensional version of what you are used to with normals
for planes in R>.)

Observation 4. The normal N = [a, b] points in the direction of the positive
half-plane f > 0. (This makes it easy to tell which side is the one with

f>0)
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Observation 5. If Py is any point on L, the equation of L can be written as
N - (x — Fy) = 0 (the point-normal form).

Observation 6. The absolute value of f at each point equals the perpendicular
distance from L times |N| (the length of the normal).

Remark. A function of the form f(z,y) = ax + by + ¢ is really an affine
transformation f : R? — R. Let’s call such a function an affine function.

Because of the possibility of scaling a, b, ¢, there are many choices of f
that give the same line L. Which choice is best? Actually, there are several
appropriate choices of f, depending on circumstances. One is the two-point
form, discussed next; another is barycentric coordinates, discussed in §8; and
a third is the signed distance function, discussed in the exercises.

4. The two-point relational form

Suppose we want to find a relational description f(z,y) = 0 for the line
through two given points P and (). There is a particular choice of f that
does this nicely. It can be derived in either of two ways.

For the first way, take any third point R, and recall the affine transfor-
mation that takes the standard triangle to P, @), R. Let the determinant of
its extended matrix be A(P,Q, R). By adding the third row to the first two,
we get a simpler description. Thus

(P-R) 0 P 1 p1op2 1
AP,Q,R)=det | (Q—R) 0| =det| Q@ 1 | =det| ¢t ¢ 1
R 1 R 1 T To 1

Here are some facts about A(P, @, R). You have seen the first three; the
last two follow from (a).

Proposition 1. For any points P, @, R in R*:

(a) the area of the triangle formed by P, Q, R is %A(P, @, R) in absolute
value;

(b) if A(P,Q,R) > 0 then P,@Q, R have the same orientation as the
standard triangle, namely, as you go from P to ) to R and back to P you
are traversing the triangle counterclockwise; equivalently, @) is to the left of
P as seen from R, just as (0, 1) is to the left of (1,0) as seen from the origin;

(c) similarly, if A(P, @, R) < 0, then the traversal P to ) to R to P is
clockwise; equivalently, () is to the right of P as seen from R;

(d) A(P,Q, R) =0 when P,Q, R are collinear (lie on a line) and so form
only a degenerate triangle of zero area;
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(e) A(P,Q,R) = A(Q, R, P) = A(R, P,Q) (i-e., A doesn’t change when
the three points are permuted cyclically).

By (d), the points R for which A(P, @, R) = 0 form the line we’re looking
for. To emphasize which point is varying, let’s put x for R:

Proposition 2. The line L in R? through two points P and Q has equation
A(P,Q,x) = 0.
Let’s call this the two-point relational form of L. To see that the function

A(P,Q,x) is really affine, expand A(P, @, x) by cofactors of the third row;
you get

’V p1 p2 1
A(P,Q,x) = det { a1 @ 1| = q@r)+(@—py)+ @10 — p2q1)-
T Yo 1 J

The second way of deriving the two-point relational form is to use P and
() to make a normal to the desired line L:

For the the normal use () — P rotated counterclockwise 90°. Thus if
0 1
P = (pi,p2) and Q = (q1,¢), let [a,0] = (@1 — p1, ¢ —pQ)[ - 0] =
[—(g2 —p2),q1 — p1]. Since P is on L, ap; +bpy + ¢ =0, so ¢ = —(ap; + bpa)
= p1g2 — p2q1. Thus our affine function is

(P2 — @) + (q1 — p1y) + (P1g2 — P2q1), as before.

Note 1. From the second method of deriving the two-point relational form,
it is clear that if you walk along the line L from P towards (), the half-
plane with A(P,@Q,x) > 0 will be on your left. This is also clear from (b) of
Proposition 1, if you put R = x again.

Note 2. Because the two-point relational form does not involve division,
it is especially good for use in a computer without built-in floating-point
operations, if you use only integers for coordinate values of points.

5. Intersections of lines and line segments

Let’s say that a line segment AB intersects (or touches) aline L if AB and
L have at least one point in common, and, more specially, that AB crosses L
if A and B are not on L but some other point of AB is on L. Similarly, one
line segment could intersect or cross another line segment. Thus, intersecting
is a little more general than crossing. In this discussion, let’s concentrate on
crossing and then see what changes are necessary to handle intersecting.
There are different cases, depending on whether we’re dealing with lines or
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line segments and depending on how they are expressed. Two cases are the
most important:

Case 1. Does a line segment AB cross a line L expressed in the relational
form f(z,y) =0, and if so, where?

This case is the most useful and also the easiest. Method. AB crosses
L if f(A) and f(B) are nonzero and of opposite signs. To find the crossing

point C, let t = —% and then let C = A+ ¢(B — A). See Figure
1.

=3 f=—2  j=—1  j=0 j=1

Figure 1: A crossing case

Explanation: The key is to observe that if you follow the line segment
from A to B, the value of f changes at a constant rate. So, for example,
if f(A) = —3 and f(B) = 1, then since f(C) = 0, C ought to be 2 of the

1
way from A to B, i.e., t = 5. The % is the change in value from A to C

- ., O =FA) 0= fA)
divided k;y( ;l;e change from A to B, ie., t = fEB§ = f%Ag ~ f(B) - f(4)

f(B) = f(A)

>

Case 2. Do line segments AB and P(Q cross each other, and if so, where?

Method: Use the method of Case 1 both ways around: AB should cross
the line containing P and (), and vice versa. For each of the two lines, you
can use the two-point relational form.

In other words, if the segments are PQ and AB, find all four of A(P, Q, A),
A(P,Q, B), A(A, B, P), and A(A, B, Q). The line segments cross each other
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when all four of these numbers are nonzero, the first two have opposite signs,

and the last two have opposite signs. If they do cross each other, the crossing

o A(P,Q, A :
point is C = A+t(B— A), where t = AP, Q,é) ,—Q7A(1)D,Q,A)' See Figure

2.

Q
A

P

Figure 2: Another crossing case

Note. It is not enough just to check that, say, AB crosses the line containing
P and . That can happen even if the two line segments are each an inch
long but are a mile from one other. A less extreme example is shown in
Figure 3.

B

Figure 3: Another crossing case

What if we are interested in intersecting instead of just crossing, for the
case of two line segments AB, PQ)? The answer is that the circumstances will
always be clear from the values of A(P,Q, A), A(P,Q, B), A(A, B, P), and
A(A, B, Q), provided not all four of these numbers are zero. For example, if
A(P,Q,A) >0, A(P,Q,B) =0, A(A,B,P) <0, A(A, B,Q) > 0, then AB

intersects P() at B, somewhere between P and ().
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If all four of the A() values are zero, then A, B, P, all lie on one line,
and a different method is needed: Look at the z-coordinates a1, b1, p1, ¢1
or at the y-coordinates ag, ba, p2, ¢2 to see the situation. For example, if
a; < ¢ < p1 < by, then PQ is contained entirely in AB. (Which should
you use, the z-coordinates or the y-coordinates? A good choice is to use
whichever are the more spread out. The “spread” of the z-coordinates is the
maximum of the four z-coordinates minus their minimum, and similarly for
the “spread” of the y-coordinates; check which is the greater.)

6. Intersections of a line segment and a plane
Now let’s apply the ideas of the last sections in three dimensions:

(1) The three-point relational form of a plane in R? is given by the equation
A(P,Q, R,x) = 0, where
P

APQRx)=| ¢

X
(2) A(P,Q, R,x) > 0 when x is in the same relation to P, @), R that the origin

is to (1,0,0), (0,1,0) and (0,0,1), namely, P to @ to R to P is clockwise as
seen from x.

—_ = =

(3) A line segment AB crosses the plane given by an affine function f(x, v, 2)
if f(A) and f(B) are nonzero and have opposite signs; the crossing point C

is given by C = A+ t(B — A), where t = _L

7. When is a point inside a polygon? The convex case.

What is a good computer method for deciding whether a point Q in R?
is in the interior of a triangle, or more generally, any convex polygon?

If the polygon has n vertices, call them P, ..., P,_; and
let P, = Py. Then the sides are P,_P; for : = 1,...,n. Here is a method:

(*) @ is in the interior of the polygon < for each i =1,...,n, P;_; is to the
right of P; as seen from (), or else for each i = 1,...,n, P,_; is to the left of
P; as seen from (). Computationally:

(**) @ is in the interior of the polygon < all determinants A(P;_1, P;, Q)
have the same sign.

The reason why (*) is equivalent to (**) is contained in Proposition 1 of §4.
Of course, if any determinant is zero, () is on the boundary.
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8. How to tell when a point is inside an arbitrary poly-
gon.

Again, label the polygon P, ..., P,_; with P, = P, and consider a point
Q.

Method #1: Choose a point S that you know is outside the polygon. Find
how many times the line segment QS crosses the edges of the polygon. If this
count is odd, then @ is inside the polygon; if it is even, then @) is outside.

Details: For the z coordinate of S, you could, say, take the max of the
x coordinates of the points P; and add 1. Then S is definitely outside. For
the y coordinate of S, use a random number between 0 and 1; that way,
there is essentially no possibility that QS will go through one of the P;, an
undesirable case. If () is on the boundary, you’ll discover that fact as part of
looking for the crossings.

Method #2 (the winding number method): Add up the angles subtended
at P by the edges of the polygon, with appropriate signs, and divide the total
by 27. The result is called the winding number (the number of times that
the polygon winds around P). If the winding number is 1 or -1, P is inside;
if it is 0, P is outside.

In Method #2, for each i you will need to find the signed angle between
the vector P;,_; — () and the vector P, — @), using the method of Handout C,
§5, (vi). It is a good idea to check separately that @ is not equal to any of
the points P;, so that the difference vectors are both nonzero. You can check
that () is not on the boundary when you are finding the angles.

9. Barycentric coordinates for a triangle

Proposition 3. Let P,Q, R be three noncollinear points in R?. Then every
point S in the plane can be written uniquely in the form S = ¢; P+c,Q+c3 R,
where ¢; + ¢y +¢c3 = 1.

Definition. In the Proposition, ¢y, ¢ca, c3 are called the barycentric coordinates
of S with respect to P,Q, R. Let’s write (¢, ¢z, c3)pary for the barycentric
coordinates of a point.

For example, the center of mass C' of the triangle PQR is the obtained by
averaging the three vertices, so has barycentric coordinates (%, %, %)ba,y. In
fact, “barycentric” means “weight-centered”. As another example, P itself
has barycentric coordinates (1,0, 0)pqry. See Figure 4.

Barycentric coordinates are often handy when you need to do something
with a triangle that treats all three vertices the same way. The points inside
the triangle are easily identified:
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R

Figure 4: Triangle and its center of mass

Proposition 4. A point S is inside the triangle PQR (or on an edge) if
and only if its three barycentric coordinates with respect to P,Q, R are all
nonnegative.

Recall that a conver combination is a linear combination in which the
coefficients are nonnegative and have sum 1. Thus the points inside the
triangle are the convex combinations of P, ), and R.

Proposition 5. The barycentric coordinates of the point x with respect to P,
@, and R have the values

N A(Q) R7 X)
="K
_ A(R, P,x)
Co = 5 )
_ AP,Q,x)
B="7""X

where A = A(Q, R, P) = A(R,P,Q) = A(P,Q, R).

Thus ¢z (for example) is obtained by scaling the two-point relational form
for the line through P and @, so is an affine function of position itself. We
could write c3(x). The scale factor of % is just what is needed to have c3(R)

= 1, as it should be. In particular, c3 is zero on the line through P and @),
and is constant on each line parallel to that line.

10. Problems

KK-1. Explain how any line written functionally can be easily rewritten in
(a) the usual relational form; (b) in parametric form.

KK-2. Describe how to draw a diagram of n circles, each of radius r, whose
centers are on a circle of radius R (not drawn) centered at the origin, with
connecting line segments as shown. Say explicitly how to find the coordinates
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Figure 5: A diagram with circles

of the centers of the circle and of the end points of the line segments. See
Figure 5.

KK-3. (a) For an affine function f(z,y) = az+by+c, what is the gradient?
(b) For most functions, the gradient depends on the position (z,y). Is this
the case for affine functions? (c) What does the graph z = f(z,y) look like?

KK-4. Verify Observation 4 of §3. (Method: What is the relation between
the gradient of a function of two variables and the direction of increase?)

KK-5. Verify Observation 3 of §3, using each of these two methods. First
method: Consider two points P = (p1,p2) and @ = (¢1,¢2) on the line and
check that (a,b) is perpendicular to P — @). Second method: The gradient
of a function of two variables at any point is perpendicular to the level curve
of the function through that point. (See the preceding problem.)

KK-6. If the point-normal equation mentioned in Observation 5 of §3 is
rewritten as ax + by + ¢ = 0, what is ¢ in terms of N and FP,?

KK-7. Explain Observation 6 of §3 by using the point-normal form. (For
given x, choose P, to be at the foot of the perpendicular from x.)
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KK-8. The relational and parametric representations of a line can each
be interpreted in terms of affine functions between spaces. The relational
form really expresses the line as the set of points where a certain affine
transformation f : R* — R' has value 0 (as mentioned in Observation 6
of §3). The parametric form really expresses the line as the image (set of
all values) of an affine transformation P:R' — R?. In each case, find the
extended matrix of the affine transformation involved.

KK-9. Suppose you want to rotate a line 30° counterclockwise about the
origin. (a) If the line is given in relational form, how can you describe the
new coefficients o', b', ¢’ in terms of the old a,b,c? (b) If the line is given
parametrically, how can you describe the new P, and v in terms of the old
P, and v? (Leave the answers in terms of products of matrices and vectors,
without multiplying out.) (c) If the line is given in functional form y = mz+b,
express the functional form of the rotated line in terms of m and b.

KK-10. Given two points P, (), suppose we started from the equation
A(P,Q,x) = 0. In §4 it is explained how we could be sure the equation
has the form az + by + ¢ = 0. (a) In this equation, how could we be sure
that not both a and b are zero, so that it does represent some line L? (An
equation Oz + Oy + 0 = 0 would represent the whole plane; an equation
0z + 0y + ¢ = 0 with ¢ # 0 would represent the empty set.) (b) From the
definition of A(P, @, x), why is it obvious that both P and @ are on L?

KK-11. Show that the circle in R? through three noncollinear points A =
(a1, az2), B = (b1,be), and C = (¢, ¢2) is given by

a% + a% a; ap 1
b2+b3 b by 1
c% + cg c1 ¢ 1
224+y? oz oy 1

det = 0.

Use these three steps: (a) Show that all three points satisfy the equation.
(b) By expanding the determinant in a suitable way, show that the equation
has the form Ez? + Ey*> + Fx + Gy + H = 0, where E # 0. (c) Explain
why the graph of any equation of this form is a circle or a single point or the
empty set. (By (a), though, the graph is not a single point or empty, so it’s
a circle.)
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KK-12. (a) (A high-school problem) Inscribe a triangle in a semicircle of
radius 1 so that one side of the triangle is the diameter of the circle. What
choice of the third vertex of the triangle minimizes the area outside the
triangle? (b) (The relevance for us) Given a fixed base PQ for a triangle and
specified area A, describe the set of all points R for which the triangle PQR
has area A, and say what this answer has to do with A(P,Q, R).

KK-13. (a) If you are looking at two points P and @ from a point R and
A(P,Q, R) > 0, is @ to the right or to the left of P, as seen from R? (b) In
R?, is Q to the right or to the left of P as seen from R, where P = (2,3),
Q=(3,4), R=(8,6)?

KK-14. Show that if P, Q, R are three points in R?, then A(P, Q, R) equals
the third component of the cross product in R? of (P — R, 0) and (Q — R, 0).
(Use properties of determinants.)

KK-15. For points in R?, suppose we write A(P,Q, R,x) = ax + by + cz +
d. The corresponding normal vector to the plane through P, @), and R is
(a,b,c). To see if this normal vector is slanted up (so that the “positive
half-space” is the half-space above the plane rather than below), we need to
check that ¢ > 0. The problem: Show that ¢ = —A(P, @, R), where P, Q,
R are orthographic projections on the z,y-plane. (Method: Expansion by
cofactors.)

KK-16. Show that it is not possible to have exactly three of the four numbers
A(P,Q,A), A(P,Q, B), A(A, B, P), A(A, B,Q) be zero.

KK-17. (a) Consider the three line segments AB, CD, EF, where A =
(4,1), B = (1,6), C = (4,4), D = (3,2), E = (3,5), F = (2,4). Find
explicitly the corresponding affine functions from the two-point form. (Give
coefficients numerically.) (b) Using (a) determine which pairs among these
line segments cross. (There are three possible pairs to consider.) (c) Find
the points at which the pairs you listed in (b) cross.
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KK-18. In Case 2 of §5, list as many different ways as possible for how
the four numbers A(P,Q, A), A(P,Q, B), A(A, B, P), A(A, B, Q) could be
negative, zero, or positive. Make a sketch to illustrate each way. To eliminate
some cases that are similar to others, assume that A(P,Q, A) < A(P,Q, B),
that A(A, B, P) < A(A, B, Q), that A(P,Q,A) < A(A, B, P), and that not

all four numbers are zero.

KK-19. Explain explicitly step-by-step how a computer could determine
whether the line segments AB and P() intersect, where A = (—10,0), B =
(30,2), P = (50,3), Q = (10,1).

KK-20. Is the point P = (6,5) inside the non-convex polygon with vertices
A= (7,5.5), B=(9,4), C = (7,8), D = (5,4.5), E = (3,6), F = (5,2) (in
order)?

Do this problem twice, by using Method #1 and then Method #2 of §8.
(For this particular polygon and choice of P, all angles should come out to
be multiples of ;.)

KK-21. If line segments AB,CD in R? are viewed from above at infinity ,
does one appear to pass above the other, and if so, which, where A = (1, 2,0),
B=(4,-1,3),C =(4,1,1), and D = (3,—1,2)? Use a method suitable for
a computer.

(Suggested: First determine whether the projections of AB, CD on the x, y-
plane cross. If they do, then use the same t,u for the original segments to
find the two points that appear to the viewer to be on top of one another.
See which of the two points has the greater z-value.)

KK-22. Consider any line L in R?. Designate the half-plane on one side as
“positive” and the other half-plane as “negative”. The corresponding signed
distance function D(zx,y) is simply the perpendicular distance of (z,y) from
L if (z,y) is in the positive half-plane, or minus that distance if (z,y) is in
the negative half-plane. The signed distance function ought to be an affine
function defining L. Is it? (To see, start with any affine function defining L
and scale it, using Observation 6 of §3.)
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KK-23. Proposition. The distance of the point (x,y) from the line with
£ ar+ by +c

equation ax + by 4+ ¢ = 0 is the absolute value of ———=—.

a Y Va2 + b?
Prove this proposition by using Observation 6 of §3. (The fraction is an affine
function. What is the length of its normal?)

KK-24. In R? consider the triangle PQR, with P = (8,1), Q = (3,6),
R = (13,11). Find the barycentric coordinates of these points: @ itself,
A=(8,6), B=(54),C=(9,7.5).

KK-25. Sketch a triangle PQR in the plane. (a) Indicate on it the point
with barycentric coordinates (3,0, 3)pary and the point with (0, 1, 2)pary. (b)
Indicate all points with ¢ = 1. (c) Indicate all points with c; = .25 and all

points with ¢3 = .75.

KK-26. Show that barycentric coordinates in a triangle are invariant un-
der translation, and in fact are invariant under any affine transformation.
(Method: Starting from a relation S = ¢; P+ ¢o@Q +c3R with ¢; +co+ ¢35 = 1,
apply an affine transformation 7'(x) = xA + b and see if the same relation
holds between the image points P', @', R, S’, where P' = T'(P) and so on.)

KK-27. Prove Proposition 3 of §9. (Method: Given S, write S — R as a
linear combination of the linearly independent vectors P — R and () — R.)

KK-28. Prove Proposition 5 of §9. (Take the vector equation ¢; P + ¢oQ +
csR = S and write it as two equations, one for each coordinate. Then with
the equation ¢; + ¢ + ¢3 = 1, you have three equations in three unknowns.

Use Cramer’s rule to solve them, and show that you get the result wanted.
Use the fact that det A = det A”.)

KK-29. Take a triangle PQR such that A(P,Q,R) > 0. For each point
in the plane, each of the three barycentric coordinates could be < 0, = 0,
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or > 0, making 3 -3 -3 = 27 conceivable outcomes. Break the plane into
regions (some of which could be single points or pieces of lines) based on
outcomes that actually occur. How many regions are there (twenty-seven, or
some smaller number)? Make a sketch with labels for each of your regions.

KK-30. Invent barycentric coordinates for a tetrahedron in R® and state
facts similar to those in §9.

KK-31. Describe in detail an algorithm to draw the pattern shown in Figure
6. Here P = (1,1), @ = (5,3), R = (3,6).

R

P
Figure 6: A pattern of telescoping triangles

KK-32. Describe in detail an algorithm to draw the pattern shown in Figure
7. Assume that you have a plotting package that will draw a circle if you tell
it the center and the radius.
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Figure 7: A pattern with circles

KK-32. Is the point (6,8) inside the triangle with vertices (6,7), (3,4),
(7,10)? Use a method suitable for a computer.
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