Math 149 Wo02 H.

Affine transformations, Part 1

In most practical problems, you need transformations that are like homo-
geneous linear transformations except that they can move the origin. These
are the affine transformations.

1. Translations

Definition. A translation is a transformation 7 : R" — R" of the form
T(x) =x+ b, where b is a fixed vector.

Ezxample. T(x) = x+ (1,2). (See Figure 1.)

Figure 1: A translation

Observe that because a translation moves the origin, it is definitely not a
homogeneous linear transformation (unless b = 0).

2. Affine transformations

Definition. T : R" — R" is an affine transformation if T is a homogeneous
linear transformation followed by a translation. In other words, there are a
matrix A and vector b such that 7'(x) = x4 + b for all x.

Ezample 2.1 . T'(x) = x[ g le ] + (5, —1).

In other words, T'(z,y) = (2z + 3y + 5,z + 4y — 1).
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Ezample 2.2 . Any translation: T(x) = x + b (the case A =1I).

Ezample 2.3 . Any homogeneous linear transformation 7'(x) = xA (the case
b =0).

Ezample 2.4 . A rotation about an arbitrary center in R?, say by 90° about
the center (2,1). (It will be explained later how to represent such a rotation
as affine. Another example is a rotation about an arbitrary axis in R?.)

Ezample 2.5 . A reflection in an arbitrary mirror line in R?, say in the mirror
z +y = 2. (It will be explained later how to represent such a reflection as
affine. Another example is a reflection in an arbitrary plane mirror in R3.)

Example 2.6 . If you want to transform world coordinates with a window
—2 < Zyorta < 6 and —1 < Yyoria < 5 to device coordinates with 0 <
Zger < 400 and 0 < yge, < 300, you can see by fiddling that the appropriate
conversion is Zgey = 50(Zwortg +2) and Ygey = 50(Yworia+ 1)- This is the same
500 500 + (100, 50). (For more
complicated problems of this kind it will be better to use affine transformation
methods directly.)

as the affine transformation Xg., = Xworid

Ezxample 2.7 1f one affine transformation is followed by another, the result
(their composition) is still affine: If T(x) = xA + b and U(x) = xC +d,
then T(U(x)) = (xC +d)A+ b =x(CA) + (dA + b), the form of an affine
transformation. (Notice that dA + b is constant. The resulting composition
is called T o U.)

Remarks 2.8

(1) In the definition of an affine transformation, it is important to realize
that in the expression xA + b, the homogeneous linear transformation
is applied before the translation. If you did the translation first, you
would be evaluating (x+b)A, which equals xA +b’ for b’ = bA. Thus
the result is affine but is not the same affine transformation.

(2) In a transformation 7'(x) = xA+Db, let us call A the homogeneous part
and b the translational part. Almost all of the possible complexity is
in the homogeneous part: The determinant of A tells the expansion
factor for T, T is one-to-one if A is nonsingular, and so on. Thus
affine transformations are easy to understand if you already know the
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properties of homogeneous linear transformations. This is why linear
algebra courses usually do not mention affine transformations.

3. Extended matrices

For a vector x = (z,y), the corresponding eztended vectoris x = (z,y,1).
For an affine transformation 7' : R* — R? given by T(x) = xA + b, the

R [ ap; aiz 0 -‘
corresponding extended matriz is the 3 X 3 matrix A = | a1 ay 0 | =
[ by by 1 J
A0
o)

As you see, A contains all the information needed for T'. A key observation
is that if you use extended vectors and matrices, affine transformations can
be computed with just a single matrix multiplication:

R aj; ajp 0
XA = (z,9,1)| an az 0 | = (aux + any + b1, 0120 + agy + by, 1) =
by by 1
(xA+Db,1) =T(x)".

Application 3.1 . If you have a matrix multiplication routine, you can use it
directly to compute affine transformations. For example, for T" as in Example

2 1 0
2.1, T'(7,8) can be found by computing (7,8,1) 3 4 0 [ = (43,38,1),
5 —1 1

so T'(7,8) = (43, 38).

Application 3.2 . It T and U are composed as in Example 2.7, then CA gives
the extended matrix for 7o U. (Here A is the extended matrix for 7" and C'
for U.)

Application 3.3 . If T has extended matrix A then the inverse transformation
T~' has extended matrix A~" (if A is invertible).

Example. Find the extended matrix for the rotation by 90° about the center
(2,1).

Solution. Use the three-step method of moving to an easy location (mov-
ing the center to the origin), rotating by 90°, and then moving back. The
middle step is a homogeneous linear transformation, so its extended matrix
has a zero translation part. The first and third steps are translations, so
their homogeneous part is I. Thus the answer is
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[1 00”0 10”1001 [0 101
0 1 0 -1 0 0 01 0l=!-1 00

[—2 ~1 1“0 01H211J_[3 -1 1J'

(Notice that in the three-step method it is most natural to find the third
matrix first, the one that takes the easy position to the harder position. The
first matrix is the inverse of the third. Here, where the first and third are
translations, the inverse is obvious.)

4. Affine transformations in three dimensions

Everything works exactly the same: For x = (z,v, 2), X is (z,y, 2,1). The
extended matrix of an affine transformation 7 : R®> — R? is 4 x 4.

Application 4.1 . Rotations in R® about axes that do not go through the
origin.

Application 4.2 . Reflections in R? in plane mirrors that do not go through
the origin.

5. Preservation properties

First, recall that if T is a homogeneous linear transformation then T
preserves linear combinations: T'(rv + sw) = rT(v) + sT(w). In fact, a
transformation 7 : R" — R"™ is homogeneous linear if and only if T" preserves
all linear combinations.

Affine transformations do not preserve usually linear combinations. For
example, if T is a translation, given by T'(x) = x + b with b # 0, then
T(3v+iw)=iv+iw+b, but T(v)+ i1T(w) = 3(v+b)+ 1(w—+b) =
v+ 2w+ 2b, not the same thing.

However, there is one kind of linear combination that is preserved:

Theorem 5.1 . Affine transformations preserve linear combinations in which
the sum of the coefficients is 1.

Summary of proof. First check the case of a translation. Then combine
that case with the case of a homogeneous linear transformation to get the
conclusion for all affine transformations.

5.2 . Examples of such linear combinations:

(a) 3v + sw, the average of two vectors v and w.
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(a*) 1P + 1@, the midpoint of the line segment joining two points P, Q.
(Remember that points and vectors are essentially the same thing: pairs of
numbers, or triples of numbers, etc.)

(b) (1 —1)P +tQ for 0 <t < 1, the line segment joining P and Q.
(b*) (1 — t)P + tQ for all ¢, the whole line through P and Q.
(c) P-Q+R.

Corollary 5.3 . An affine transformation takes line segments to line segments
and lines to lines, if it is nonsingular. (If it is singular, it can take a line to
a point.)

Actually, Corollary 5.3 can be improved to an “if and only if” statement,
i.e., a & statement, in the nonsingular case:

Theorem 5.4 . A one-to-one transformation 7 : R® — R takes lines to lines
< T is affine and nonsingular.

(The proof of the “=" direction is quite difficult.)

6. Problems

Problem H-1. (a) Write down the extended matrices of (i) a translation by
b in R? and (ii) the homogeneous linear transformation x — xA where A is
2 x 2.

(b) Multiply matrix (i) by matrix (ii). Do you get A?
(c) Multiply matrix (ii) by matrix (i). Do you get A?
This problem shows how to write the extended matrix of an affine transforma-
tion as the product of the extended matrices of its constituent homogeneous

linear transformation and translation. Notice that it matters in which order
you do the two constituents!

Problem H-2. Pick two examples of translations in R? and multiply their
extended matrices in both orders. Does the order make a difference in this
case?

Problem H-3. Suppose T : R? — R? is given by
T(xz,y) =Bz +4y+ 7,2 — 2y + 5). Find the extended matrix of 7.

Problem H-4. Show that if you take the product of two extended matrices,
the product of their homogeneous parts gives the homogeneous part of the
answer.
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Problem H-5. Actually, it makes sense to consider an affine transformation
between spaces of different dimensions, 7" : R" — R™, of the form 7' (x) =
xA + b.

(a) What are the sizes of A and b, in terms of m and n?

(b) Describe the extended matrix of 7.

(c) Explain how a linear function such as f(x,y) = ax + by + c is really affine.
(

d) In fact, explain how the equation of a line y = mxz + b is really affine.

Problem H-6. Suppose that T : R™ — R" is an affine transformation.
(a) Show that U given by U(x) = T(x) — T'(0) is a homogeneous linear
transformation. (b) How can you find a matrix for U in terms of the extended
matrix for 777

Problem H-7. (a) Prove Theorem 6.1. (b) Prove the Corollary to Theorem
6.1.

Problem H-8. Let 7 : R? — R? be the affine transformation given by
T(x) =xA+b.

(a) Suppose L is a line with parametric equation x = P + ¢tv. Show that
T(L), the image of L when transformed by 7', is again a line, the line through
T(P) with direction vA, unless vA = 0, in which case T'(L) is a single point.

(b) Show that if L and L' are parallel lines (or the same line), then 7T'(L)
and T'(L') are either parallel lines or the same line or two points or the same
point.

Problem H-9. Are (a) and (b) of Problem H-8 valid for 7 : R" — R"? For
T:R™—R"?

Problem H-10. Suppose that P,Q, R lie on a line in R?, and suppose that
T : R’ — R? is affine. Let P' = T(P), Q' = T(Q), R = T(R). Show that
the ratio of the lengths of the line segments PQ and PR is the same as the
ratio of the lengths of the line segments P'Q)' and P'R'. (Assume P # R.
Suggestion: Use the parametric equation of the line, with ¢ = 0 at P and

t=1at R.)

Problem H-11. Suppose T : R* — R? is given by 7'(x) = xA + b. (a)
Write down and expand an expression for T%(x), or in other words,
T(T(T(T(T(T(T(T(x))))))))- (Not too pretty.)

(b) In contrast, if A is the extended matrix of T, what expression in terms
of A gives the extended matrix of T8?
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(c) Find the extended matrix of T7° if T(z,y) = (y + 1,2 + y). (Use (b) and
the idea A% = ((A%)?)%)

Problem H-12. If A is an invertible 2 x 2 matrix and b is a vector, give an
A 0O

b 1 } . Do this problem three ways:

expression for the inverse of A = [

(a) by writing down another block matrix C, with unknown pieces, and seeing
what the pieces have to be in order to have AC = I (if possible working with
matrices in blocks instead of writing individual entries);

(b) by writing y = xA + b and then solving for x and seeing what affine
transformation you have in terms of y;

(c) by writing A as the product of the extended matrices of the constituent
homogeneous linear transformation and translation (as in Problem H-1) and
then inverting.

A7t o
(d) A naive person might think that the inverse should be [ b1 :| Is
it? (Here we write 0' instead of O to emphasize that 0 has been made into a
column vector from a row vector.)

Problem H-13. Suppose T : R" — R" is an affine transformation, 7'(x) =
xA + b. (a) Show that A and the extended matrix A of T have the same
determinant. (Therefore if we say “the determinant of 7” there is no ambi-
guity.)

(b) Explain why both the absolute value and the sign of the determinant of A
have the same interpretations as for the homogeneous linear transformation
determined by A.

Problem H-14. Find the affine transformation on R?> — R? that gives a
rotation of 60° counterclockwise about the center (1,1). (Give explicit matrix
entries.)

Problem H-15. Find the image of the origin under the affine transformation
on R? — R’ that gives a rotation of 90° clockwise about the center (3,4).
(Give explicit vector entries.)

Problem H-16. In R?, let P be a point that is not the origin, and let T be
the translation that moves the origin to P. This problem contrasts different
ways of combining rotations and translations.

(a) What matrix expression describes the rotation by angle # with center P?
(Use the three-step method, involving Ry and T. Leave your answer as a
matrix product.)
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(b) What matrix expression describes T followed by the rotation of (a)?

(c) What matrix expression describes a rotation by an angle 6 about the
origin, followed by the translation 7'?

(d) What matrix expression describes performing 7" and then rotating about
the origin?

(e) Take 6 to be 45° and P to be (2,1). Make a rough sketch, as follows.
Draw axes and a scale of perhaps one unit = one inch. Draw the two standard
basis vectors starting from the origin. Then for each of (b), (¢), (d), indicate
the images of the standard basis vectors under the transformation described.
Be especially careful in (d).

Problem H-17. Find the affine transformation on R?* — R? that gives a
reflection whose mirror is the line y = 5. (To move the line to the origin, you
can move any point on the line to the origin.)

Problem H-18. For a rotation in R? about an arbitrary center as in §3, is
the extended matrix necessarily a rotation matrix?

Problem H-19. An affine transformation 7" : R" — R" is said to be rigid
if it preserves distances. Show that an affine transformation is rigid < its
homogeneous part is an orthogonal matrix.

(Method: Since T is affine, one can write (i) 77 = H o U, where H is the
homogeneous part of 7" and U is the translation; then also (ii) H = ToU™'. A
translation is certainly rigid, the inverse of a translation is a translation, and
the composition of two rigid transformations is rigid. Use these principles
with (i) to show <, and with (ii) to show =.)

Note. If the affine transformation preserves orientation as well as being rigid,
then the homogeneous part will have positive determinant and so will be a
rotation.

Problem H-20. (a) Prove that if A is an n X n matrix with no nonzero
fixed vector (i.e., no nonzero x with xA = x), then I — A is invertible. (For
a method, combine these facts from linear algebra: Having a nonzero fixed
vector is the same thing as having 1 as an eigenvalue. The eigenvalues of
I — A are the numbers 1 — X for eigenvalues A\ of A. If 0 is not an eigenvalue
of a square matrix, then the matrix is invertible. Assume A has real entries.
Although A could still have complex eigenvalues and eigenvectors, in this
problem it’s enough to deal just with real ones.)

(b) Use (a) to prove this fact: For an affine transformation 7'(x) = xA + b
in R", if the homogeneous part A has no nonzero fixed vector, then 7" does
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have a fixed vector, and it is unique. In other words, if A has just one fixed
vector (the origin), then so does T. (Method: If c is a fixed vector of T,
find a formula for ¢ in terms of A and b. For an application, see the next
problem.)

Problem H-21. As you know, a rotation about the origin in R" is the
same thing as a rigid homogeneous linear transformation (i.e., orthogonal
transformation) that preserves orientation (i.e., has positive determinant).
For affine transformations, a rotation about any origin is rigid and preserves
orientation, but any translation also has these properties.

(a) Show that in R?, these are the only possibilities. In other words, a rigid
affine transformation in R? that preserves orientation is either a translation
or else is a rotation about some origin. (You may use the results of Problem
H-19.)

(b) In R?, give an example of a rigid affine transformation that is neither
a translation nor a rotation about some axis. (Think in terms of Problem
H-19, where the condition about the homogeneous part now fails. What if
the translational part is along the axis of the homogeneous part?)

Problem H-22. Show that if P is a 2 X 2 rotation matrix and is ngt the

t
identity matrix, and if P™ = I, then for any vector b, also [ ]; 91 } =1.

(Method: View the second matrix as the augmented matrix of an affine
transformation and use (a) of Problem H-21.)

Problem H-23. Find the affine transformation that represents a rotation
in R? about an axis going through the points P = (2,3,4) and Q = (3,4, 5),
90° counterclockwise as viewed from () looking towards P. Leave the answer
as a product of matrices with explicit entries, but compute any inverses.
(Method: Transform the axis to an easy position; rotate; undo.)

Problem H-24. Stand balanced on one foot. Using your heel as a center,
turn your shoe by any nonzero angle . Then using your toe as a new center,
turn your shoe by an angle —26. Then using your heel as a new center
again, turn by an angle §. What has happened? What does this have to do
with affine transformations? (Do this problem experimentally, not by writing
formulas.)

Problem H-25. (a) Give an example of two rotations in R?, about different
centers, whose composition is a translation (by a non-0 vector). (b) How
can this idea be used if you need to move a heavy four-legged table across a
room, by yourself?
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Problem H-26. Here is a problem that sometimes arises in Engineering:
You have a solid object, such as a rectangular plate. You want it to be
able to move smoothly between two positions in space, the initial and final
positions. Maybe this can be accomplished by a rotation or maybe not, but
suppose it can be, for these two particular positions. The axis might be
somewhere else in space away from the object, or it might go through the
object. How can the axis be found geometrically?

(Here is an idea that may suggest a solution: Suppose A is one point on the
object in its initial position, and 7'(A) is the final position of the same point.
Let P be any point on the axis. Since a rotation is rigid, A and 7'(A) have the
same distance from P. Think of this the other way around: P is equidistant
from T(A) and A. Therefore P is on the plane that perpendicularly bisects
the line segment from A to T'(A).)
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