next up previous
Next: e_htls Up: e_htls Previous: e_htls

5. Special matrices
(i)
The $ n \times n$ identity matrix $ I =
\left [\begin{array}{cccc} 1&&&\\  &\cdot&&\\  &&\cdot&\\
&&&1 \end{array} \right ] $ (other entries 0)



(ii)
The $ m \times n$ zero matrix O (all entries 0)



(iii)
scalar matrices $ \left [\begin{array}{cccc}
r&&&\\  &\cdot&&\\  &&\cdot&\\  &&&r \end{array} \right ] =
rI$



(iv)
diagonal matrices in general, $ \left
[\begin{array}{cccc} d _ 1&&&\\  &\cdot&&\\  &&\cdot&\\  &&&d
_ n \end{array} \right ] $



(v)
rotation matrices, representing a rigid motion that preserves orientation;



(vi)
reflection matrices, whose corresponding transformation gives a reflection in some ``mirror'' through the origin. In R$ ^ 2$, the mirror will be a line, and in R$ ^ 3$, the mirror will be a plane.



(vii)
shear matrices, by which we'll mean matrices that are the same as $ I$ except that in some row one or more nondiagonal entries can be nonzero. Example: $ \left
[\begin{array}{cc} 1&3\\  0&1 \end{array} \right ] $.



Kirby A. Baker 2002-01-10