Math 149 W02 B.

Review notes for vectors

We shall be interested principally in two and three dimensions.

1. Notation

A triple of numbers (z, y, z) can be viewed as a point in three-dimensional
space, in which case we’ll usually write P = (z, vy, z). It can also be viewed
as a vector x or v, in which case we’ll often write x = (z,y, z). We may also
write x = (1, x2,23), especially when talking about computer algorithms.
Another alternative is x = [ T Yy z ] We’ll emphasize row vectors, as
most computer graphics texts do, rather than column vectors, as many linear
algebra texts do. Therefore generally we consider a column vector as the
x

transpose of a row vector and write x* = | y |. Vectors may be drawn
z

starting from any point, rather than just from the origin.

R? = the set of all triples = “real 3-space”. We usually picture R? in the
way you are used to, with the z,y-plane horizontal and the z-axis vertical.
Sometimes in computer graphics it is better to use other positions, though.

Notation for R? and R" is similar. Usually R? will be used in examples when
the dimension doesn’t matter.

In R?, the vectors i,j,k are (1,0,0),(0,1,0),(0,0,1), as usual. In R? i =
(1,0) and j = (0,1).

Notice that if x = (z, v, 2), then x = zi+yj+ zk. For this reason, the entries
x,1y,z can be called the components of x, or the coordinates of x, or the
coefficients of x. This equation also illustrates how every vector is a linear
combination of i, j, k (uniquely). Thus i, j, k are a basis for the vector space
R?, called the standard basis. In R" for general n, we write the standard
basis as e, ..., e so that in R® we have eV =i, e® =j, e® =k.

2. Vectors

Vectors have length and direction. Often, we’ll be using a vector v to
indicate a direction, and will talk of “the direction v”. The length or norm
or magnitude of v is |v| or ||v||.

If u has length 1, it is a unit vector. If v is any nonzero vector, then
u= % is a unit vector with the same direction as v, and u is said to be
obtained by normalizing v. Here the word “normal” means “of length 1”.

Be careful—the word “normal” is also used to mean “perpendicular”.
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A unit vector is often used to describe a direction. Its components are
sometimes called its direction cosines, for a reason explained under C.

Addition and subtraction of vectors are performed “coordinatewise”. So
is multiplication of a vector by a scalar.

Handy: If P and @ are points, the vector from P to ) is Q — P.

3. Lines

We usually represent lines in parametric form: x = P, + tv, where P, is a
fixed point, v is a fixed vector giving the direction, and ¢ is a parameter,
which we can regard as time.

T=p+at
This is the same as saying (in three dimensions) ¢ y = g + bt
z=r+ct

where Py = (p,q,r) and v = (a, b, ¢).

4. The dot product

The dot product or scalar product or inner product of vectors v and w
(say in R®) is viw; + vaws + vsws, denoted v - w. In geometrical terms,
v-w = |v||w|cosf, where 6 is the angle between v and w. The dot product
makes sense in R" for any n.

The dot product has many uses:

(1) v =(v-v).

(2) v L w precisely when v-w = 0. (The zero vector 0 is considered to
be perpendicular to all vectors.)

(3) The angle § between two nonzero vectors v and w in R" satisfies cos =
%. Notice, though, that cos® = cos(—0), so the sign of 6 is not
determined by the dot product, even in R?, where it is natural to say

a counterclockwise angle is positive and a clockwise angle is negative.

(4) By (3), if v-w > 0 then the angle between the vectors is between 0°
and 90° in absolute value; if v-w < 0, the angle is between 90° and
180° in absolute value.

(5) i-v,j-v,k-v are the components of v, so v=(i-v,j-v,k-v).

(6) The dot product of two unit vectors is simply the cosine of the angle
between them.
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(10)

By (5) and (6) together, you can see that the components of a unit
vector u are the cosines of the angles that u makes with i, j, k, or in
other words, the cosines of the angles that u makes with the z-, y-,
and z-axes. For this reason the components of a unit vector are called
direction cosines.

In a matrix product AB, each entry of AB is the dot product of a row
of A with a column of B.

Let v, w be vectors in R", written as row vectors. Then w' is a column
vector. The matrix product vw? makes sense and its value is a 1 x 1
matrix, which is the same thing as a scalar. By (8), this scalar is just
v -w. To summarize: v-w = vw'.

In R?, the equation of the plane through the point Py = (z0, %0, 20)
with normal N = (a,b,¢) is N - (x — Fy) = 0, or equivalently,

a(x — x0) +b(y — yo) + ¢(z — 29) = 0, or equivalently,
ax + by +cz+d =0, where d = —IN - Py.

Similarly, in R?, the equation of the line through the point Py = (z0, o)
perpendicular to the vector N = (a,b) is a(z — x¢) + b(y — o) = 0.
However, usually we deal with lines parametrically, as in §3.

Note: For clarity, in this course let’s try to use n when we mean a unit normal
and N when we mean a normal of any nonzero length.

5. The projection of a vector on a line

Suppose a vector v is projected onto a line.

Figure 1: A vector projected onto a line

The direction of the line can be expressed two ways: By giving a unit
vector u along the line, or by giving an arbitrary nonzero vector w along the

w

line, in which case we can take u = W
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(1) The length of the projection of v on the line is |v|cosf = v - u, where

a negative sign means that the projection has direction opposite to u.
VW

The length can also be expressed as W

(2) The vector projection of v on the line is therefore (v-u)u (scalar times

vector). This vector projection can be called the vector component of
v in the direction of the line.

(3) If the direction of the line is expressed with an arbitrary nonzero vector

(VW)W VW
Wiz O ww W

w, the vector projection of v on the line becomes

(4) The vector component of v perpendicular to the line is just v minus
the vector component along the line, so it is equal to v — (v - u)u or

Vo wwW

(5) A plane is described using a normal N or unit normal n. The vector

component of v perpendicular to the plane is (v-n)n or I‘VIIIV\TN and the
vector component of v along the plane (i.e., the projection of v on the
plane) is v—(v-n)n or v— %N These sound the other way around
from (3) and (4) because N is already perpendicular to the plane.

6. The cross product

The cross product or vector product of v.and w, denoted v X w, is defined
only in R3. Geometrically, v x w is a vector with direction perpendicular to
v and w, of length |v||w]||sinf| (the area of the parallelogram with sides v
and w). So far, this description fits two vectors (if the length is nonzero), one
the negative of the other. If vectors are drawn from the origin, v x w is the
one from whose end w appears to be counterclockwise from v. To remember
this relationship, just remember that i x j = k, and relate that picture to
your v and w. Algebraically,

wa:(det[vz vs},_det[vl }dt[ D
Wy W3 w1 W3 w; w2

(or you can write the middle term as det [ :;3 Zjl ], so that the three co-
3 Wi
ordinates change cyclically without a minus sign). There is an easy way of
i j k

remembering these relations: Use v x w =det | v; vy w3 | and expand
wp Wo Ws

by cofactors of the first row. This doesn’t make very good sense mathemat-

ically, as you usually don’t take determinants of matrices with vectors as

entries, but it is handy as an aid to remembering.
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Cross products have several uses in this course:

(1)

(2)
(3)

They are just what is needed to find a vector perpendicular to two
given vectors in R3.

_ [vxw|
VW -

The angle @ between two vectors v, w in R? satisfies |sin 0|

For vectors in R?, let us denote by D(v,w) the useful determinant

D(v,w) = det [ UL ]

wr Wa
If you make v, w into vectors in R® by giving each a third component
of 0, their cross product becomes (0,0, D(v, w)). Thus in R?, it is easy
to compute the cross product of two vectors in the z, y-plane, and the
result lies along the z-axis.

Two nonzero vectors have the same direction if and only if their cross
product is 0. (If they are drawn from the origin, this would mean they
lie along the same line.)

In R?, the area of the parallelogram with sides given by v and w is
A= |D(v,w)|.

In (3), the cross product of v, w in R? (or better, in the z,y-plane of
R?) points up in R? if w is counterclockwise from v and down if w is
clockwise from v. Thus in R?, w is counterclockwise from v precisely
when D(v,w) > 0.

In R?, the sine of the angle # between two vectors is given by

D(V,W)
[viw] -

sin f does distinguish between positive and negative #, but notice that
sin 80° = sin 100°, for example, so sinf is not enough information to
determine € uniquely.

sinf =

7. Signed angles between vectors in the plane—a prac-
tical guide

In R?, given two vectors v, w at the origin, in talking about the angle @
between them you might as well allow only values 0 < # < 7, because the
same angle can look clockwise or counterclockwise when seen from different
directions. To find 6, it’s enough to use the dot product, which works in R"
for any n. As in Section 3 above:

(1) cosf = v

M
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In R?, though, it makes sense to ask for § with a sign. # > 0 means a
counterclockwise angle and # < 0 means a clockwise angle. Possible values
would be —7 < # < 7. This time dot products alone are not enough, because
with cosines you can’t tell the difference between # and —#6; for example,
cos(—30°) = cos 30°.

You might at first consider using sin f instead. In fact, there is a corre-
sponding formula, as noted in section 5 above:

(2) sinf = D(v,w)/|v||w|, where D(v,w) = det [ UL ]
w1 Wo

However, with sines you can’t tell the difference between 6 and 7= — 6; for
example, sin 30° = sin 150°.
What about the tangent function? From (1) and (2) we would get

_ sin _ D(V,W)
(3) tanf = 25 = ~—w
where the denominators have been canceled. But the tangent has a similar
problem: it can’t distinguish between 6 and 6 + 7.

One way to get an exact # would be to use two trig functions. Since you're
solving for # you would use two of the arc functions, which in C and C++
are acos( ), asin( ), and atan( ). The first would give you an angle in a
specific range such as 0 < # < 7 for acos( ), and then you would use the
second to change the angle if warranted (say, negating the angle if asin( )
is negative).

Fortunately, though, there is a single function in C and C++ that is designed
expressly for this kind of application: the atan2(y,x) function. This func-
tion finds arctan 2 while paying attention to whether z and y are positive,
negative, or zero; it returns a value between —7 and 7, as desired. It works
even if the denominator x is zero!

Thus in C or C++ (using subscripts 0,1 for 1,2), you can find 6 by
(4) theta = atan2(v[0]*w[1]-v[11*w[0], v[0]*w[0l+v[1]1*w[11);
There will be an error if both arguments are zero.

Note. In some versions of C and C++ this function may be built in; in
others you may need to use #include<math.h> and to compile with a flag
-1m. This kind of function is also available in other languages, but check
which argument is for x and which for y.
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8. Problems

[not to hand in unless assigned|

Problem B-1. Suppose P,Q, R, S are vertices of a parallelogram in R?,
with the line P(Q) parallel to RS and SP parallel to QR. Find an algebraic
expression for S in terms of P, @), and R. (Notice that if P, @), R are given,
there’s only one possible place for S.)

Problem B-2. Find the equation of the plane through points P = (1,2,1),
Q=(3,4,3), R=(2,2,3) in R®.

Method: Find the plane through P with normal (Q — P) x (R — P).

Problem B-3. Find the angle between the planes z + 2y + z = 0 and
3x+y+2=0.

Method: Find the angle between their normals. The angle between two
planes can be looked at so that 0 < 6 < 90°, so adjust your answer if
necessary to achieve this.

Problem B-4. Find the line of intersection of the two planes in the preceding
problem.

Method: The line wanted is perpendicular to both normals and goes
through the origin.

Problem B-5. Find the line of intersection of the two planes x+2y+2z—3 = 0
and 3z +y+2—4=0.

Method: The line wanted has the same direction as in the preceding
problem, but does not go through the origin. To find a point on the line,
one way is to pick an arbitrary value for one of x, y, and z and solve the
resulting two-variable equations simultaneously to get values for the other
two variables.

Problem B-6. In R?, find the cosine of the angle between the lines 3z +
4y+7=0and 443y —2 = 0. (Do like the similar problem above for planes
in R%.)

Problem B-7. If P, (), R are as in Problem B-2, are the points A, B on the

same side of the plane through P, @, R, where A = (1,2,3) and B = (1,2,5)?

Method #1: Find the equation of the plane in the form ax +by +cz+d =0,
and see whether the left-hand side has the same sign when evaluated at A
and at B.
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Method #2: Let N = (Q — P) x (R— P) and see whether the angles between
A — P and N and between B — P and N are both between 0° and 90° or
both between 90° and 180°.

Problem B-8. Find the vector projection of v = (1,1,1) on the line in the
direction of w = (1,2,2).

Problem B-9. Find the vector that is the projection of the vector v =
(1,1,1) on the plane x + 2y + 2z = 0.

Problem B-10. Find the signed angle between (1,2) and (2, —1) using the
method of §7. For atan2, just evaluate it as a computer would.

B8



