Math 117 S04 SOLNSG.
Solutions to Assignment #6

p- 133, Ex. 10: By the definition of characteristic, 1 +1+---+1 (p times)
= 0. Then for any ¢ in F, a(1 +1+---+ 1) (p times) = a0 = 0. By the
distributive law (extended by induction to more terms), this is the same as
a+a+---+a (ptimes) = 0.

Note: The same kind of calculation applies in a vector space V over F: By
the property (r 4+ s)v = rv + sv, extended by induction to the property
(ri+-+rg)v=rw+---+rw, we have (1+1+---+ 1)v = 0v = 0 (the
zero vector) and also (1+1+---+1)v =v4+v+---+v,s0v+v+---+v =0,
where each sum mentioned has p terms.

p- 200, Ex. 9: Notice that these are examples in which the moduli are not
coprime.

In these solutions, a couple of times we’ll need the principle that if z = a

(mod m) then x = a modulo any divisor of m. For example, 43 = 13
(mod 10) so 43 = 13 (mod 5) as well ince 5|10.
z= 11 (mod 15)
For (i): We are to solve ¢ z= 8 (mod 18) . The solution, if any, will
r= 6 (mod 10)

be unique modulo the lcm of the three moduli, which is 90.

r= 15u + 11
r= 18 + 8~
Subtracting gives 15u + 11 — 18t — 8 = 0 so 15u — 18t = 8 — 11 = —3 as
in (3) on p. 199. Since ged(15,18) = 3 and 3 | — 3, this is possible to solve.
The simplest way is to divide through by the ged, giving 5u — 6t = —1, or
—5u + 6t = 1. This is now “coprime Bezout”; we can solve it by eye using
u=1,t=1. Then x = 15-1411 = 26 solves the first two equations, modulo
lem(15, 18) = 90.

First let’s solve the first two, by trying to find u, ¢ with {

26 (mod 90)

6 (mod 10)
in the preceding paragraph—but instead, notice that one modulus divides
the other, so if there is any solution, z = 26 (mod 90) is it. And yes, this
x does solve the second congruence. To summarize: The original system of
simultaneous congruences has solution z = 26 (mod 90).

. We could use the same method as

Now let’s solve

zr= 6 (mod 12)

For (ii): We are to solve ¢ = 3  (mod 15) . The solution, if any, will
x= 18 (mod 20)

be unique modulo the lcm of the three moduli, which is 60.
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r= 12u + 6
x= 15t + 3 °
Subtracting gives 12u +6 — 15t — 3 = 0 so 12u — 15t = 3 — 6 = —3 as in
(3) on p. 199. Since ged(12,15) = 3 and 3 | — 3, this is possible to solve.
Dividing through by the ged gives 4u — 5t = —1, or —4u + 5t = 1. We can
solve this by eye using u = 1,t = 1. Then x = 12-1+ 6 = 18 solves the first
two equations, modulo lem(12,15) = 60. Again the third modulus already
divides 60, and the same solution works, so the answer for the original system
is x = 18 (mod 60).

First let’s solve the first two, by trying to find u,t with {

z= -5 (mod 21)
For (iii): We are to solve ¢ z= 1 (mod 15) . The solution, if any,
T= 6 (mod 35)

will be unique modulo the lem of the three moduli, which is 105. (Notice
that the author made up the problem by choosing primes 3,5,7 and using
products of them two at a time for the moduli.)

z= 2lu -5
r= 16t +1°
Subtracting gives 21u — 5 — 15t —1 = 0 so 2lu — 15t = 14+ 5 = 6 as in
(3) on p. 199. Since ged(21,15) = 3 and 3 | 6, this is possible to solve.
Dividing through by the gcd gives Tu — 5t = 2. We can solve this by eye
using v = 1, = 1. Then z = 21 -1 — 5 = 16 solves the first two equations,
modulo lem(21, 15) = 105. Again the third modulus already divides 105, but
this time the third congruence x = 6 (mod 35) is not compatible with the
solution to the first two. So the original system has no solution.

First let’s solve the first two, by trying to find u, ¢ with

(To see more clearly why there is no solution, look at the first and third
congruences. Since 7 divides both moduli, any solution z must have

r= —5 (modT7)
{ zr= 6 (modT7)
an impossibility.)

, which says x is congruent to both 2 and 6 (mod 7),

r= 2 (mod 8)
For (iv): We are to solve ¢ = 3 (mod9) . The solution, if any, will
z= 4 (mod 12)

be unique modulo the lcm of the three moduli, which is 72.

r= 8u + 2

x= 9t + 3°
The moduli are coprime, so we could use the “basis method” of solving
with constants 1,0 and 0,1 first, but instead let’s stick with the non-coprime
method: Subtracting gives Su +2 -9t -3 =0s08u—9t =3 -2 =1 as
in (3) on p. 199. As mentioned, the moduli are coprime, so we don’t need
to divide through by the gcd. Solve by eye using v = —1,f = —1. Then
x = 8(—1) + 2 = —6 solves the first two equations, modulo lem(8,9) = 72.

First let’s solve the first two, by trying to find u, ¢ with
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Again the third modulus already divides 72 and the solution z = 6 fails, so
the original problem has no solution.

(To see this more clearly, notice that the second and third congruences imply
congruences modulo the ged of 9 and 12, which is 3; they say + = 3 =0
(mod 3) and z =4 =1 (mod 3), so these two congruences contradict each
other.)

p- 201, Ex. 15: The goal of the problem is to give some restrictive congru-
ence conditions on safeprimes, so if a computer is trying to find safeprimes for
RSA it can run this preliminary test before trying to see if g and p = 2¢+ 1
are both prime. (RSA doesn’t require safeprimes but it’s better to use them.)

In each part, it’s best to focus on ¢ first, since then we get congruence
information for p = 2¢g + 1 as well. Also, notice that neither p nor ¢ can be
congruent to 0 modulo 2, 3, or 5, since the only primes of that description
are 2, 3, and 5, and p and ¢ are specified to be larger than that. Therefore
both p and g are congruent to nonzero remainders modulo 2, 3, and 5.

Important: Since congruences are compatible with addition and multiplica-
tion, knowing ¢ = ¢ modulo some m we know p =2¢+1=2c+1 (mod m).
In each part we can use this fact to make a table of possibilities. Then we
avoid any cases where g or p is congruent to 0. For modulus 4 we also have
to think modulo 2.

(i) Z Eﬁzg g; } (1) (1) ; , 80 p =2 (mod 3) is the only possibility.
g mod2) (0 1 0 1

(ii)) ¢ (mod4) |0 1 2 3 ,s0op=3 (mod 4) is the only possibility.
p (mod4)|1 3 1 3
g (mod5)[0 1 2 3 4

(iii) p (mod B) ‘ T30 3 4 ,80 p=2,3, or 4 (mod 5).

(iv) For each of the choices p = 2,3, or 4 (mod 5) in (iii), we have three si-
multaneous congruences, with coprime moduli. Let’s use the “basis method”,
since after doing groundwork we can put any constants on the right.

Solving z; = 1 (mod 3), z; = 0 (mod 4), z; = 0 (mod 5) is the same as
21 = 1 (mod 3) and z; = 0 (mod 20). Thinking of multiples of 20 we see
that a solution is z; = 40. Solving 25 = 0 (mod 3), zo = 1 (mod 4), x5 =0
(mod 5) is the same as o = 1 (mod 4) and x5 = 0 (mod 15); thinking of
multiples of 15 we see that xo = 45 is a solution. Solving z3 = 0 (mod 3),
23 =0 (mod 4), z3 =1 (mod 5) is the same as solving 3 = 1 (mod 5) and
23 = 0 (mod 12); thinking of multiples of 12 we see that 3 = 36 is a solution.
Then a solution to the original problem is z = 2-40+3-45+k-36 (mod 60),
where k£ = 2, 3, or 4; reducing mod 60 in each case we get possibilities
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z =80+ 135+ 72 = 47 (mod 60), x = 80 + 135 + 108 = 23 (mod 60), and
=80+ 135+ 144 =59 = —1 (mod 60).

This is interesting; of each 60 integers from 20 on, at most three can be
safeprimes.

(v) Examine 23, 47, 59, (and adding 60’s) 83, 107, 119, 143, 167, 179, 203,
227,239, ... You can check primeness using the calculator on the class home
page. Here 119, 143, 203, and 239 are not prime. (And 143 ought to sound
suspicious anyway since it’s a square minus 1). Subtracting 1 and dividing
by 2 to get ¢, we get no additional failures. Answer: 47, 59, 83, 107, 167,
179 (and 203, 227).

p- 203, Ex. 3: In R x S we have (1,0) - (0,1) = (0,0) (the zero element of
R x S). Even if R and S don’t have a “1” we can take any nonzero elements
rin R and s in S and use the example (r,0) - (0,s) = (0,0).

p- 206, Ex. 1: Whenever you see a congruence with a modulus that isn’t
prime or a prime power, you should think of using the Chinese Remainder
Theorem to patch together congruences using moduli that are coprime factors
of the original modulus.

In this problem, each solution of z? = 1 (mod 35) is equivalent to finding

a solution (mod 5) and a solution (mod 7). Now z? = 1 (mod 5) has
solutions x = 41 (mod 5) (or 1 and 4) , while 2 =1 (mod 7) has solutions
x = +1 (mod 7). Now we need to put these together in each possible way:

z =1 (mod 5) and x =1 (mod 7) has the obvious solution z =1 (mod 35).

Similarly, z = —1 (mod 5) and z = —1 (mod 7) has the obvious solution
z = —1 (mod 35), or x = 34 (mod 35).
More interesting are the “mixed” solutions:
x 1 (mod 5)
x —1  (mod 7)
by examining the list of solutions to one congruence and trying them in the
other. Taking the second, we try x = 6,13, 20, ..., but right off we notice

that © = 6 works in the first congruence, so The answer is z = 6 (mod 35).
(This is logical: 35 =5-7=(6+1)(6—1) =62 —1,s0 62 =1 (mod 35).)
x —1  (mod 5)
x 1 (mod 7)
observe that —1,1 are negatives of the preceding simultaneous congruences,
so £ = —6 (mod 35) is the answer, or equivalently, z = 29 (mod 35).

Il

, which we can solve by the “basis” method or just

For

, we could solve it from scratch, but it is faster to

H-1: If the order is k, so that a* = 1 is the first repeat, then 1,a,a?, ..., a*!
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is a list of k& elements. These elements are distinct, because as we saw in
lecture, the first repeated power of a must equal 1 if a is a unit.

H-3: (i) In Z, = Z/pZ, if p /| a then Little Fermat says a?~* = 1 so
multiplying through we get a? = a. If p | a then ¢ = 0 (mod p) and a = 0
(mod p) so a? = a.

(ii) This problem was corrected to be done only for the cases where a is a
unit (mod m) or else m | a. In those cases the solution is the same as (i),
giving a?(™ = a.

But is a®™ = q always true for all a? If m is prime then it is true by (i).
The next case to try is where m is a prime power. The simplest example is
m =450 ¢(m)=4—2=2. Does a®> = a (mod 4) for a = 0,1,2,3? No; this
fails for a = 2. So (ii) is not correct for m and a in general.

H-4: As corrected, this problem says that if there is a generator g then there
are ¢(¢p(m)) generators in all. This is true because we know that the order
of g is ¢(m) and we also know that ¢* is a generator when ¢ is coprime to the
order.

For primes this says the number of generators is ¢(p — 1).
An example where m is not prime is m = 22: ¢(22) = ¢(2)¢(11) = 1-10 = 10;

the ten units in Zoy are 1,3,5,7,9,13,15,17,19, 21. It turns out that 3 and
5 are not generators, but 7 is a generator since its powers are

1 2 3 5 6 7 8 9
7 5 13 21 15 17 9 19

i |0 4
71 3
(and 7' = 1 again by Euler). The generators are those power 7° for which i
is coprime to 10, namely ¢ = 1,3,7,9. So the generators are 7,13,17, 19.

H-5: As suggested, let b = a”> . Then b = ¢! = 1 by Fermat’s Little
Theorem since a is nonzero. Solving as in high-school algebra, we have b = 1,
b>—1=0, (b+1)(b—1) = 0, so one factor or the other is 0, giving b = —1 or
b = 1. Notice that if p = 2 these are the same and there is just one solution!

H-6: (i) Let the prime factorization of n be n = p{'...p*. Then d =
p{l .. .p{’“ with f; < e; for each 7. Since d < n, we have a strong inequality
fi < e; for some i, in which case d | p{'...p; 3 psi” pit! .. p¥, or in other

words, d | % with ¢ = p;.

(ii) In this problem a is supposed to be nonzero. This method really contains
three ideas. Let’s illustrate them for p = 101:
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(1) The order of any nonzero element a in Z, divides p — 1 = 100, so in
testing whether powers of a return to 1 too soon for a to be a generator, you

can just test exponents dividing 100, here a?, a*, a%,a'?, a®°, a®®, a°.

(2) If you test this list of powers going right to left, you are able to skip
some cases. Start by testing whether a®® = 1. If this is true, then a is not a
generator and you are done. If instead a*® # 1, then none of a2, a®,a'® can

be 1, since a® is a power of each of these.

(3) The exponents that you can’t skip—the ones that don’t divide larger
exponents—are the ones that are 100 divided by a prime, namely 100/2 =
50 and 100/5 = 20.

Now the official reasoning:

For the “=" direction of the “if and only if”: Suppose a is not a generator.
For any nonzero a in Z, we have a?~' = 1, so the order of a divides p — 1. If
the order of @ were equal to p—1 then a would be a generator, which it isn’t.

Then by (i) the order of a divides P~ 2 for some prime factor g of p — 1, as

q
claimed; in other words, 2 g 1 is a multiple of the order of a. The multiples
. p—1
of the order are the integers j witha’ =1,s0a 9 =1.
p—1
For the “«<” direction: Since a 9 =1, the list of powers of a returns to

1 too soon for a to generate the p — 1 units of Z,,.

H-7: The first prime past 10 million is 10,000,019, either from trying can-
didates in the home-page calculator or by looking at the handout showing
primes in blocks of integers. Of course if you're trying candidates, just try
odd ones not ending in 5, and you can also skip ones where the sum of the
digits is divisible by 3.

For testing generators, factor p — 1 = 10000018 = 2 -7 -7 - 67 - 1523 using
the home-page factorizer. Then using the home-page modular-power calcu-
lator, try candidates for a generator. It is handy to type in the powers as
10000018/2, 10000018/7, etc. We find 210000018/7 — 1~ 310000018/2 — 1 anq
510000018/2 — 1 5 9 3 and 5 don’t work, but 610000018/2 — _ 1 10000018/7 _
nonzero, 610000018/67 — pongzero, 610000018/1523 — nonzero, so by H-6, 6 must
be a generator.

In this list the candidate 4 was skipped, since the powers of 2 do not include
all nonzero elements and the powers of 4 are among the powers of 2.

I-1: (a) a is a generator since its powers are 1, o, a®> = 1+a, and a+1 is also
a generator since its powers are 1, + 1,0? + 1 = a. This answer could be
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expected: There are three units, so every element has order 1 (the element
1 only) or 3 (a generator).

(b) No, Fy and Z/4Z are not isomorphic. They are different from one an-
other in many respects that would be preserved by an isomorphism: F, has
characteristic 2 while in Z/4Z we have 1+ 1 # 0; F, is a field while in Z/4Z,
the element 2 is not a unit (since 2 - 2 = 0); I, has three units while Z/4Z
has two; and so on.

(c) 2 + x + 1 has no root in Fy, but « is a root in Fy, since a? = 1 + « and
so o> —1—a = 0, which since the characteristic is 2 becomes a? +a+1 = 0.

(d) A good basis of Fy over Fy is 1, o, since each element of F, can be written
uniquely as ¢yl + c; with ¢y, ¢; being 0 or 1.

I-2: (a)
T 0 1 o 1+« T, 0 1 « 1+«
0 0 1 « 14+« 0 0 « 1+« 1
1 1 0 1+« a | 1 1 l1+a « 0
« «a 14+« 0 1 « « 0 1 1+«
l4+a|l+a « 1 0 l4+a|l+a 1 0 «
Ti+a 0 1 o 1+«
0 0 1+a 1 Q
1 1 «a 0 14+«
« « 1 14+« 0
l4a|l+a 0 «a 1

(b) As stated, let (7});; = ¢ + rj for 7,4, j in some field F' and r # 0.

To show that the entries in row i are distinct (for every 7), we must show that
i # 7 = (T,)i # (T.)ij, or equivalently', that (T,); = (T,.)iy = § = 7,
which is the same as saying i +rj = i + rj’ = j = j'. This last statement
does hold, because we can cancel i additively (because of additive inverses in
a ring) and then cancel r multiplicatively (because nonzero elements of fields
have multiplicative inverses), getting j = j'.

To show that the entries in column j are distinct (for every j), we must show
that ¢ # ' = (1,):; # (1r)i; = t # 7', or equivalently, (7;);; = (1})s; = i =
i', which is the same as saying i + rj = i’ + rj = i = 4’. This last statement
does hold, because we can cancel rj additively.

(c) We must show that if  # s then 7, and T are orthogonal, meaning that
if we lay one on top of the other the pairs we get (from all the positions in a

'Recall that for statements, “P = Q” is equivalent to “not Q = not P”, the contra-
positive of P = Q.
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table) are distinct. In other words, if 4, j and ', j' different locations in the
table, then the pair ((77);, (Ts):;) is not the same as the pair ((77)i 1, (T5)wj)-
Equivalently, if the pairs are the same then the positions are the same. From
the definition of the tables, then, we must show that

(i+rji+s))y=0+rj,i+sj')=i=14and j=j.

Equal pairs have equal corresponding entries, so we are starting with the
simultaneous equations

. Ly "
{ z IZ ; 2, i Z;, . Subtracting, we get (r — s)j = (r — s)j'. We can cancel
r — s since it is a nonzero element of the field, so we get 7 = j'. Substituting
back into the first equation, we now get ¢ + rj = i’ + rj, so canceling rj
additively gives ¢ = 4, and we are done.

Note. Using two orthogonal 4 x 4 Latin squares for cards, we can arrange
to have each number and each suit be different across each row and column
and also to have every number-suit pair occur. But if we use all three 4 x 4
pairwise orthogonal Latin squares, we can add another feature—having four
different decks—in such a way that the decks in each row and column are
distinct and there is one ace from each deck, one 2 from each deck, etc., and
also one heart card from each deck, one diamond card, etc. To do this, let’s
call the card numbers A, 2, 3, 4, the suits H, D, S, C, and the decks a, b, c,
d. Translate T3 into card numbers, T, into suits, and 77, into decks, and
lay the three tables on top of one another. For example, in the second table
use 0 —>H, 1—» D, a—S, 1+ a+— C. We get

A-H-a 2-S-b 3-C-¢ 4-D-d
2-D-¢c  A-C-d 4-S-a 3-H-b
3-S-d 4-H-¢ A-D-b 2-C-a
4-C-b 3-D-a 2-H-d A-S-c

Just about everything here is unique. For example, A occurs with d only
once. If we had chosen some other matchup between field elements and
card numbers or suits or decks, the resulting triples would have the same
properties as now.
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