117 S04 L.

A description of Rijndael
1. What to know

e Rijndael shows how advanced algebra has practical importance.

e You are not responsible for learning the details of the Rijndael algo-
rithm.

e However, we’ll be continuing to study the principles of finite fields that
are involved, so there may be future homework on that aspect referring
to this handout. If so, you will be responsible for learning that material.

e If you would like to learn more, you can take Math 116 (Mathematical
Cryptology).

2. Background

Rijndael is the name of an encryption/decryption algorithm that won a
competition to be the Advanced Encryption Standard (AES) of the US
National Institute of Science and Technology (NIST). That means that it is
approved for US Government use but is also supposed to be good for use by
anyone.

The name Rijndael was made up by its inventors, Joan Daemon and Vincent
Rijmen of Belgium, out of their own names. It is pronounced approximately
“rain-del”.

Rijndael is an efficient algorithm that uses a shared secret key (as opposed
to a public key). It has versions in several strengths; here we’ll discuss the
strongest version, with a 256-bit key. Full information can be found at
http://csrc.nist.gov/CryptoToolkit/aes/rijndael/ .

3. Input and Output

The message to be sent is called “plain text”; the encrypted version is called
“cipher text”. Let’s assume that Alice is to send a message to Bob.

First Alice and Bob need to agree on a secret key of 256 bits. This might be
sent via a Public-Key system, for example, or produced via Diffie-Hellman
or a variant.

Then Alice represents her message in bits (perhaps using the ASCII code)
and breaks it into 128-bit blocks. If the message length is not an exact
multiple of 128, the last block can be padded. In the use described here,

L1

Alice runs each block separately through the algorithm to encrypt it and
then sends the encrypted block as ciphertext.

Bob decrypts the blocks using the same secret key and a procedure that
amounts to running Rijndael backwards.

4. Bytes and algebra

As you know, a byte means 8 bits (binary digits), e.g., 10110110, or in
hexadecimal for short, B6. In running the algorithm, bytes are interpreted
in two different ways at different times:

1. A byte is a row vector of length 8 with entries in the field F,. From
this point of view, if we add two bytes they are added bitwise mod 2,
which in a computer is the “exclusive or” operation, a”b in C++.

2. A byte represents an element of the field Fys with 28 = 256 elements.
In this interpretation, there is a particular element « in that field and
powers of a form a basis of Fys as an 8-dimensional vector space over
the field F, as coefficients. Each coefficient is one bit. Examples:

e 10110110 means 1la’ 4+ 0a® + 1a® + 1a* + 0a® + 1a? + 1o+ 0, or
simply o + o® + o* + o2 + a.

e 1 of the field is 00000001 (why?).

e « itself is 00000010 (why?).

The a chosen is a generator of the nonzero elements of the field with
the property that o® = a* +o® + o + 1.
Just as you can multiply any two complex numbers once you know that
i? = —1 in C, you can multiply any two expressions involving powers
of o once you know the equation for 8.

Example: What is 00010000 times itself? This is a*, so times itself we
have o®, which can then be rewritten in terms of lower powers using
the equation, yielding 00011011 as the answer.

5. The rounds of the algorithm for a block

The algorithm consists starting with the block of 128 bits, adding some bits
of the key to it (mod 2), and then doing 14 rounds to “mix” it more and more.
In each round the bits are changed in a nonlinear way and some “round key”
is added in. The last round has a slight modification.

The round key is derived by mixing up the 256-bit key using some of the
same methods (to be described) that occur in the rounds themselves. Each
key bit is used in several rounds to make the rounds more interdependent.

L2

6. One round

The steps of a round, to be applied repeatedly to each 128-bit block, are as
follows.

Step 1: “byte substitution”: The 128 bits are broken into 16 bytes, which
in this step are treated individually.

1(a) Each byte is treated as an element of Fys and is mapped to its inverse
in that field (with 0 going to 0).

1(b) Each byte is treated as a vector of length 8 over Fy and is multiplied by
a matrix:

fap] [1 00011117 [a]
a 1100011 1]||a
as 1110001 T1]]a
ag | |1 111000 1]]a
as 11111000/ a
as 01111100]]as
ag 00111110/ ag
la; | 0001111 1]]|ar)

1(c) Each byte is treated as a vector of length 8 over F, and 11000110 is
added to it (mod 2). This flips four of the bits.

Step 2: “row and column mixing”: The the sixteen bytes (not bits!) are
put into a 4 x 4 table. (Here the original sixteen bytes will be labeled as
0,1,...,15.)

2(a) Each row is rotated by a different amount:

0(4] 8 |12 04| 8|12
115 13 . 51911131
26|10 14 1014 2 | 6
3(7|11(15 53 |7 11

2(b) The table resulting from 2(a) is treated as a 4 x 4 matrix with entries in
Fys and is multiplied on the left by the following matrix to get a new 4 x 4
table:

02 03 01 01
01 02 03 01
01 01 02 03 |~
03 01 01 02

L3

where the entries are shown in hexadecimal for short. This procedure affects
each column independently.

Step 3: “round key”: The round key is added in. (As already mentioned,
the round key is derived from the original 256-bit key.)

7. Comments

A multiple-round algorithm such as Rijndael is somewhat like stirring paint
in a bucket. With each round, the space of possible blocks is stirred more
and more, so that it becomes impossible to follow any individual particle
(the input block). Every bit of the output (the ciphertext) depends in an
extremely complicated way on every bit of the input (the plaintext).

Of course, such an encryption algorithm is unlike a paint bucket in that it
is possible to un-stir the output to decrypt the ciphertext. The un-stirring
depends on the fact that each component of each round is one-to-one and so
can be reversed.

If you look in detail at a round of Rijndael, you will notice that first the
individual bytes are stirred, then the bytes are put in a grid, each row is
rotated by a different amount, the columns are transformed linearly. It’s
sort, of like dicing cheese and mooshing the pieces around. Finally, the round
key is added in as a kind of control to make the final result depend crucially
on the key.

The first piece of the process, 1(a), is the most important: Each byte is
replaced by its inverse in a field. This is to introduce some nonlinearity.
Otherwise, if you were to compose steps that are all linear transformations
(plus constants) with scalars in Fy, the end result would be trivial to decrypt.

L4

