117 S04 H.

Summary of facts about orders

1. The facts

For simplicity, let's write \mathbb{Z}_m for $\mathbb{Z}/m\mathbb{Z}$ with m > 0. Let's be casual about omitting brackets, writing $3 \in \mathbb{Z}_{10}$ instead of $[3]_{10}$. Also, p will always refer to a prime.

- (a) For $a \in \mathbb{Z}_m$, if $a^n = 1$ with $n \ge 1$ then $a(a^{n-1}) = 1$, so a is invertible (i.e., a is a unit).
- (b) For $a \in \mathbb{Z}_m$, the list of powers $1, a, a^2, a^3, \ldots$ must start cycling at some point:
 - If a is a unit, then the first repeat is back to 1. The first n > 0 such that $a^n = 1$ is called the *order* of a.

Example: For $3 \in \mathbb{Z}_{10}$ the list of powers is $1, 3, 9, 7, 1, 3, 9, 7, \ldots$ and the order of 3 is 4.

Example: In a finite field, every nonzero element is a unit and so has an order.

• If a is not a unit, then the first repeat is not back to 1, but the powers do get stuck in a cycle sooner or later.

Example: For $2 \in \mathbb{Z}_{24}$, the list of powers is 1, 2, 4, 8, 16, 8, 16, 8, 16,

(c) If a is a unit in \mathbb{Z}_m , with order n, then the powers equal to 1 are precisely $a^0, a^n, a^{2n}, a^{3n}, \ldots$

In other words, $a^i = 1 \Leftrightarrow n|i$.

- (d) (i) If p is prime and a is a nonzero element of \mathbb{Z}_p , then Fermat's Little Theorem says $a^{p-1} = 1$. Therefore the order of a divides p-1.
- (ii) More generally, for any m, if a is a unit of \mathbb{Z}_m , then Euler's Theorem says $a^{\phi(m)} = 1$. Therefore the order of a divides $\phi(m)$.
- (iii) Even more generally, if R is any commutative finite ring and a is a unit of R, then the order of a divides the number of units in R.

Example: In a finite field with q elements, the order of each nonzero element divides q-1. (As you know, q has to be a prime power.)

- (iv) Still more generally, if G is any finite group, abelian (commutative) or not, then the order of each element divides the size of the group¹.
- (e) If a has order n and if k and n are coprime, then a^k also has order n. More generally, if a has order n then for any $k \geq 0$, a^k has order $\frac{n}{\gcd(n,k)}$.

Example: In \mathbb{Z}_{11} , 6 has order 10. Then 6^2 has order 5, and so do 6^4 , 6^6 , and 6^8 , since all these exponents have 2 as their gcd with 10.

(f) (i) The units of a given finite ring might have a generator or primitive element, meaning an element g for which the powers $1, g, g^2, \ldots$ are all the units. An equivalent statement is that the order of g is the same as the number of units.

Example: The units of \mathbb{Z}_{10} are 1, 3, 7, 9, with generator 3.

The units of \mathbb{Z}_8 are 1, 3, 5, 7; there is no generator since each of these elements has square = 1.

- (ii) In a finite field, where all nonzero elements are units, there is always a generator. In fact, there are $\phi(p)$ generators of \mathbb{Z}_p for p prime.
- (g) (i) In a commutative ring, if a and b are units and a has order m and b has order n, where m and n are coprime, then ab has order mn.
- (ii) If a commutative ring R has a unit a of order r and a unit b of order s, then R has a unit of order d where $d = \operatorname{lcm}(r, s)$.

Note: This element is not necessarily ab, since for example if $b = a^{-1}$ then a and b have the same order r and lcm(r,r) = r, but ab = 1, which is an element of order 1.

(h) If m and n are coprime, then the order of an element a of $\mathbb{Z}/mn\mathbb{Z}$ is the lcm of the orders of the images of a in $\mathbb{Z}/m\mathbb{Z}$ and $\mathbb{Z}/n\mathbb{Z}$.

In other words, if $a \leftrightarrow (a_1, a_2)$ under the isomophism of $\mathbb{Z}/mn\mathbb{Z}$ with $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ according to the Chinese Remainder Theorem, then the order of a is the lcm of the orders of a_1 and a_2 .

2. Problems

Problem H-1. Explain: The order of a is also the number of distinct elements (including 1) that are powers of a.

¹The word "order" is also used to refer to the size of a finite group, so the statement is that the order of each element divides the order of the group.

Problem H-2. (i) Which of the statements in §1 are true in any finite ring with 1? (ii) Which statements are true in any finite field?

Problem H-3. (i) Show that $a^p \equiv a$ in \mathbb{Z}_p , whether or not p|a.

(ii) More generally, invent and prove a similar statement for a power of a in \mathbb{Z}_m , involving $\phi(m)$.

Problem H-4. If the units of \mathbb{Z}_m have a generator, show that there are $\phi(\phi(m))$ units in all.

Problem H-5. Show that in the field \mathbb{Z}_p (for a prime p), if a is any nonzero element then $a^{\frac{p-1}{2}} = \pm 1$.

(Method: Let $b = a^{\frac{p-1}{2}}$ and observe that $b^2 = 1$. Solve for b as in high-school algebra.)

Problem H-6. (i) Show that for positive integers d and n, if d|n and $d \neq n$, then $d|\frac{n}{q}$ for some prime divisor q of n. (Suggestion: Think in terms of the prime factorization of n.)

Example²: 4|60 so 4| (at least) one of $\frac{60}{2}$, $\frac{60}{3}$, $\frac{60}{5}$, of which the last two work.

(ii) Apply this idea to show that an element a in \mathbb{Z}_p is not a generator of the units if and only if $a^{(p-1)/q} = 1$ for some prime factor q of p-1.

In other words, if the powers of a return to 1 too soon, then one of the places they return to 1 is a power of the form given.

This provides a quick test for whether an element is a generator!

Example: In \mathbb{Z}_{17} , the only prime factor of p-1=16 is 2 and $\frac{p-1}{2}=8$, so an element a is not a generator if and only if $a^8=1$. Testing 2: $2^4=-1$ so $2^8=1$, not a generator. Testing 3: $3^4=81=-4$ and $3^8=16=-1$, so 3 is a generator. In fact, in \mathbb{Z}_{17} all nonzero elements will have 8th power equal to ± 1 , by Problem H-5; therefore the generators are the elements, such as 3, whose 8th power is -1.

(iii) Use the calculators on the course home page to find a generator for (a) \mathbb{Z}_{31} ; (b) \mathbb{Z}_{151} (which you can see is prime by using the factoring routine). Say what you did.

Note: The calculators will accept simple expressions such as 150/3 in place of an explicit integer.

²not to do

Problem H-7. Let p be the first prime past 10 million. Find the smallest generator of the units of \mathbb{Z}_p .

(Use the calculators on the home page for testing primality, for factoring p-1, and for residues of powers. Be careful about the numbers of zeros in integers! Include a record of the calculations you tried.)

Problem H-8. Use the Chinese Remainder Theorem to explain why the powers of 2 in \mathbb{Z}_{24} cycle the way they do.

Problem H-9. Prove (d)-(iii) in §1.

Problem H-10. Prove (g)-(i) in §1.