117 S04 H.

Summary of facts about orders

1. The facts

For simplicity, let’s write Z,, for Z/mZ with m > 0. Let’s be casual about
omitting brackets, writing 3 € Z instead of [3];o. Also, p will always refer
to a prime.

(a) For a € Zy, if a® = 1 with n > 1 then a(a"!) = 1, so a is invertible
(i.e., a is a unit).

(b) For a € Z,,, the list of powers 1,a,a?,a®, ... must start cycling at some
point:

e If @ is a unit, then the first repeat is back to 1. The first n > 0 such
that @™ =1 is called the order of a.

Example: For 3 € Z1g the list of powersis 1,3,9,7,1,3,9,7,... and the
order of 3 is 4.

Example: In a finite field, every nonzero element is a unit and so has
an order.

e If a is not a unit, then the first repeat is not back to 1, but the powers
do get stuck in a cycle sooner or later.
Example: For 2 € Zy4, the list of powers is 1, 2,4, 8,16, 8,16, 8,16, .. ..

(c) If a is a unit in Z,,, with order n, then the powers equal to 1 are precisely

a®, a”, a®", a®", .. .

In other words, a‘ = 1 & nli.

(d) (i) If p is prime and a is a nonzero element of Z,, then Fermat’s Little
Theorem says a?~! = 1. Therefore the order of a divides p — 1.

(ii) More generally, for any m, if a is a unit of Z,,, then Euler’s Theorem
says a®™ = 1. Therefore the order of a divides ¢(m).

(iii) Even more generally, if R is any commutative finite ring and « is a unit
of R, then the order of a divides the number of units in R.

Example: In a finite field with ¢ elements, the order of each nonzero element
divides ¢ — 1. (As you know, ¢ has to be a prime power.)
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(iv) Still more generally, if G is any finite group, abelian (commutative) or
not, then the order of each element divides the size of the group!.

(e) If a has order n and if k and n are coprime, then a* also has order n.

More generally, if a has order n then for any k¥ > 0, a* has order —t—~

ged(n, k)

Example: In Z1;, 6 has order 10. Then 62 has order 5, and so do 6%, 6%, and
6%, since all these exponents have 2 as their ged with 10.

(f) (i) The units of a given finite ring might have a generator or primitive
element, meaning an element g for which the powers 1, g, ¢?, ... are all the
units. An equivalent statement is that the order of g is the same as the
number of units.

Example: The units of Zy, are 1,3,7,9, with generator 3.

The units of Zg are 1, 3, 5, 7; there is no generator since each of these elements
has square = 1.

(i) In a finite field, where all nonzero elements are units, there is always a
generator. In fact, there are ¢(p) generators of Z, for p prime.

(g) (i) In a commutative ring, if ¢ and b are units and @ has order m and b
has order n, where m and n are coprime, then ab has order mn.

(ii) If a commutative ring R has a unit a of order 7 and a unit b of order s,
then R has a unit of order d where d = lem(r, s).

Note: This element is not necessarily ab, since for example if b = a ! then
a and b have the same order r and lem(r,r) = r, but ab = 1, which is an
element of order 1.

(h) If m and n are coprime, then the order of an element a of Z/mnZ is the
lem of the orders of the images of a in Z/mZ and Z/nZ.

In other words, if @ <> (a1, az) under the isomophism of Z/mnZ with Z/mZ x
Z/nZ according to the Chinese Remainder Theorem, then the order of a is
the lcm of the orders of a; and as.

2. Problems

Problem H-1. Explain: The order of a is also the number of distinct ele-
ments (including 1) that are powers of a.

!The word “order” is also used to refer to the size of a finite group, so the statement
is that the order of each element divides the order of the group.
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Problem H-2. (i) Which of the statements in §1 are true in any finite ring
with 1?7 (ii) Which statements are true in any finite field?

Problem H-3. (i) Show that ¢ = a in Z,, whether or not p|a.

(ii) More generally, invent and prove a similar statement for a power of @ in
Ly, involving ¢(m).

Problem H-4. If the units of Z,, have a generator, show that there are
#(¢p(m)) units in all.

Problem H-5. Show that in the field Z, (for a prime p), if @ is any nonzero
element then a”7 = +1.

(Method: Let b = " and observe that b2 = 1. Solve for b as in high-school
algebra.)

Problem H-6. (i) Show that for positive integers d and n, if d|n and d # n,
then d|% for some prime divisor ¢ of n. (Suggestion: Think in terms of the

prime factorization of n.)

Example?: 4|60 so 4| (at least) one of %, %, %, of which the last two work.

(ii) Apply this idea to show that an element a in Z, is not a generator of the
units if and only if a® Y/? =1 for some prime factor ¢ of p — 1.

In other words, if the powers of a return to 1 too soon, then one of the places
they return to 1 is a power of the form given.
This provides a quick test for whether an element is a generator!

Example: In Z,7, the only prime factor of p — 1 = 16 is 2 and p 5 1_ 8, so

an element a is not a generator if and only if a® = 1. Testing 2: 2* = —1 so
28 =1, not a generator. Testing 3: 3* =81 = —4 and 3* =16 = —1, s0 3 is
a generator. In fact, in Zi; all nonzero elements will have 8th power equal
to =1, by Problem H-5; therefore the generators are the elements, such as 3,
whose 8th power is —1.

(iii) Use the calculators on the course home page to find a generator for (a)
Z31; (b) Z15 (which you can see is prime by using the factoring routine).
Say what you did.

Note: The calculators will accept simple expressions such as 150/3 in place
of an explicit integer.

2not to do
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Problem H-7. Let p be the first prime past 10 million. Find the smallest
generator of the units of Z,.

(Use the calculators on the home page for testing primality, for factoring
p — 1, and for residues of powers. Be careful about the numbers of zeros in
integers! Include a record of the calculations you tried.)

Problem H-8. Use the Chinese Remainder Theorem to explain why the
powers of 2 in Zy4 cycle the way they do.

Problem H-9. Prove (d)-(iii) in §1.

Problem H-10. Prove (g)-(i) in §1.
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