Assignment #4

Due Friday, April 30.

Read §6D on your own. We'll do more with this later.

To do but not hand in:

- p. 84, Ex. 1;
- p. 86, Ex. 3;
- p. 90, Ex. 8;
- E-1, E-5 below.

To hand in:

- p. 84, Ex. 3;
- p. 86, Ex. 4;
- pp. 89-90, Ex's 4 and 9;
- D-2 (which previously was "not to hand in");
- E-2, E-3, and E-4 below.

Problem E-1. Find the remainder when 3^{10110_2} is divided (a) by 16; (b) by 17. Check using the power routine on the course home page.

Problem E-2. Some primes are sums of two squares, e.g., $13 = 2^2 + 3^2$.

- (a) Show using congruences that such a prime is either 2 or is of the form 4n + 1 for some n.
- (b) An interesting fact is that every prime of the form 4n + 1 is the sum of two squares, and in only one way (up to ordering). Write each of 29, 61, and 97 as the sum of two squares.

Problem E-3. Recall the proof that $\sqrt{2}$ is irrational. There is a much more general fact that is no harder to prove.

A real number is called an *algebraic integer* if it is the root of a polynomial with integer coefficients and leading coefficient 1: $x^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0$.

Examples: $\sqrt{2}$ is an algebraic integer since it is a root of the polynomial $x^2 - 2$. Also, 7 is an algebraic integer since it's the root of x - 7.

Notice that the concept of an algebraic integer is *more general* than the concept of an ordinary integer, not more special. Also, the definition of algebraic integer can be used for complex numbers too, but we won't.

Theorem. A (real) algebraic integer is either an ordinary integer or irrational.

- (a) Explain why this theorem shows $\sqrt{2}$ is irrational (and $\sqrt{3}, \sqrt{5}, \sqrt{6}$, etc., too).
- (b) Prove the theorem.

Suggested method: Suppose that a fraction $\frac{a}{b}$ in lowest terms (so a, b are coprime and b > 0) is a root of $x^n + c_{n-1}x^{n-1} + \cdots + c_1x + c_0$, i.e., that

$$\left(\frac{a}{b}\right)^n + c_{n-1} \left(\frac{a}{b}\right)^{n-1} + \dots + c_1 \frac{a}{b} + c_0 = 0,$$

where c_{n-1}, \ldots, c_0 are integers, and try to show that b=1, so that $\frac{a}{b}$ must be an integer. To do so, multiply through to clear the denominator, write $a^n = \ldots$, factor out whatever you can on the right-hand side, and try to reason that if b were not 1 then b would have a prime factor that causes a difficulty leading to a contradiction.

(c) Prove that $\sqrt{\sqrt{5}+1}$ is irrational.

Problem E-4. To make very large primes, one way is to look for primes of the form $b^n - 1$, where b and n are integers. But most values of b and n won't work.

- (a) Explain why, if $b^n 1$ is prime with n > 1, then b must be 2.
- (Useful: Recall from algebra that $b^n 1 = (b-1)(1+b+b^2+\cdots+b^{n-1})$; this arises in summing a finite geometric series. Or if that isn't familiar, just expand the right-hand side to check.)
- (b) Explain why, if $2^n 1$ is prime, then n itself must be prime. (Suggestion: If n factors nontrivially, turn that into a violation of (a).)
- (c) Let's write $M_p = 2^p 1$, where p is prime. If M_p is prime, it is called a Mersenne prime. The catch is that M_p might not be prime, depending on the prime p. Find the lowest prime p for which M_p is not prime. (To test numbers for being prime, you may use the factoring program on the class home page.)

Note: People search for large Mersenne primes to test advanced factoring programs. In fact, at the moment the largest known prime is a Mersenne prime. For the latest record, see http://www.mersenne.org/prime.htm.

Problem E-5. Continuing from Problem Problem E-4: Another way to make large primes is to look for primes of the form $b^n + 1$.

- (a) Show that if $b^n + 1$ is prime with n > 1, then b must be even. (Easy.)
- (b) Show that if $b^n + 1$ is prime with n > 1, then n must be even.

(Useful: Putting -b for b in the earlier problem, observe that if n is odd then $b^n + 1 = (b+1)(1-b+b^2-\cdots+b^{n-1})$. For example, $x^3 + 1$ factors as $(x+1)(1-x+x^2)$.)

- (c) Show that in fact, if $b^n + 1$ is prime with n > 1, then n cannot have any odd factors at all. In other words, n must be a power of 2.
- (d) Consider the case b=2 and write $F_k=2^{2^k}+1$, for $k=1,2,3,\ldots$ F_k might or might not be prime, depending on k, but if it is prime then it is called a *Fermat prime*. Find the first k for which F_k is *not* prime, using the factorization routine on the class home page and perhaps a hand calculator. (Possibly useful: the calculator will accept an input expression involving + and/or *, but unfortunately not one involving exponentiation.)