Notes

Here is a review of the "exchange" proof that two finite bases of a vector space must have the same size.

This proof is important because it can be done directly from the basic definition of a vector space instead of requiring facts about matrices.

If you are asked to do this proof, it is Lemma 2 that is expected.

Let V be a vector space.

Lemma 1. If v_1, \ldots, v_m are linearly dependent, then some v_i is in the span of the preceding vectors v_1, \ldots, v_{i-1} .

Proof. If $r_1v_1 + \cdots + r_mv_m = \mathbf{0}$, with r_1, \ldots, r_m not all 0, let i be the highest index with $r_i \neq 0$. Then

$$v_i = \left(-\frac{r_1}{r_i}\right)v_1 + \dots + \left(-\frac{r_{i-1}}{r_i}\right)v_{i-1} + \mathbf{0} + \dots + \mathbf{0}.$$

Remark. This was simple, but in the theory of vector spaces this is where we need the field property that every nonzero field element has a multiplicative inverse. If we tried to use $\mathbb Z$ for scalars, Lemma 1 would fail.

Corollary. [not needed for the proof of the theorem] If none of v_1, \ldots, v_n is in the span of the preceding vectors, then this list is linearly independent

Proof. This is just the contrapositive of the statement of Lemma 1.

Note. To say that v_1 is not in the span of the preceding vectors means that $v_1 \neq \mathbf{0}$, because the span of no vectors is $\{\mathbf{0}\}$.

Lemma 2. If V is spanned by v_1, \ldots, v_n and if w_1, \ldots, w_m are linearly independent in V, then $m \leq n$.

Proof. We keep making new spanning sets by "exchanging" w_1, \ldots, w_m for v_1, \ldots, v_n one vector at a time, as follows.

Start with

 $v_1, \ldots, v_n,$

which span V. Now consider the list

 w_1, v_1, \ldots, v_n .

Since $w_1 \in \text{span}(v_1, \dots, v_n)$ this new list is linearly dependent. By Lemma 1, some vector is in the span of the preceding vectors. It can't be w_1 since

 $w_1 \neq \mathbf{0}$ (being in a linearly independent set of vectors). So it is v_i for some i, say i_1 . Then we can remove v_{i_1} from the list and still have a spanning set:

$$w_1, \underbrace{v_1, \ldots, v_n}_{\text{omit } v_{i_1}}.$$

Now consider the list

$$w_2, w_1, \underbrace{v_1, \ldots, v_n}_{\text{omit } v_{i_1}}.$$

Again, since w_2 was in the span of the preceding list, the new list is linearly dependent and some vector is in the span of the preceding. Again, it can't be w_2 or w_1 because w_2 , w_1 are linearly independent. Therefore we can remove another vector v_{i_2} from the list and still have a spanning set:

$$w_2, w_1, \underbrace{v_1, \ldots, v_n}_{\text{omit } v_{i_1}, v_{i_2}}.$$

We continue in this way, putting in w's at the left and taking out v's. If m > n then we will run out of v's and have a spanning set consisting of some but not all of w_1, \ldots, w_m , which is impossible because no w_j is in the span of the rest. This is a contradiction, so $m \le n$.

Remarks. (1) It might be neater to throw in w_m first instead of w_1 , then w_{m-1} , etc., so w_1, \ldots, w_m appear in the original order.

- (2) This is really an informal proof by induction. We may discuss proof by induction later.
- (3) Notation for this proof is a special problem. In describing the list of w_1, v_1, \ldots, v_n with v_i omitted, we would usually say $w_1, v_1, \ldots, v_{i-1}, v_{i+1}, \ldots v_n$. That's fine, but for omitting two vectors it doesn't work because we don't know which of v_{i-1}, v_{i-2} occurs first.

Still another approach is to say after each step that since the list still spans in any order, by re-indexing we can assume that it's v_n that is to be deleted, then v_{n-1} , etc. That's actually a neater way to say it, but re-indexing after every step seems harder to think about.

Theorem. ("invariance of dimension") If V has a basis of m elements and a basis of n elements, then m = n.

Proof. Since a basis is both linearly independent and a spanning set, Lemma 2 applies both ways around to show $m \ge n$ and $m \le n$. Therefore m = n.

Definition. If V has a basis of n elements then we say V has dimension n. The Theorem tells us that this definition is not ambiguous; there is only one possible dimension.