next up previous
Next: v_misc2 Up: v_misc2 Previous: v_misc2

1.3. Inverses of $ 2 \times 2$ matrices

Problem V-9. For the general $ 2 \times 2$ matrix $ A = \left[\begin{array}{cc}a&b\  c&d\end{array}\right]$, show that $ AB = ($det$ A) I$, where $ B = \left[\begin{array}{rr}d&-b\  -c&a\end{array}\right]$.



This gives a handy formula for the inverse of a $ 2 \times 2$ matrix, so learn it:

$ \left[\begin{array}{cc}a&b\  c&d\end{array}\right]^{-1} = {{\frac{\displaysty...
...{\displaystyle \Delta}}} \left[\begin{array}{rr}d&-b\  -c& a\end{array}\right]$, where $ \Delta = ad-bc$, if $ \Delta \neq 0$.

Notice that the inverse is a scaled version of the $ 2 \times 2$ matrix obtained by switching the diagonal entries of the original matrix and and negating the off-diagonal entries (while not switching them).



Problem V-10. Re-do Problem V-[*] using this formula.







Kirby A. Baker 2001-11-13