next up previous
Next: ii_solns_8-10_I Up: ii_solns_8-10_I Previous: ii_solns_8-10_I



For Problem U-4: Checking is easy: $ A$v$ _ 1 = \left[\begin{array}{rr}7&-4\  2&1\end{array}\right]\left[\begin{array}{r}2\  1\end{array}\right] = \left[\begin{array}{r}10\  5\end{array}\right] = 5$   v$ _ 1$ and $ A$v$ _ 2 = \left[\begin{array}{rr}7&-4\  2&1\end{array}\right]\left[\begin{array}{r}1\  1\end{array}\right] = \left[\begin{array}{r}3\  3\end{array}\right] = 3$   v$ _ 2$, so the corresponding eigenvalues are 5 and 3.



For Problem U-5: $ A$v$ = A($v$ _ 1 +$   v$ _ 2) = \left[\begin{array}{rr}7&-4\  2&1\end{array}\right]\left[\begin{array}{r}3\  1\end{array}\right] = \left[\begin{array}{r}17\  7\end{array}\right]$, which is not a scalar times $ \left[\begin{array}{r}3\  1\end{array}\right]$.



For Problem U-6: This rotation can't have any eigenvectors because the result of rotating a nonzero vector v by $ 90 ^ \circ$ is never a scalar times v.


Kirby A. Baker 2001-12-05