next up previous
Next: ii_solns_8-10_I Up: ii_solns_8-10_I Previous: ii_solns_8-10_I



For Problem U-2: $ \tau _ A($v$ _ 1) = A$   v$ _ 1 = \left[\begin{array}{rr}4&1\  1&4\end{array}\right]\left[\begin{array}{r}1\  1\end{array}\right] = \left[\begin{array}{r}5\  5\end{array}\right]$, so $ \left[\begin{array}{r}1\  1\end{array}\right]$ has been multiplied by 5. $ \tau _ A($v$ _ 2) = A$   v$ _ 2 = \left[\begin{array}{rr}4&1\  1&4\end{array}\right]\left[\begin{array}{r}-1\  1\end{array}\right] = \left[\begin{array}{r}3\  3\end{array}\right]$, so $ \left[\begin{array}{r}-1\  1\end{array}\right]$ has been multiplied by 3.



For Problem U-3: Just use the definition of the new matrix, carefully. Take v$ _ 1$, transform it, and write the result using the basis v$ _ 1,$   v$ _ 2$, to get the first column of the answer: $ \tau _ A($v$ _ 1) = \left[\begin{array}{r}5\  5\end{array}\right]
= 5$   v$ _ 1 = 5$   v$ _ 1 + 0$   v$ _ 2$, so the first column is $ \left[\begin{array}{r}5\  0\end{array}\right]$. Similarly, $ \tau _ A($v$ _ 2) = \dots = 3$   v$ _ 2 = 0$   v$ _ 1 + 3$   v$ _ 2$, so the second column of the answer is $ \left[\begin{array}{r}0\  3\end{array}\right]$. Together they give $ \left[\begin{array}{rr}5&0\  0&3\end{array}\right]$.


Kirby A. Baker 2001-12-05