Contents

1 Homework 1 - Solutions
 3

2 Homework 2 - Solutions
 13

3 Homework 3 - Solutions
 19
HOMEWORK 1 - SOLUTIONS

Problem 1 (16.1.15). Use symmetry to evaluate $\int\int_{R} x^3 \, dA$ for $R = [-4, 4] \times [0, 5]$.

Solution. For each y, the x-integral goes from -4 to 4, so is symmetric about the x-axis, while the function x^3 is odd, meaning that $(-x)^3 = -x^3$. This means that the negative and positive portions of the integral cancel, so each x-integral is 0, hence the entire area integral is 0.

Problem 2 (16.1.17). Use symmetry to evaluate $\int\int_{R} \sin x \, dA$ for $R = [0, 2\pi] \times [0, 2\pi]$.

Solution. For each y, the x-integral is the integral of $\sin x$ over a whole period, so is 0. Thus the entire area integral is 0.

Problem 3 (16.1.24). Evaluate $\int_{-1}^{1} \int_{0}^{\pi} x^2 \sin y \, dx \, dy$.

Solution.

\[
\int_{y=-1}^{y=1} \int_{x=0}^{x=\pi} x^2 \sin y \, dx \, dy = \int_{y=-1}^{y=1} \left[\frac{x^3}{3} \sin y \right]_{x=0}^{x=\pi} dy \\
= \int_{y=-1}^{y=1} \frac{\pi^3}{3} \sin y \, dy \\
= \frac{\pi^3}{3} \left[-\cos y \right]_{y=-1}^{y=1} \\
= \frac{\pi^3}{3} (\cos(-1) - \cos 1) \\
= 0.
\]

Problem 4 (16.1.31). Evaluate $\int_{1}^{2} \int_{0}^{4} \frac{dy \, dx}{x + y}$.

Solution.

\[
\int_{x=1}^{x=2} \int_{y=0}^{y=4} \frac{dy \, dx}{x + y} = \int_{x=1}^{x=2} \left[\ln(x + y) \right]_{y=0}^{y=4} \, dx \\
= \int_{x=1}^{x=2} (\ln(x + 4) - \ln(x)) \, dx \\
= \left[(x + 4) \ln(x + 4) - (x + 4) \right]_{x=1}^{x=2} - \left[x \ln x - x \right]_{x=1}^{x=2} \\
= \left[(6 \ln 6 - 6) - (5 \ln 5 - 5) \right] - \left[(2 \ln 2 - 2) - (1 \ln 1 - 1) \right] \\
= 6 \ln 6 - 5 \ln 5 - 2 \ln 2.
\]
Problem 5 (16.1.34). Evaluate \(\int_0^2 \int_1^8 \frac{x \, dx \, dy}{\sqrt{x^2 + y}} \).

Solution.

\[
\begin{align*}
\int_{y=0}^{y=8} \int_{x=1}^{x=2} \frac{x \, dx \, dy}{\sqrt{x^2 + y}} &= \int_{u=1+y}^{u=8+y} \int_{y=0}^{y=8} \frac{(1/2) \, du \, dy}{\sqrt{u}} \\
&= \int_{y=0}^{y=8} \left[\frac{2}{3} (4 + y)^{3/2} - \frac{2}{3} (1 + y)^{3/2} \right]_{y=0}^{y=8} \, dy \\
&= \frac{2}{3} \left[24\sqrt{3} - 34 \right] = -68 + 48\sqrt{3}.
\end{align*}
\]

Problem 6 (16.1.40). Evaluate \(\iint_{\mathcal{R}} \frac{y}{x+1} \, dA \) for \(\mathcal{R} = [0, 2] \times [0, 4] \).

Solution.

\[
\begin{align*}
\iint_{\mathcal{R}} \frac{y}{x+1} \, dA &= \int_{y=0}^{y=2} \int_{x=0}^{x=2} \frac{y}{x+1} \, dy \, dx \\
&= \int_{y=0}^{y=2} \left[\frac{1}{2} \frac{y^2}{x+1} \right]_{x=0}^{x=2} \, dy \\
&= \int_{y=0}^{y=2} \frac{8}{x+1} \, dx \\
&= 8 \ln(x+1) \bigg|_{x=0}^{x=2} = 8 \ln 3.
\end{align*}
\]

Problem 7 (16.1.42). Evaluate \(\iint_{\mathcal{R}} e^{3x+4y} \, dA \) for \(\mathcal{R} = [0, 1] \times [1, 2] \).

Solution.

\[
\begin{align*}
\iint_{\mathcal{R}} e^{3x+4y} \, dA &= \int_{y=1}^{y=2} \int_{x=0}^{x=1} e^{3x+4y} \, dx \, dy \\
&= \int_{y=1}^{y=2} \left[\frac{1}{3} e^{3x+4y} \right]_{x=0}^{x=1} \, dy \\
&= \frac{1}{3} e^{4y+3} - e^{4y} \bigg|_{y=1}^{y=2} \\
&= e^4 - \frac{1}{3} e^{3y} \bigg|_{y=1}^{y=2} = \frac{(e^3-1)(e^8-e^4)}{12}.
\end{align*}
\]
Problem 8 (16.1.47). Evaluate \(\int_0^1 \int_0^1 \frac{y}{1+xy} \, dy \, dx \).

Solution.

\[
\int_{x=0}^{x=1} \int_{y=0}^{y=1} \frac{y}{1+xy} \, dy \, dx = \int_{y=0}^{y=1} \int_{x=0}^{x=1} \frac{y}{1+xy} \, dx \, dy \quad \text{(Fubini to change order)}
\]

\[
= \int_{y=0}^{y=1} \int_{u=1+y}^{u=1} \frac{1}{u} \, du \, dy = \int_{y=0}^{y=1} \ln u \bigg|_{u=1+y}^{u=1} \, dy \quad (u = 1 + xy)
\]

\[
= \int_{y=0}^{y=1} \ln(1 + y) \, dy = [(1 + y) \ln(1 + y) - (1 + y)]_{y=0}^{y=1}
\]

\[
= [2 \ln 2 - 2] - [1 \ln 1 - 1] = 2 \ln 2 - 1.
\]

Problem 9 (16.1.49). Using Fubini’s theorem, argue that the solid in Figure 1 has volume \(AL \), where \(A \) is the area of the front face of the solid.

![Figure 1](image)

Solution. The surface bounding the solid from above is the graph of a positive function \(z = f(y) \) that does not depend on \(x \). (Here \(a \) is the largest value that \(y \) can take, which is not labeled in the diagram.) The volume of the solid is

\[
\iiint_{[0,L] \times [0,a]} f(y) \, dA = \int_{y=0}^{y=a} \int_{x=0}^{x=L} f(y) \, dx \, dy \quad \text{(Fubini)}
\]

\[
= \int_{y=0}^{y=a} [xf(y)]_{x=0}^{x=L} \, dy = \int_{y=0}^{y=a} L f(y) \, dy
\]

\[
= L \int_{y=0}^{y=a} f(y) \, dy = LA,
\]

where in the last step, we have used the fact that \(A \) is the area under the graph of \(z = f(y) \) in the \((y,z)\)-plane (which is equal to the area of the front face of the solid), which is then given by the integral of \(f \) over the interval \([0,a]\).
Problem 10 (16.2.10). Sketch the region D between $y = x^2$ and $y = x(1 - x)$. Express D as a simple region and calculate the integral of $f(x, y) = 2y$ over D.

Solution.

The region D is both vertically simple and horizontally simple, but the bounds for y in terms of x are simpler than the bounds for x in terms of y, so when we use Fubini’s theorem to evaluate the integral, we take the y-integral on the inside and the x-integral on the outside. This gives us

$$
\int\int_D f(x, y) \, dA = \int_{x=0}^{x=1/2} \int_{y=x^2}^{y=x(1-x)} 2y \, dy \, dx \\
= \int_{x=0}^{x=1/2} 2 \int_{y=x^2}^{y=x(1-x)} y \, dy \, dx \\
= \int_{x=0}^{x=1/2} 2 \left[\frac{1}{2} y^2 \right]_{y=x^2}^{y=x(1-x)} \, dx \\
= \int_{x=0}^{x=1/2} 2 \left(x^2 - x^4 \right) \, dx \\
= \int_{x=0}^{x=1/2} 2x^2 \, dx - \int_{x=0}^{x=1/2} 2x^4 \, dx \\
= \left[\frac{1}{3} x^3 - \frac{1}{2} x^4 \right]_{x=0}^{x=1/2} \\
= \frac{1}{24} - \frac{1}{32} = \frac{1}{96}.
$$

\square
Problem 11 (16.2.14). Integrate \(f(x,y) = (x + y + 1)^{-2} \) over the triangle with vertices (0,0), (4,0), and (0,8).

Solution.

\[
\int \int_D f(x,y) \, dA = \int_{x=0}^{x=4} \int_{y=0}^{y=-2x+8} (x + y + 1)^{-2} \, dy \, dx \quad \text{(Fubini)}
\]

\[
= \int_{x=0}^{x=4} \left[-(x + y + 1)^{-1} \right]_{y=0}^{y=-2x+8} \, dx
\]

\[
= \int_{x=0}^{x=4} \left((x + 1)^{-1} - (-x + 9)^{-1} \right) \, dx
\]

\[
= \int_{x=0}^{x=4} \left((x + 1)^{-1} + (x - 9)^{-1} \right) \, dx
\]

\[
= \left[\ln|x + 1| + \ln|x - 9| \right]_{x=0}^{x=4}
\]

\[
= \ln(5 + \ln 5) - (\ln 1 + \ln 9)
\]

\[
= \ln(25/9).
\]
Problem 12 (16.2.16). Integrate \(f(x, y) = x \) over the region bounded by \(y = x, \ y = 4x - x^2, \) and \(y = 0 \) in two ways: as a vertically simple region and as a horizontally simple region.

Solution.

If we regard this region as vertically simple, so the \(y \)-integral is inside, then we have to split the integral into two parts depending on which function bounds \(y \) from above. That is,

\[
\iint_D f(x, y) \, dA = \int_{x=0}^{x=4} \int_{y=0}^{y=y_{\text{max}}(x)} x \, dy \, dx \tag{Fubini}
\]

\[
= \int_{x=0}^{x=3} \int_{y=0}^{y=x} x \, dy \, dx + \int_{x=3}^{x=4} \int_{y=0}^{y=4x-x^2} x \, dy \, dx
\]

\[
= \int_{x=0}^{x=3} x^2 \, dx + \int_{x=3}^{x=4} x(4x - x^2) \, dx
\]

\[
= 9 + \left[\frac{4}{3}x^3 - \frac{1}{4}x^4 \right]_{x=3}^{x=4} = \frac{175}{12}.
\]

If we regard this region as horizontally simple instead, so the \(x \)-integral is inside, then the left boundary is always given by \(x = y \) and the right boundary is always given by the larger value of \(x \) for which \(y = 4x - x^2 \). Using the quadratic formula for the equivalent equation \(x^2 - 4x + y = 0 \), this value is \(x = 2 + \sqrt{4-y} \), so we have

\[
\iint_D f(x, y) \, dA = \int_{y=0}^{y=3} \int_{x=x_{\text{min}}}^{x=x_{\text{max}}} x \, dx \, dy
\]

\[
= \frac{1}{2} \int_{y=0}^{y=3} (2 + \sqrt{4-y})^2 - y^2 \, dy
\]

\[
= \frac{175}{12}.
\]
Problem 13 (16.2.20). Compute the double integral of \(f(x, y) = \cos(2x + y) \) over the domain \(1/2 \leq x \leq \pi/2 \) and \(1 \leq y \leq 2x \).

Solution.

\[
\int_{x=\pi/2}^{x=\pi/2} \int_{y=2x}^{y=1} \cos(2x + y) \, dy \, dx = \int_{x=1/2}^{x=\pi/2} \sin(4x) - \sin(2x + 1) \, dx
\]

\[
= \left[-\frac{1}{4} \cos(4x) + \frac{1}{2} \cos(2x + 1) \right]_{x=1/2}^{x=\pi/2}
\]

\[
= \left[-\frac{1}{4} \cos(2\pi) + \frac{1}{2} \cos(\pi + 1) \right] - \left[-\frac{1}{4} \cos 2 + \frac{1}{2} \cos 2 \right]
\]

\[
= -\frac{1}{4} - \frac{1}{2} \cos 1 - \frac{1}{4} \cos 2.
\]

\[\square\]

Problem 14 (16.2.21). Compute the double integral of \(f(x, y) = 2xy \) over the domain bounded by \(x = y \) and \(x = y^2 \).

Solution.

As a horizontally simple region, for each value of \(y \), the left boundary is given by \(x = y^2 \) and the right boundary is given by \(x = y \), so

\[
\int_{y=0}^{y=1} \int_{x=y^2}^{x=y} 2xy \, dx \, dy = \int_{y=0}^{y=1} (y^3 - y^5) \, dy = \frac{1}{12}.
\]

\[\square\]
Problem 15 (16.2.28). For $\int_0^1 \int_{e^x}^e f(x,y) \, dy \, dx$, sketch the domain of integration and express as an iterated integral in the opposite order.

Solution. The domain of integration is the set of points (x, y) for which $0 \leq x \leq 1$ and $e^x \leq y \leq e$, which produces the diagram below.

The iterated integral expresses the integral over the domain interpreted as a vertically simple region. It is also a horizontally simple region, with $1 \leq y \leq e$ and $0 \leq x \leq \ln y$, so

$$\int_{x=0}^{x=1} \int_{y=e^x}^{y=e} f(x,y) \, dy \, dx = \int_{y=1}^{y=e} \int_{x=0}^{x=\ln y} f(x,y) \, dx \, dy.$$
Problem 16 (16.2.35). For \(\int_{0}^{1} \int_{y=x}^{1} xe^{y^3} \, dy \, dx \), sketch the domain of integration. Then change the order of integration and compute. Explain the simplification achieved by changing the order.

Solution. The domain of integration is \(0 \leq x \leq 1 \) and \(x \leq y \leq 1 \).

Changing the order, so the domain of integration is equivalently given by \(0 \leq y \leq 1 \) and \(0 \leq x \leq y \),

\[
\int_{x=0}^{x=1} \int_{y=x}^{y=1} xe^{y^3} \, dy \, dx = \int_{y=0}^{y=1} \int_{x=0}^{x=y} xe^{y^3} \, dx \, dy
\]

\[
= \frac{1}{2} \int_{y=0}^{y=1} y^2 e^{y^3} \, dy
\]

\[
= \frac{1}{2} \int_{u=0}^{u=1} e^{u^3} \, \frac{du}{3}
\]

\[
= \frac{e - 1}{6}.
\]

The function we were required to integrate can only be exactly integrated in one direction, so changing the order of integration to use this direction first gives us a chance to obtain something which can be (exactly) integrated a second time.
Problem 17 (16.2.52). Calculate the average height above the x-axis of a point in the region $0 \leq x \leq 1$ and $0 \leq y \leq x^2$.

Solution. For a point in the plane, its height above the y-axis is its y-coordinate, so the average height in the given region is

$$\text{average height} = \frac{1}{\text{area of region}} \int_{x=0}^{x=1} \int_{y=0}^{y=x^2} y \, dy \, dx.$$

The area of a region is found by integrating 1 over the region, so

$$\text{average height} = \left(\int_{x=0}^{x=1} x^2 \, dx \right)^{-1} \left(\int_{x=0}^{x=1} x \, dx \right) = \left(\frac{1}{3} \right)^{-1} \left(\frac{1}{10} \right) = \frac{3}{10}.$$

Problem 18 (16.2.55). What is the average value of the linear function

$$f(x, y) = mx + ny + p$$
on the ellipse $(x/a)^2 + (y/b)^2 \leq 1$? Argue by symmetry rather than calculation.

Solution. If (x, y) is a point in the ellipse, then $(-x, -y)$ is a point in the ellipse as well, and if we pair these two points together, they average to

$$\frac{f(x, y) + f(-x, -y)}{2} = \frac{(mx + ny + p) + (-mx - ny + p)}{2} = p.$$

Doing this for every pair of points, the average of $f(x, y)$ on the ellipse as a whole is p.

Problem 19 (16.2.59). Prove the inequality $\int\int_D \frac{dA}{4 + x^2 + y^2} \leq \pi$, where D is the disc $x^2 + y^2 \leq 4$.

Solution. Since $x^2, y^2 \geq 0$ for all (x, y), we have

$$\frac{1}{4 + x^2 + y^2} \leq \frac{1}{4}$$

for all (x, y). Thus

$$\int\int_D \frac{dA}{4 + x^2 + y^2} \leq \int\int_D \frac{dA}{4} = \frac{1}{4} \cdot (\text{area of } D) = \frac{1}{4} \cdot 4\pi = \pi.$$
HOMEWORK 2 - SOLUTIONS

Problem 1 (16.3.3). Evaluate \(\iiint_B xe^{y-2z} \, dV \) for the box \(B = \{ 0 \leq x \leq 2, 0 \leq y \leq 1, 0 \leq z \leq 1 \} \).

Solution.
\[
\iiint_B xe^{y-2z} \, dV = \int_{z=0}^{z=1} \int_{y=0}^{y=1} \int_{x=0}^{x=2} xe^{y}e^{-2z} \, dx \, dy \, dz
= \int_{z=0}^{z=1} e^{-2z} \, dz \int_{y=0}^{y=1} e^{y} \, dy \int_{x=0}^{x=2} x \, dx
= \frac{1}{2} (1 - e^{-2}) \cdot (e - 1) \cdot 2 = (e - 1)(1 - e^{-2}).
\]

\(\square \)

Problem 2 (16.3.10). Evaluate \(\iiint_W e^{x+y+z} \, dV \) over the region
\(W = \{ 0 \leq z \leq 1, 0 \leq y \leq x, 0 \leq x \leq 1 \} \).

Solution.
\[
\iiint_W e^{x+y+z} \, dV = \int_{z=0}^{z=1} \int_{y=0}^{y=x} \int_{x=0}^{x=1} e^{x+y+z} \, dy \, dx \, dz
= \int_{z=0}^{z=1} e^{z} \, dz \int_{y=0}^{y=x} e^{x} \, dy \int_{x=0}^{x=1} e^{x} \, dx
= (e - 1) \int_{u=e^{-1}}^{u=1} u \, du = \frac{1}{2} (e - 1)^3.
\]

\(\square \)

Problem 3 (16.3.15). Calculate the integral of \(f(x,y,z) = z \) over the region \(W \) below the hemisphere of radius 3 and lying over the triangle \(D \) in the \(xy \)-plane bounded by \(x = 1 \), \(y = 0 \), and \(x = y \).

Solution. We have \(D = \{ 0 \leq x \leq 1 \text{ and } 0 \leq y \leq x \} \), and for \(z \) to lie below the hemisphere of radius 3, we must have \(x^2 + y^2 + z^2 \leq 9 \), so
\(W = \{ 0 \leq x \leq 1 \text{ and } 0 \leq y \leq x \text{ and } 0 \leq z \leq \sqrt{9 - x^2 - y^2} \} \).

Then
\[
\iiint_W f(x,y,z) \, dV = \int_{x=0}^{x=1} \int_{y=0}^{y=x} \int_{z=0}^{z=\sqrt{9-x^2-y^2}} z \, dz \, dy \, dx
= \int_{x=0}^{x=1} \int_{y=0}^{y=x} 9 - x^2 - y^2 \, dy \, dx
= \int_{x=0}^{x=1} 9x - x^3 - \frac{1}{3} z^3 \, dx
= \frac{9}{2} - \frac{1}{4} - \frac{1}{12} = \frac{25}{6}.
\]

\(\square \)
Problem 4 (16.3.17). Integrate \(f(x, y, z) = x \) over the region in the first octant \((x, y, z \geq 0)\) above \(z = y^2 \) and below \(z = 8 - 2x^2 - y^2 \).

Solution. The bounds on \((x, y)\) are given by the intersection of the two surfaces,
\[
z = y^2 \quad \text{and} \quad z = 8 - 2x^2 - y^2 \implies x^2 + y^2 = 4.
\]
Hence the region of integration is
\[
W = \{0 \leq y \leq 2 \text{ and } 0 \leq x \leq \sqrt{4-y^2} \text{ and } y^2 \leq z \leq 8 - 2x^2 - y^2\},
\]
and
\[
\iiint_W f(x, y, z) \, dV = \int_{y=0}^{y=2} \int_{x=0}^{x=\sqrt{4-y^2}} \int_{z=y^2}^{z=8-2x^2-y^2} x \, dz \, dx \, dy
\]
\[
= \int_{y=0}^{y=2} \int_{x=0}^{x=\sqrt{4-y^2}} x(8-2x^2-2y^2) \, dx \, dy
\]
\[
= \int_{y=0}^{y=2} \left[\frac{1}{8} (8-2y^2)^2 \right]_0^u \, du
\]
\[
= \int_{y=0}^{y=2} \frac{1}{8} u^2 \, du
\]
\[
= \int_{y=0}^{y=2} \frac{1}{8} (8-2y^2)^2 \, dy
\]
\[
= \int_{y=0}^{y=2} \frac{1}{2} (8-2y^2) \, dy
\]
\[
= \int_{y=0}^{y=2} \frac{1}{2} (8^2 - 4y^2 + 8) \, dy
\]
\[
= \left[\frac{32}{10} - \frac{32}{3} + 16 \right] = 128/15.
\]

Problem 5 (16.3.20). Find the volume of the solid in \(\mathbb{R}^3 \) bounded by \(y = x^2, \, x = y^2, \, z = x+y+5, \) and \(z = 0. \)

Solution. Note that the solid is symmetric about the plane \(x = y \) (the set of bounding equations is unchanged upon swapping \(x \) and \(y \)). Therefore, it suffices to compute the volume of the solid bounded by \(y = x^2, \, x = y, \, z = x+y+5, \) and \(z = 0, \) then double it. Hence we compute
\[
2 \int_{x=0}^{x=1} \int_{y=x}^{y=x+5} \int_{z=0}^{z=x+y+5} 1 \, dz \, dy \, dx = 2 \int_{x=0}^{x=1} \int_{y=x}^{y=x+5} (x+y+5) \, dy \, dx
\]
\[
= 2 \int_{x=0}^{x=1} \frac{1}{2} (x+y+5)^2 - \frac{1}{2} (x+x^2+5)^2 \, dx
\]
\[
= 2 \int_{x=0}^{x=1} -\frac{1}{2} x^4 - x^3 - \frac{7}{2} x^2 + 5x \, dx
\]
\[
= 2 \left(-\frac{1}{10} - \frac{1}{4} - \frac{7}{6} + \frac{5}{2} \right) = 59/30.
\]
Problem 6 (16.3.25). Describe the domain of integration of the integral
\[
\int_{-2}^{2} \int_{\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{1}^{\sqrt{5-x^2-z^2}} f(x, y, z) \, dy \, dx \, dz.
\]

Solution. The domain is
\[
D = \{ -2 \leq z \leq 2 \text{ and } -\sqrt{4-z^2} \leq x \leq \sqrt{4-z^2} \text{ and } 1 \leq y \leq \sqrt{5-x^2-z^2} \}
\]
\[
= \{ -2 \leq z \leq 2 \text{ and } x^2 + z^2 \leq 4 \text{ and } 1 \leq y \leq \sqrt{5-x^2-z^2} \}
\]
\[
= \{ x^2 + z^2 \leq 4 \text{ and } y \geq 1 \text{ and } x^2 + y^2 + z^2 \leq 5 \}
\]
where in the last step, we removed the first inequality since it follows from the other two. This is the smaller region between the sphere of radius \(\sqrt{5} \) centered at the origin and the plane \(y = 1 \).

Problem 7 (16.3.28). Let \(W \) be the region bounded by \(y + z = 2, 2x = y, x = 0, \) and \(z = 0 \). Express and evaluate the triple integral of \(f(x, y, z) = z \) by projecting \(W \) onto the
(a) \(xy \)-plane;
(b) \(yz \)-plane;
(c) \(xz \)-plane.

Solution. 1. The projection onto the \(xy \)-plane is the triangle \(\{ 0 \leq x \leq 1 \text{ and } 2x \leq y \leq 2 \} \), so
\[
\iiint_W f(x, y, z) \, dV = \int_{x=0}^{1} \int_{y=2x}^{2} \int_{z=0}^{2-y} z \, dz \, dy \, dx
\]
\[
= \int_{x=0}^{1} \int_{y=2x}^{2} \frac{1}{6} (2-y)^3 \, dy \, dx
\]
\[
= \int_{x=0}^{1} \frac{4}{3} (1-x)^3 \, dx = \frac{1}{3}.
\]

2. The projection onto the \(yz \)-plane is the triangle \(\{ 0 \leq y \leq 2 \text{ and } 0 \leq z \leq 2-y \} \), so
\[
\iiint_W f(x, y, z) \, dV = \int_{y=0}^{2} \int_{z=0}^{2-y} \int_{x=0}^{y/2} z \, dx \, dz \, dy = \frac{1}{3}.
\]

3. The projection onto the \(xz \)-plane is the triangle \(\{ 0 \leq x \leq 1 \text{ and } 0 \leq z \leq 2-2x \} \), so
\[
\iiint_W f(x, y, z) \, dV = \int_{x=0}^{1} \int_{z=2-2x}^{2-z} \int_{y=x/2}^{y=2-z} z \, dy \, dz \, dx = \frac{1}{3}.
\]
Problem 8 (16.3.29). Let
\[W = \left\{ (x, y, z) \mid \sqrt{x^2 + y^2} \leq z \leq 1 \right\}. \]
Express \(\iiint_W f(x, y, z) \, dV \) as an iterated integral in the order \(dz \, dy \, dx \).

Solution. We must have \(x^2 + y^2 \leq 1 \), so \(-\sqrt{1 - x^2} \leq y \leq \sqrt{1 - x^2} \). Thus
\[
\iiint_W f(x, y, z) \, dV = \int_{x=-1}^{x=1} \int_{y=-\sqrt{1-x^2}}^{y=\sqrt{1-x^2}} \int_{z=\sqrt{x^2+y^2}}^{z=1} f(x, y, z) \, dz \, dy \, dx.
\]

Problem 9 (16.3.30). Repeat the previous exercise for the order \(dx \, dy \, dz \).

Solution. Here we have \(0 \leq z \leq 1 \), then \(-z \leq y \leq z \), then \(-\sqrt{z^2 - y^2} \leq x \leq \sqrt{z^2 - y^2} \), so
\[
\iiint_W f(x, y, z) \, dV = \int_{z=0}^{z=1} \int_{y=-z}^{y=z} \int_{x=\sqrt{z^2-y^2}}^{x=\sqrt{z^2-y^2}} f(x, y, z) \, dx \, dy \, dz.
\]

Problem 10 (16.3.35). Draw the region \(W \) bounded by the surfaces given by \(z = y^2 \), \(y = z^2 \), \(x = 0 \), and \(x+y+z = 4 \). Set up, but do not compute, a single triple integral that yields the volume of \(W \).

Solution. [drawing omitted for now]
The region is
\[W = \{ 0 \leq z \leq 1 \text{ and } z^2 \leq y \leq \sqrt{z} \text{ and } 0 \leq x \leq 4 - y - z \}, \]
so the volume of \(W \) is
\[
\iiint_W \, dV = \int_{z=0}^{z=1} \int_{y=z^2}^{y=\sqrt{z}} \int_{x=0}^{x=4-y-z} \, dx \, dy \, dz.
\]

Problem 11 (12.3.13). Convert the equation \(r = 2 \sin \theta \) to rectangular coordinates.

Solution. Multiply by \(r \) to get \(r^2 = 2r \sin \theta \), which gives \(x^2 + y^2 = 2y \), or \(x^2 + (y-1)^2 = 1 \).

Problem 12 (12.3.16). Convert the equation \(r = 1/(2 - \cos \theta) \) to rectangular coordinates.

Solution. Clearing denominators, \(2r - r \cos \theta = 1 \), or \(2\sqrt{x^2+y^2} = 1 + r \cos \theta = 1 + x \). Squaring, \(4x^2 + 4y^2 = 1 + 2x + x^2 \), or \(3x^2 - 2x + 4y^2 = 1 \).
Problem 13 (12.3.18). Convert the equation \(x = 5 \) to a polar equation of the form \(r = f(\theta) \).

Solution. This becomes \(r \cos \theta = 5 \), so \(r = 5 \sec \theta \).

Problem 14 (12.3.19). Convert the equation \(y = x^2 \) to a polar equation of the form \(r = f(\theta) \).

Solution. This becomes \(r \sin \theta = r^2 \cos^2 \theta \), so \(r = \sin \theta / \cos^2 \theta = \sec \theta \tan \theta \).

Problem 15 (12.3.20). Convert the equation \(xy = 1 \) to a polar equation of the form \(r = f(\theta) \).

Solution. This becomes \(r^2 \sin \theta \cos \theta = 1 \), so \(r = \sqrt{\sec \theta \csc \theta} \).

Problem 16 (12.3.23). Match each equation with its description:

(a) \(r = 2 \)
(b) \(\theta = 2 \)
(c) \(r = 2 \sec \theta \)
(d) \(r = 2 \csc \theta \)

(i) Vertical line
(ii) Horizontal line
(iii) Circle
(iv) Line through origin

Solution. (a) This is the circle of radius 2 around the origin, which fits (iii).

(b) This is a ray from the origin outward in the direction corresponding to \(\theta = 2 \), which fits most closely (though not quite) with (iv).

(c) This equation becomes \(r \cos \theta = 2 \), or \(x = 2 \), so we have a vertical line, which fits (i).

(d) This equation becomes \(r \sin \theta = 2 \), or \(y = 2 \), so we have a horizontal line, which fits (ii).

Problem 17 (12.3.37). Show that \(r = a \cos \theta + b \sin \theta \) is the equation of a circle passing through the origin. Express the radius and center (in rectangular coordinates) in terms of \(a \) and \(b \), and write down the equation in rectangular coordinates.

Solution. Multiply through by \(r \) to get \(r^2 = ar \cos \theta + br \sin \theta \), or \(x^2 + y^2 = ax + by \). Completing the square gives us

\[
\left(x - \frac{1}{2}a \right)^2 + \left(y - \frac{1}{2}b \right)^2 = \left(\frac{a^2 + b^2}{4} \right),
\]

so the center is \((a/2, b/2)\) and the radius is \(\sqrt{a^2 + b^2}/2\).

Problem 18 (12.3.47). Show that every line that does not pass through the origin has a polar equation of the form

\[
r = \frac{b}{\sin \theta - a \cos \theta},
\]

where \(b \neq 0 \).

Solution. Any line which does not pass through the origin has rectangular equation \(y = ax + b \) for some \(a \) and \(b \neq 0 \). Then \(r \sin \theta = ar \cos \theta + b \), and solving for \(r \), we get the required form.
HOMEWORK 3 - SOLUTIONS

Problem 1 (16.4.4). Sketch $D = \{y \geq 0 \text{ and } x^2 + y^2 \leq 1\}$ and integrate $f(x, y) = y(x^2 + y^2)^3$ over D using polar coordinates.

Solution.

From the diagram, we can see that $D = \{0 \leq \theta \leq \pi \text{ and } 0 \leq r \leq 1\}$, so

$$
\int_{D} f(x, y) \, dA = \int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=1} r \sin \theta (r^2)^3 \cdot r \, dr \, d\theta = \int_{\theta=0}^{\theta=\pi} \sin \theta \, d\theta \int_{r=0}^{r=1} r^8 \, dr = 2 \cdot \frac{1}{9} = \frac{2}{9}.
$$

Problem 2 (16.4.10). For $\int_{x=0}^{x=4} \int_{y=0}^{y=\sqrt{16-x^2}} \tan^{-1}\left(\frac{y}{x}\right) \, dy \, dx$, sketch the region of integration and evaluate by changing to polar coordinates.

Solution.

In this range, $\tan^{-1}(y/x) = \theta$, so

$$
\int_{x=0}^{x=4} \int_{y=0}^{y=\sqrt{16-x^2}} \tan^{-1}\left(\frac{y}{x}\right) \, dy \, dx = \int_{\theta=0}^{\theta=\pi/2} \int_{r=0}^{r=1} \theta \cdot r \, dr \, d\theta
$$

$$
= \int_{\theta=0}^{\theta=\pi/2} \theta \, d\theta \int_{r=0}^{r=1} r \, dr

= \frac{(\pi/2)^2}{2} \cdot \frac{1}{2} = \frac{\pi^2}{16}.
$$
Problem 3 (16.4.21). Find the volume of the wedge-shaped region contained in the cylinder $x^2 + y^2 = 9$, bounded above by the plane $z = x$ and below by the xy-plane.

Solution. In cylindrical polar coordinates, the region is given by

$$0 \leq r \leq 3, \quad -\pi/2 \leq \theta \leq \pi/2, \quad 0 \leq z \leq r \cos \theta,$$

so the volume is

$$\int_{\theta = -\pi/2}^{\pi/2} \int_{r = 0}^{3} \int_{z = 0}^{r \cos \theta} r \, dz \, dr \, d\theta = \int_{\theta = -\pi/2}^{\pi/2} \int_{r = 0}^{3} r^2 \cos \theta \, dr \, d\theta = \int_{\theta = -\pi/2}^{\pi/2} 9 \cos \theta \, d\theta = 18.$$

Figure 1

Problem 4 (16.4.23). Evaluate $\int\int_{D} \sqrt{x^2 + y^2} \, dA$, where D is the domain above.

Hint: Find the equation of the inner circle in polar coordinates and treat the right and left parts of the region separately.

Problem 5 (16.4.30). Use cylindrical coordinates to compute $\int\int\int_{W} z \sqrt{x^2 + y^2} \, dV$ for the region given by $x^2 + y^2 \leq z \leq 8 - (x^2 + y^2)$.

Problem 6 (16.4.35). Express $\int_{-1}^{1} \int_{y = \sqrt{1-x^2}}^{y=0} \int_{z=0}^{\sqrt{x^2+y^2}} f(x, y, z) \, dz \, dy \, dx$.

Problem 7 (16.4.40). Use cylindrical coordinates to find the volume of a sphere of radius a from which a central cylinder of radius b has been removed, where $0 < b < a$.

Problem 8 (16.4.49). Use spherical coordinates to calculate the triple integral of the function $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ over the region $x^2 + y^2 + z^2 \leq 2z$.

Problem 9 (16.4.52). Find the volume of the region lying above the cone $\phi = \phi_0$ and below the sphere $\rho = R$.

20
Problem 10 (16.4.56). Let \(\mathcal{W} \) be the region within the cylinder \(x^2 + y^2 = 2 \) between \(z = 0 \) and the cone \(z = \sqrt{x^2 + y^2} \). Calculate the integral of \(f(x, y, z) = x^2 + y^2 \) over \(\mathcal{W} \), using both spherical and cylindrical coordinates.

Problem 11 (16.5.8). Compute the total mass of the plate in Figure 2 assuming a mass density of \(f(x, y) = x^2 / (x^2 + y^2) \text{ g cm}^{-2} \).

![Figure 2: 16.5.8](image)

Problem 12 (16.5.13). Find the centroid of the quarter circle \(x^2 + y^2 \leq R^2 \) with \(x, y \geq 0 \) assuming the density \(\delta(x, y) = 1 \).

Problem 13 (16.5.16). Show that the centroid of the sector in Figure 3a has \(y \)-coordinate

\[
\bar{y} = \left(\frac{2R}{3} \right) \left(\frac{\sin \alpha \alpha}{\alpha} \right).
\]

![Figure 3](image)

Problem 14 (16.5.20). Show that the \(z \)-coordinate of the centroid of the tetrahedron bounded by the coordinate planes and the plane \((x/a) + (y/b) + (z/c) = 1 \) in Figure 3b is \(\bar{z} = c/4 \). Conclude by symmetry that the centroid is \((a/4, b/4, c/4)\).
Problem 15 (16.5.21). Find the centroid of the region W lying above the sphere $x^2 + y^2 + z^2 = 6$ and below the paraboloid $z = 4 - x^2 - y^2$ (Figure 4).

Problem 16 (16.5.24). Find the center of mass of the region bounded by $y^2 = x + 4$ and $x = 0$ with mass density $\delta(x, y) = |y|$.

Problem 17 (16.5.27). Find the z-coordinate of the center of mass of the first octant of the unit sphere with mass density $\delta(x, y, z) = y$ (Figure 5).