Week 9 Tuesday Notes

Andrew Sack

March 3, 2021

Today we will be looking at a proof of the real spectral theorem from Axler. This is a slightly different proof than was done in class, although the basic outline is similar.

This theorem states a real symmetric matrix (i.e. one such that $A=A^{t}$) has an orthonormal basis of (real) eigenvectors.

The basic plan is to first show that A has an eigenvector and then induct.

1 Every real symmetric matrix has an eigenvector.

The most obvious solution to this is as follows: View A as a complex matrix. Then A has an eigenvector v with eigenvalue λ. Then $\langle A v, v\rangle=\left\langle v, A^{t} v\right\rangle=\langle v, A v\rangle$.
Then $\langle\lambda v, v\rangle=\langle v, \lambda v\rangle$.
Then $\lambda\langle v, v\rangle=\bar{\lambda}\langle v, v\rangle$.
As $v \neq 0,\langle v, v\rangle \neq 0$ so $\lambda=\bar{\lambda}$ so λ is real.
Then $\operatorname{ker}(A-\lambda I)$ is non-trivial, so A has a real eigenvector with eigenvalue λ.
Axler has a different approach that never requires us to view A as a complex matrix. First we start with an auxiliary lemma.

Lemma: Let $T \in M_{n}(\mathbb{C})$ be a real symmetric matrix and $\alpha, \beta \in \mathbb{R}$ such that $\alpha^{2}<4 \beta$. Then $T^{2}+\alpha T+\beta I$ is invertible.
Proof:
Let $v \neq 0$.
Then

$$
\begin{aligned}
\left\langle\left(T^{2}+\alpha T+\beta I\right) v, v\right\rangle & =\left\langle T^{2} v, v\right\rangle+\alpha\langle T v, v\rangle+\beta\langle v, v\rangle \\
& =\left\langle T v, T^{t} v\right\rangle+\alpha\langle T v, v\rangle+\beta\langle v, v\rangle \\
& =\langle T v, T v\rangle+\alpha\langle T v, v\rangle+\beta\langle v, v\rangle \\
& =\|T v\|^{2}+\alpha\langle T v, v\rangle+\beta\|v\|^{2}
\end{aligned}
$$

By the Cauchy-Schwarz inequality, $|\langle T v, v\rangle| \leq\|T v\| \cdot\|v\|$.
Then:

$$
\begin{aligned}
\|T v\|^{2}+\alpha\langle T v, v\rangle+\beta\|v\|^{2} & \geq\|T v\|^{2}+\beta\|v\|^{2}-|\alpha\| \| T v\|\cdot\| v \|\rangle \\
& =\left(\|T v\|-\frac{|\alpha| \cdot\|v\|}{2}\right)^{2}+\left(\beta-\frac{\alpha^{2}}{4}\right)\|v\|^{2}
\end{aligned}
$$

Then as $b-\frac{\alpha^{2}}{4}>0,\left\langle\left(T^{2}+\alpha T+\beta I\right) v, v\right\rangle>0$, so $\left(T^{2}+\alpha T+\beta I\right) v \neq 0$, so $v \notin \operatorname{ker} T^{2}+\alpha T+\beta I$.
Now we can prove that every symmetric matrix has an eigenvector.
Let T be a real symmetric matrix.
As you know from your take home exam, there exists a non-zero polynomial with real coefficients $p(x) \in \mathbb{R}[x]$ such that $p(T)=0$.
Recall from high school algebra that if r is a root of p, then either r is real or r and \bar{r} are both roots of p with the same multiplicity. (Easy exercise: prove this.)
Then we can write $p(x)=c\left(x^{2}+\alpha_{1} x+\beta_{1}\right) \ldots\left(x^{2}+\alpha_{M} x+\beta_{M}\right)\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{M}\right)$ where each of the $x^{2}+\alpha_{i} x+\beta$ is irreducible over the reals.
Then $\alpha_{i}^{2}<4 \beta_{i}$.
Hence $0=p(T)=c\left(T^{2}+\alpha_{1} T+\beta_{1} I\right) \ldots\left(T^{2}+\alpha_{M} T+\beta_{M} I\right)\left(T-\lambda_{1} I\right) \ldots\left(T-\lambda_{M} I\right)$.
As $T^{2}+\alpha_{i} T+\beta_{i} I$ is invertible for each I, we have that $\left(T-\lambda_{1} I\right) \ldots\left(T-\lambda_{M} I\right)=0$.
At least one $T-\lambda_{i} I$ must be not invertible as the product of invertible matrices is invertible. Hence T has a (real) eigenvector.

2 The real spectral theorem

Theorem: Let V be a finite dimensional inner product space over \mathbb{R} and let $T: V \rightarrow V$ be symmetric. Then there is an orthonormal basis of eigenvectors of T.

We proceed by induction on $\operatorname{dim} V$.
When $\operatorname{dim} V=1$, take an eigenvector for T (which exists by the previous section) and normalize.

Now suppose that the theorem holds true for inner product spaces of dimension $\operatorname{dim} V-1$.
Let u be an eigenvector of T with eigenvalue λ and with norm 1 and let $U=\operatorname{Span}\{u\}$.
We claim that $\left.T\right|_{U^{\perp}}$ is an operator on U^{\perp}.
Let $v \in U^{\perp}$.
Then $\langle u, T v\rangle=\langle T u, v\rangle=\lambda\langle u, v\rangle=0$.
Hence $T v \in U^{\perp}$.

Then $\left.T\right|_{U^{\perp}}$ is a symmetric operator on a space of dimension $\operatorname{dim} V-1$, so by the induction hypothesis, there is an orthonormal basis of eigenvectors of $\left.T\right|_{U^{\perp}}$. As each of these is orthogonal to u, adding in u gives an orthonormal basis of eigenvectors for T.

