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Today we will be looking at a proof of the real spectral theorem from Axler. This is a slightly
different proof than was done in class, although the basic outline is similar.

This theorem states a real symmetric matrix (i.e. one such that A = At) has an orthonormal
basis of (real) eigenvectors.

The basic plan is to first show that A has an eigenvector and then induct.

1 Every real symmetric matrix has an eigenvector.

The most obvious solution to this is as follows: View A as a complex matrix. Then A has
an eigenvector v with eigenvalue λ. Then 〈Av, v〉 = 〈v, Atv〉 = 〈v, Av〉.
Then 〈λv, v〉 = 〈v, λv〉.
Then λ〈v, v〉 = λ̄〈v, v〉.
As v 6= 0, 〈v, v〉 6= 0 so λ = λ̄ so λ is real.
Then ker(A− λI) is non-trivial, so A has a real eigenvector with eigenvalue λ.

Axler has a different approach that never requires us to view A as a complex matrix. First
we start with an auxiliary lemma.

Lemma: Let T ∈Mn(C) be a real symmetric matrix and α, β ∈ R such that α2 < 4β. Then
T 2 + αT + βI is invertible.
Proof:
Let v 6= 0.
Then

〈(T 2 + αT + βI)v, v〉 = 〈T 2v, v〉+ α〈Tv, v〉+ β〈v, v〉
= 〈Tv, T tv〉+ α〈Tv, v〉+ β〈v, v〉
= 〈Tv, Tv〉+ α〈Tv, v〉+ β〈v, v〉
= ||Tv||2 + α〈Tv, v〉+ β||v||2
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By the Cauchy-Schwarz inequality, |〈Tv, v〉| ≤ ||Tv|| · ||v||.
Then:

||Tv||2 + α〈Tv, v〉+ β||v||2 ≥ ||Tv||2 + β||v||2 − |α|||Tv|| · ||v||〉

= (||Tv|| − |α| · ||v||
2

)2 + (β − α2

4
)||v||2

Then as b− α2

4
> 0, 〈(T 2+αT+βI)v, v〉 > 0, so (T 2+αT+βI)v 6= 0, so v /∈ kerT 2+αT+βI.

Now we can prove that every symmetric matrix has an eigenvector.

Let T be a real symmetric matrix.
As you know from your take home exam, there exists a non-zero polynomial with real
coefficients p(x) ∈ R[x] such that p(T ) = 0.
Recall from high school algebra that if r is a root of p, then either r is real or r and r̄ are
both roots of p with the same multiplicity. (Easy exercise: prove this.)
Then we can write p(x) = c(x2 + α1x+ β1) . . . (x

2 + αMx+ βM)(x− λ1) . . . (x− λM) where
each of the x2 + αix+ β is irreducible over the reals.
Then α2

i < 4βi.
Hence 0 = p(T ) = c(T 2 + α1T + β1I) . . . (T 2 + αMT + βMI)(T − λ1I) . . . (T − λMI).

As T 2 + αiT + βiI is invertible for each I, we have that (T − λ1I) . . . (T − λMI) = 0.
At least one T −λiI must be not invertible as the product of invertible matrices is invertible.
Hence T has a (real) eigenvector.

2 The real spectral theorem

Theorem: Let V be a finite dimensional inner product space over R and let T : V → V be
symmetric. Then there is an orthonormal basis of eigenvectors of T .

We proceed by induction on dimV .
When dimV = 1, take an eigenvector for T (which exists by the previous section) and
normalize.

Now suppose that the theorem holds true for inner product spaces of dimension dimV − 1.

Let u be an eigenvector of T with eigenvalue λ and with norm 1 and let U = Span{u}.

We claim that T |U⊥ is an operator on U⊥.

Let v ∈ U⊥.

Then 〈u, Tv〉 = 〈Tu, v〉 = λ〈u, v〉 = 0.
Hence Tv ∈ U⊥.
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Then T |U⊥ is a symmetric operator on a space of dimension dimV − 1, so by the induction
hypothesis, there is an orthonormal basis of eigenvectors of T |U⊥ .
As each of these is orthogonal to u, adding in u gives an orthonormal basis of eigenvectors
for T .
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