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Today we will be discussing problems from past UCLA qualifying exams. In particular,
these are from the linear algebra portion of the so-called “basic” qualifying exam, which is
an exam all UCLA graduate students must pass before the start of their second year.

1 Fall 2018 Number 9

Let f, g : Rn → R be linearly independent elements of the vector space (over R) of linear
mappings from Rn → R. Show that for any v ∈ Rn there exist v1 and v2 such that

v = v1 + v2, f(v) = f(v1), and g(v) = g(v2).

A good approach when you see a problem like this is to first write down your first observations
about the problem.

The first thing I see is to ask what it means if f(v) = f(v1)?

Well then f(v) = f(v1 + v2) = f(v1) + f(v2), so f(v2) = 0. Likewise we see that g(v1) = 0.

Then we can rephrase the question as follows: Show that Rn = ker f + ker g.

From the Rank-Nullity theorem, we know that dim ker f ≥ n− 1 and dim ker g ≥ n− 1.
In fact since f and g are linearly independent, they are both not zero, so dim ker f =
dim ker g = n− 1.

Since we know that dim(ker f + ker g) = dim ker f + dim ker g − dim(ker f ∩ ker g) = 2n −
2− dim(ker f ∩ ker g), it suffices to show that dim(ker f ∩ ker g) ≤ n− 1.

Then all we must show is that ker f 6= ker g.

We somehow must use the fact that f and g are linearly independent. Perhaps we can
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try to show that if ker f = ker g, then f and g are linearly dependent, contradicting our
assumptions. Indeed, this will be our plan of attack.

Suppose that ker f = ker g and let {v1, ..., vn−1} be a basis for ker f = ker g and extend this
to a basis {v1, ..., vn} for Rn.
Then f(vi) = 0 for 1 ≤ i ≤ n − 1 and f(vn) = a for some a ∈ R − {0}. Likewise g(vi) = 0
for 1 ≤ i ≤ n− 1 and g(vn) = b for some b ∈ R− {0}.

We claim that f = a
b
g. Indeed, this is true on every basis element, and is hence true for all

vectors v ∈ Rn.
Then f is a multiple of g, so f and g are linearly independent.

2 Spring 2014 Problem 3 (Enhanced)

Suppose A,B ∈Mn(C) satisfy AB −BA = A. Show that A is not invertible.
Enhancement: Show that A is nilpotent. That is, for some k ∈ Z+, Ak = 0.

Solution (unenhanced version):

Suppose A is invertible. Then ABA−1 −B = I.

Then tr(ABA−1−B) = tr(I) = n.

However tr(ABA−1 − B) = tr(ABA−1)− tr(B) = tr(A−1AB)− tr(B) = tr(B)− tr(B) = 0
a contradiction.

Hence A is not invertible.

Solution (Enhanced version):

We have that AB = A+BA.

A natural thing to try is to see if we can get some nice expression for Ak.

Observe that

A2 = A(AB −BA)

= A2B − ABA
= A2B − (A+BA)A

= A2B − A2 +BA2

Then we get that 2A2 = A2B −BA2.

2



We can try to multiply again on the left by A to get

2A3 = A(A2B −BA3)

= A2B − ABA2

= A3B − (A+BA)A2

= A3B − A3 −BA3

so 3A = A3B −BA3.

Then it seems like a reasonable guess is that kA = AkB −BAk.

Indeed, we proceed by induction. If kA = AkB −BAk then:

kAk+1 = A(AkB −BAk+1)

= AkB − ABAk

= Ak+1B − (A+BA)Ak

= Ak+1B − Ak+1 −BAk+1

Then (k + 1)Ak+1 = Ak+1B −BAk+1.

What can we do with this information? There are a few approaches here. In the vein of the
solution to the unenhanced version, we can observe that tr(Ak) = 0 for every k. There is a
complicated argument you can make using how the eigenvalues of Ak relate to the eigenvalues
of A and the fact that tr(X) is equal to the sum of the eigenvalues of X counting multiplicity.

Here is a very elegant solution:

Consider the linear transformation T : Mn(R)→Mn(R) given by T (X) = XB −BX.

Suppose that Ak 6= 0 for any k.

We have shown that Ak is an eigenvector of T for every k ∈ Z+ with eigenvalue k.

However T can have at most n eigenvalues, a contradiction.

3 Fall 2019 Problem 1

Let A be an invertible n×n matrix with real entries and let e1 denote the unit vector with a 1
in the first position and zeros elsewhere. Show that for each λ ∈ R, the linear transformation
Aλ defined by

Aλx = Ax+ λ〈e1, x〉e1
is invertible if and only if 1 + λ〈e1, A−1e1〉 6= 0.
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When you first look at this problem, a natural thing to do is to see that λ〈e1, A−1e1〉 term
and try to make it appear using Aλ.

Indeed, observe that

Aλ(A
−1(e1)) = AA−1e1 + λ〈e1, A−1e1〉e1

= e1 + λ〈e1, A−1e1〉e1
= (1 + λ〈e1, A−1e1〉)e1

Then if Aλ is invertible, as A−1e1 6= 0, (1 + λ〈e1, A−1e1〉)e1 6= ~0 so (1 + λ〈e1, A−1e1〉) 6= 0.

It remains to show that if 1 + λ〈e1, A−1e1〉 6= 0 then Aλ is invertible.

The following is my solution, however I welcome other solutions.

Suppose that 1 + λ〈e1, A−1e1〉 6= 0
We know that Aλ is invertible if it maps a basis to a basis.
As A is invertible, {A−1e1, ..., A−1en} is a basis.

Aλ(A
−1e1) = (1 + λ〈e1, A−1e1〉)e1

For i > 1, set ai = λ〈e1, x〉.
Then Aλ(A

−1ei) = ei + aie1.

Now we use the fact that Span{v1, ..., vn} = Span{v1, v2 + c2v1, v3 + c3v1, . . . , vn + cnv1} for
any ci ∈ F .

Then AλA
−1e1, ..., AλA

−1en} has the same span as if we add − ai
1+λ〈e1,A−1e1〉AλA

−1e1 to each

AλA
−1ei for i > 1.

This gives us {(1+λ〈e1, A−1e1〉)e1, e2, e3, ..., en}, and rescaling the first element by 1
(1+λ〈e1,A−1e1〉)

gives us the standard basis.

Hence this is a basis so Aλ is invertible.
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