Week 7 Tuesday Notes

Andrew Sack

February 16, 2021

Today we will go over the midterm. I will be presenting solutions, but for a number of problems there were many solutions. In particular, there are many examples one can give for the questions that ask for examples.

1 Part I

In (a), (b), and (c) let V be a nonzero vector space over a field F (not necessarily finite dimensional) and S a nonempty subset of vectors in V. Fully and accurately define what it means for each of the following:

1.1 Part (a)

A vector $v \in V$ is in Span S if for some non-negative integer n, there exists $a_{1}, \ldots, a_{n} \in F$ and $u_{1}, \ldots, u_{n} \in S$ such that $v=a_{1} u_{1}+\cdots+a_{n} u_{n}$ where the sum over 0 elements is taken to be the zero vector.

1.2 Part (b)

S is linearly dependent if for some $n \in \mathbb{Z}^{+}$there exists $a_{1}, \ldots, a_{n} \in F$ not all 0 and distinct $v_{1}, \ldots, v_{n} \in S$ such that $a_{1} v_{1}+\ldots+a_{n} v_{n}=0$.

1.3 Part (c)

S is linearly independent if it is not linearly dependent.

1.4 Part (d)

Let $T: V \rightarrow W$ be a linear transformation between finite dimensional vector spaces over a field F.
Let $\beta=\left(v_{1}, \ldots, v_{m}\right)$ be an ordered basis for V and $\gamma=\left(w_{1}, \ldots, w_{n}\right)$ be an ordered basis for W.

The matrix representation of T with respect to (β, γ), denoted $[T]_{\beta \rightarrow \gamma}$ is defined as follows:
For $1 \leq i \leq m$, there is a unique n-tuple $u_{i}=\left(\begin{array}{c}a_{1, i} \\ \vdots \\ a_{n, i}\end{array}\right)$ such that $T v_{i}=a_{1, i} w_{1}+\cdots+a_{n, i} w_{n}$.
$[T]_{\beta \rightarrow \gamma}$ is an $n \times m$ matrix where for $1 \leq i \leq m$, the i-th column is u_{i}.

2 Part II

Give examples of each of the following (You do not need to justify):

2.1 Part (a)

Let $M_{2}(F)$ be the vector space over F of 2×2 matrices. Find a basis for the subspace of skew symmetric matrices $\left\{A \in M_{2}(F) \mid A^{t}=-A\right\}$ in each of the following two cases:

2.1.1 Part (i)

F is the field of two elements.

Take the basis: $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\}$
2.1.2 Part (ii)
F is the field of three elements.

Take the basis: $\left\{\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right\}$

2.2 Part (b)

Give a specific example of a vector space with 27 elements and subspace of it with 9 elements.

Let F be the field with 3 elements.
Take the vector space F^{3} and the subspace $F^{2} \times\{0\}$.

2.3 Part (c)

Take $\mathbb{R}[x]$ and $\mathbb{C}[0,1]$ as real vector space.

2.4 Part (d)

Define $T: M_{2}(\mathbb{C}) \rightarrow \mathbb{C}[0,1]$ by
$T\left(\begin{array}{ll}a_{1,1}+i b_{1,1} & a_{1,2}+i b_{1,2} \\ a_{2,1}+i b_{2,1} & a_{2,2}+b y_{2,2}\end{array}\right)(x)=a_{1,1}+b_{1,1} x+a_{1,2} x^{2}+b_{1,2} x^{3}+a_{2,1} x^{4}+b_{2,1} x^{5}+a_{2,2} x^{6}+b_{2,2} x^{7}$

2.5 Part (e)

Take $T: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ by $T(p(x))=x p(x)$.
Take $S: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ by $T(p(x))=p^{\prime}(x)$, where $p^{\prime}(x)$ is the derivative of $p(x)$.

3 Part III

3.1 Part (a)

Fully and accurately state and prove the Replacement Theorem.

Here we use "almost all" to mean "all but finitely many."
Theorem: Suppose that S is a basis for V and x is an element of V. If $x=\sum_{v \in S} \alpha_{v} v$ with $\alpha_{v} \in F$ almost all zero and $\alpha_{v_{0}} \neq 0$, then $\left(S \backslash\left\{v_{0}\right\}\right) \cup\{x\}$ is a basis for V .

Proof:
First we show that $\left(S \backslash\left\{v_{0}\right\}\right) \cup\{x\}$ spans V.
Observe that as $\alpha_{v_{0}} \neq 0, v_{0}=x-\sum_{v \in S-\left\{v_{0}\right\}} \frac{\alpha_{v}}{\alpha_{v_{0}}} v$
Let $y \in V$. Then as S is a basis for $V, y=\sum_{v \in S} \beta_{v} v$ with $\beta_{v} \in F$ almost all zero
Then

$$
\begin{aligned}
y & =\left(\sum_{v \in S-\left\{v_{0}\right\}} \beta_{v} v\right)+\beta_{v_{0}}\left(x-\sum_{v \in S-\left\{v_{0}\right\}} \frac{\alpha_{v}}{\alpha_{v_{0}}} v\right) \\
& =\left(\sum_{v \in S-\left\{v_{0}\right\}}\left(\beta_{v}-\beta_{v_{0}} \frac{\alpha_{v}}{\alpha_{v_{0}}}\right) v\right)+\beta_{v_{0}} x
\end{aligned}
$$

Hence $y \in \operatorname{Span}\left(\left(S \backslash\left\{v_{0}\right\}\right) \cup\{x\}\right)$.
Next we show that $\left(S \backslash\left\{v_{0}\right\}\right) \cup\{x\}$ is linearly independent.
Suppose that $\sum_{v \in\left(S \backslash\left\{v_{0}\right\}\right) \cup\{x\}} \beta_{v} v=0$ with $\beta_{v} \in F$ almost all zero.
Then

$$
\begin{aligned}
0 & =\sum_{v \in\left(S \backslash\left\{v_{0}\right\}\right)} \cup\{x\} \beta_{v} v \\
& =\beta_{x} x+\sum_{v \in\left(S \backslash\left\{v_{0}\right\}\right)} \beta_{v} v \\
& =\beta_{x}\left(\sum_{v \in S} \alpha_{v} v\right)+\sum_{v \in\left(S \backslash\left\{v_{0}\right\}\right)} \beta_{v} v \\
& =\beta_{x} \alpha_{v_{0}} v_{0}+\sum_{v \in\left(S \backslash\left\{v_{0}\right\}\right)}\left(\beta_{v}+\beta_{x} \alpha_{v}\right) v
\end{aligned}
$$

As S is linearly independent, $\beta_{x} \alpha_{v_{0}}=0$ and for $v \in S-\left\{v_{0}\right\},\left(\beta_{v}+\beta_{x} \alpha_{v}\right)=0$.
As $\alpha_{v_{0}} \neq 0, \beta_{x}=0$. Hence $\beta_{v}=0$ for each v. Hence $\left(S \backslash\left\{v_{0}\right\}\right) \cup\{x\}$ is linearly independent. Then $\left(S \backslash\left\{v_{0}\right\}\right) \cup\{x\}$ is a basis.

3.2 Part (b)

See pages 5 and 6 of Lecture 10 notes.

4 Part IV

Define $T: V \rightarrow W$ by $T\left(w_{1}, w_{2}, w_{3}\right)=w_{1}+w_{2}+w_{3}$.
We claim that T is a surjective linear transformation.
Indeed, observe that for $\alpha \in F,\left(w_{1}, w_{2}, w_{3}\right),\left(w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}\right) \in V$ we have

$$
\begin{aligned}
T\left(\alpha\left(w_{1}, w_{2}, w_{3}\right)+\left(w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}\right)\right) & =T\left(\alpha w_{1}+w_{1}^{\prime}, \alpha w_{2}+w_{2}^{\prime}, \alpha w_{3}+w_{3}^{\prime}\right) \\
& =\alpha w_{1}+w_{1}^{\prime}+\alpha w_{2}+w_{2}^{\prime}+\alpha w_{3}+w_{3}^{\prime} \\
& =\alpha\left(w_{1}+w_{2}+w_{3}\right)+w_{1}^{\prime}+w_{2}^{\prime}+w_{3}^{\prime} \\
& =\alpha T\left(w_{1}, w_{2}, w_{3}\right)+T\left(w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}\right)
\end{aligned}
$$

Hence T is linear. Furthermore as $W=W_{1}+W_{2}+W_{3}$, for $w \in W$, there exists $w_{1} \in$ $W_{1}, w_{2} \in W_{2}, w_{3} \in W_{3}$ such that $w=w_{1}+w_{2}+w_{3}$.

Hence $w=T\left(w_{1}, w_{2}, w_{3}\right)$, so T is surjective.
Now suppose that $T\left(w_{1}, w_{2}, w_{3}\right)=0$.
Then $w_{1}+w_{2}+w_{3}=0$, so $\operatorname{ker} T=\{0\}$ if and only if for all $w_{1} \in W_{1}, w_{2} \in W_{2}, w_{3} \in W_{3}$, $w_{1}+w_{2}+w_{3}=0$ if and only if T is injective if and only if T is an isomorphism.

Then suppose that T is an isomorphism. and let $w \in W_{i}$ and $w \in W_{j}+W_{k}$ for i, j, k all distinct.

Then $w \in W_{i}$, and $w=w_{j}+w_{k}$ for some $w_{j} \in W_{j}, w_{k} \in W_{k}$.
Then $w-w_{j}-w_{k}=0$, hence $w=-w_{j}=-w_{k}=0$. Hence $w=0$ so $W_{i} \cap\left(W_{j}+W_{k}\right)=\{0\}$.
Now suppose that $W_{i} \cap\left(W_{j}+W_{k}\right)=0$ whenever i, j, k are all distinct.
Then let $w_{1} \in W_{1}, w_{2} \in W_{2}, w_{3} \in W_{3}$ such that $w_{1}+w_{2}+w_{3}=0$.
Hence $w_{1}=-\left(w_{2}+w_{3}\right) \in\left(W_{2}+W_{3}\right)$.
Hence $w_{1} \in W_{1} \cap\left(W_{2}+W_{3}\right)=\{0\}$, so $w_{1}=0$.
Then $w_{2}+w_{3}=0$. But then $w_{2}=-w_{3} \in W_{3} \subset W_{1}+W_{3}$.
Hence $w_{2} \in W_{2} \cap\left(W_{1}+W_{3}\right)=\{0\}$ so $w_{2}=0$.
Hence $w_{3}=0$.
Hence $w_{1}=w_{2}=w_{3}=0$, so T is an isomorphism.

