Week 6 Tuesday Notes

Andrew Sack

February 9, 2021

More on Dual Spaces will be discussed in the extra lecture this week.
Today I will be relating various topics talked about in lecture to what they mean for matrices and working out some examples.

1 Direct Sums

Recall that we say a vector space V is a direct sum of subspaces U and W if $V=U+$ W and $U \cap W=\{0\}$ and we write $V=U \oplus W$.

For homework you will show that there is a nice isomorphism between this (called the internal direct product) and the external direct product defined by $U \oplus W:=U \times W$ with vector addition and scalar multiplication defined term-wise.

We say that a linear operator $T: V \rightarrow V$ splits over the internal direct sum $V=U \oplus W$ if $T(U) \subset U$ and $T(W) \subset W$.

Alternatively, given linear operators $S: U \rightarrow U$ and $T: V \rightarrow V$, there is a split linear operator $S \oplus T: U \oplus V \rightarrow U \oplus V$ given by $S \oplus T(u, v)=(S(u), T(v))$.

Furthermore, this operation commutes with the isomorphism between internal and external direct products.

What does this mean for matrices?
Let $\beta=\left\{u_{1}, \ldots, u_{m}\right\}$ be a basis for U and $\gamma=\left\{w_{m+1}, \ldots, w_{n}\right\}$ be a basis for W.
Then $\beta \cup \gamma$ is a basis for $V=U \oplus W$.
Let $T: V \rightarrow V$ be split over the direct sum.
What does the matrix $[T]_{\beta \cup \gamma \rightarrow \beta \cup \gamma}$ look like?
Well, observe that for any $u_{i} \in \beta, T\left(u_{i}\right) \in U$, so it has non-zero components only in β.

Then the i-th column corresponding to the coordinates of $T\left(u_{i}\right)$ has 0 s in the $m+1, \ldots, n$ coordinates.
Likewise for any $w_{i} \in \gamma, T\left(w_{i}\right) \in W$ so it has non-zero components only in γ. Then the first m coordinates of the i-th column are all 0 .

This gives us a so-called "block diagonal" matrix. That is outside of the upper left $m \times m$ block and bottom right $m-n \times m-n$ block of the matrix, it is all 0s. Furthermore, the upper left block is $\left[\left.T\right|_{U}\right]_{\beta \rightarrow \beta}$ and the bottom right block is $\left[\left.T\right|_{W}\right]_{\gamma \rightarrow \gamma}$.

Let's consider an example.
Consider the transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ given by

$$
T\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
w \\
x \\
y \\
z
\end{array}\right)
$$

(This takes a vector and returns it with its coordinates in reverse order.)
Let $U=\operatorname{Span}\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)\right\}$ and $V=\operatorname{Span}\left\{\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)\right\}$
We see that T exchanges the basis vectors of U so $T(U)=U$ and similarly $T(V)=V$ so T splits over U and V.

Indeed, let $\beta=\left(\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)\right)$
Then $[T]_{\beta \rightarrow \beta}=\left(\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)\left(\begin{array}{c}w \\ x \\ y \\ z\end{array}\right)$

2 Eigenvalues and Eigenvectors

From class you were told that an eigenvector of a linear transformation $T: V \rightarrow V$ is a nonzero vector $v \in V$ such that $T v=\lambda v$ for some $\lambda \in F$. λ is called the eigenvalue associated to v.

Equivalently, $T v-\lambda v=(T-\lambda I) v=0$. Then $\lambda \in F$ is an eigenvalue if and only if $\operatorname{ker}(T-\lambda I) \neq 0$.

With respect to any basis, λI is always the same matrix. Then given a basis β, we can detect if λ is an eigenvalue of T by seeing if $[T]_{\beta \rightarrow \beta}-\lambda I$ is invertible or not, or equivalently check if $\operatorname{det}\left([T]_{\beta \rightarrow \beta}-\lambda I\right)=0$.

How do we find these eigenvalues? Well they correspond precisely to the values of z such that $\operatorname{det}\left(z I-[T]_{\beta \rightarrow \beta}\right)=0$. Conveniently, by cofactor expansion this is a polynomial in z, so we have reduced checking if λ is an eigenvalue of T to checking if it is the root of a particular polynomial.

We define the characteristic polynomial by

$$
\chi_{T}(z):=\operatorname{det}(z I-T)
$$

Note: This is different from the minimal polynomial defined in class.

3 Diagonalizable Transformations

Recall that a linear operator $T: V \rightarrow V$ is diagonalizable if T has a basis of eigenvectors.
What does this mean with respect to matrices? Let $T: V \rightarrow V$ and $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of eigenvectors where $T v_{i}=\lambda v_{i}$.

What does $[T]_{\beta \rightarrow \beta}$ look like? As $T v_{i}=\lambda v_{i}$, the (i, i) entry in $[T]_{\beta \rightarrow \beta}$ is λ_{i} and all other entries in the column are 0 . Then $[T]_{\beta \rightarrow \beta}$.

We saw last week that given some other basis γ (not necessarily of eigenvectors), $[T]_{\beta \rightarrow \beta}$ is similar to $[T]_{\gamma \rightarrow \gamma}$.

We say that a matrix is diagonalizable if it is similar to a diagonal matrix. Diagonalizable matrices exactly correspond to diagonalizable transformations.

Let us consider an example:
Take $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $T\binom{x}{y}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\binom{x}{y}$.
We claim that T is diagonalizable.
First we should find the eigenvectors of T.
Let $M=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$.

$$
\begin{aligned}
\operatorname{det}\left(z I-\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right) & =\operatorname{det}\left(\begin{array}{cc}
z & -1 \\
-1 & z
\end{array}\right) \\
& =z^{2}-1=(z+1)(z-1)
\end{aligned}
$$

Then $\chi_{T}(z)$ has roots 1 and -1 . We saw in class that as these eigenvalues are distinct, T is diagonalizable, however if we are not convinced, let us find a basis of eigenvectors.
We want to find a vector in $\operatorname{ker}(I-M)=\operatorname{ker}\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ and a vector in $\operatorname{ker}(-I-M)=$ $\left(\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right)$

For the first case we can take $\binom{1}{1}$ and the second we can take $\binom{1}{-1}$.
These are linearly independent, so T is diagonalizable.
Furthermore, observe that $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)^{-1}\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
This actually shows that the first matrix of today $\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$ is diagonalizable, because
it is similar to $\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$ whose blocks are diagonalizable.

