Week 3 Thursday Notes

Andrew Sack

January 20, 2021

1 Homework Problem 2

A good mental model to use for vector spaces is \mathbb{R}^{2} and \mathbb{R}^{3}. In these vector spaces, the subspaces are $\{0\}$, lines through the origin, and planes through the origin.

Is the union of two lines through the origin a line or a plane? Not usually. For example in \mathbb{R}^{2}, the union of the subspace spanned by $\binom{1}{0}$ (the x-axis) and the subspace spanned by $\binom{0}{1}$ (the y-axis) is two crossing lines, certainly not a line or a plane.
Indeed, this fails the subspace test. $\binom{1}{0}+\binom{0}{1}=\binom{1}{1}$ which is not in either of the two subspaces.

However one easy condition that implies the union of two subspaces is a subspace is if one is contained by another. If $X \subseteq W$ then $X \cup W=W$, a subspace by assumption and similarly if $W \subseteq X$.

We should ask, is this every possibility? It turns out that the answer is yes! And by more or less the same logic as above. Suppose that X and W are subspaces, that $X \cup W$ is a subspace, and that $W \notin X$.
Then let $v \in W-X$ and $u \in X$. Then $v+u \in X \cup W$ as $X \cup W$ is a subspace.
But then either $v+u \in X$ or $v+u \in W$.
If $v+u \in X$ then $v+u-u=v \in X$. But this case cannot happen as $v \notin X$ by assumption. Then $v+u \in W$. Hence $v+u-v=u \in W$ so $X \subset W$.

2 Exercise 2 for today

If $W \subset V$ is a subspace of V with V finite dimensional, then if $\operatorname{dim} W=\operatorname{dim} V, W=V$.

Proof:
First we will do a lemma. (This may have been done in class. If so we will skip the proof in discussion.)
Let V be a vector space over a field F and let $S \subset V$ be linearly independent. Then if $v \in V-\operatorname{Span}(S)$ then $S \cup\{v\}$ is also linearly independent.
Proof:
Let $u_{1}, \ldots, u_{n} \in S$ and suppose that $a_{1} u_{1}+\cdots+a_{n} u_{n}+b v=\overrightarrow{0}$ for $a_{i}, b \in F$.
If $b=0$ then $\sum_{i=1}^{n} a_{i} u_{i}=0$ so $a_{i}=0$ for all i by the linear independence of S.
Otherwise if $b \neq 0$ then $b v=-\sum_{i=1}^{n} a_{i} u_{i}$ so $v=\sum_{i=1}^{n}-\frac{a_{i}}{b} u_{i}$.
But then $v \in \operatorname{Span}(S)$ a contradiction.
Hence $S \cup\{v\}$ is linearly independent.
(Side question: Does this generalize to the following: Let S and T be disjoint linearly independent subsets. Then $S \cup T$ is also linearly independent? If yes say why. If no, give a counterexample.)

Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for W. We claim that β is also a basis for V. In particular, we must show that $\operatorname{Span} \beta=V$.
Indeed, suppose to the contrary. Then there exists $u \in V$ such that $u \notin \operatorname{Span} \beta$.
Then by the lemma, $\beta \cup\{u\}$ is also linearly independent. But this contradicts a corollary from lecture that $n+1$ vectors in an n-dimensional vector space are linearly independent.

3 Exercise 3 for today

Let V and W be vector spaces over F and let $\phi: V \rightarrow W$ be a linear transformation. Then if $v_{1}, \ldots, v_{n} \in V$ and $\left\{A v_{1}, \ldots, A v_{n}\right\}$ is linearly independent, then $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent as well.

Lemma: Let $T: V \rightarrow W$ be a linear transformation. Then $T(\overrightarrow{0})=\overrightarrow{0}$. Proof:
$T(\overrightarrow{0})=T(0 \cdot \overrightarrow{0})=0 \cdot T(\overrightarrow{0})=\overrightarrow{0}$.
Now for the exercise:
Suppose that $\sum_{i=1}^{n} a_{i} v_{i}=\overrightarrow{0}$.
Then $\overrightarrow{0}=A(\overrightarrow{0})$

$$
\begin{aligned}
& =A\left(\sum_{i=1}^{n} a_{i} v_{i}\right) \\
& =\sum_{i=1}^{n} a_{i} A\left(v_{i}\right)
\end{aligned}
$$

Then by the linear independence of $\left\{A v_{1}, \ldots, A v_{n}\right\}, a_{i}=0$ for all i.
Hence v_{1}, \ldots, v_{n} are linearly independent.

