115AH Week 1 Tuesday Notes

January 4, 2021

1 Sets

1.1 Set Basics

A <u>set</u> is a "collection of elements".

Here are some examples you should already be familiar with:

- \mathbb{R} = the set of real numbers.
- \mathbb{C} = the set of complex numbers.
- \mathbb{Z} = the set of integers.

We write sets in one of two ways:

- (1) $A = \{$ (a list of all of the elements in $A.\}$ Ex: $\{a, b, c\}$ Ex: $\mathbb{Z}^+ = \{1, 2, 3, ...\}$ Ex: $\mathbb{Z} = \{0, \pm 1, \pm 2, ...\}.$
- (2) $A = \{x | x \text{ has the defining properties of } A.\}$ Ex: $\mathbb{Z} = \{x | x \text{ is an integer } \}.$ Ex: $\mathbb{Z}^+ = \{x | x > 0 \text{ and } x \in \mathbb{Z}\}.$

If a is an element of A we write $a \in A$. The symbol \in should be read as "is an element of" or "is in" so the statement $a \in A$ should read "a is in A".

Let A and B be two sets. If for all $a \in A$ we have that $a \in B$, we call A a <u>subset</u> of B and we write $A \subset B$ or $A \subseteq B$.

We say that A = B if $a \in A$ if and only if $a \in B$. A common way to show the equality of two sets is to show that $A \subset B$ and $B \subset A$.

If $A \subset B$ but $A \neq B$ then we call A a "proper" subset of B. It is common to denote this as $A \subsetneq B$. Professor Elman also writes this as A < B. For example, $\mathbb{Z} \subsetneq \mathbb{R}$ and $\mathbb{R} \subsetneq \mathbb{C}$.

1.2 Operations on sets

Let A and B be sets.

We have the following definitions:

- $A \cup B := \{x : x \in A \text{ or } x \in B\}.$ This is called the union of A and B.
- $A \cup B := \{x : x \in A \text{ and } x \in B\}.$ This is called the intersection of A and B.
- $A \times B := \{(a, b) : a \in A \text{ or } b \in B\}.$ This is called the Cartesian product of A and B.

Ex: For $a \in \mathbb{R}$, $(-\infty, a] \cup [a, \infty) = \mathbb{R}$ $(-\infty, a] \cap [a, \infty) = \{a\}$ $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

More generally if A_1, \ldots, A_n are sets we write:

⋃_{i=1}ⁿ A_i := A₁ ∪ · · · ∪ A_n = {x : x ∈ A_i for some i, 1 ≤ i ≤ n}.
⋂_{i=1}ⁿ A_i := A₁ ∩ · · · ∩ A_n = {x : x ∈ A_i for all i, 1 ≤ i ≤ n}.
A₁ × · · · × A_n := {(a₁, . . . , a_n) : a_i ∈ A_i for all i, 1 ≤ i ≤ n}.

Even more generally, let \mathcal{I} be a set and for each $i \in \mathcal{I}$ let A_i be a set. (We call \mathcal{I} an indexing set.)

We write

- $\bigcup_{\mathcal{I}} A_i = \bigcup_{i \in \mathcal{I}} A_i := \{ x : x \in A_i \text{ for some } i \in \mathcal{I} \}$
- $\bigcap_{\mathcal{I}} A_i = \bigcap_{i \in \mathcal{I}} A_i := \{ x : x \in A_i \text{ for all } i \in \mathcal{I} \}$

You may ask about " $\underset{i \in \mathcal{I}}{\times} A_i$ " (or as I would write it $\prod_{i \in \mathcal{I}} A_i$) However this is a slightly more complicated story which you can ask me about during office hours or read about on Wikipedia.

If A and B are sets, we define a <u>relation</u> R on A and B to be a subset $R \subset A \times B$. For example, $R \subset \mathbb{Z} \times \mathbb{Z}$ where $R = \{(x, \varepsilon) | x \in \mathbb{Z} \text{ and } \varepsilon = 0 \text{ if } x \text{ is even and } \varepsilon = 1 \text{ if } x \text{ is odd} \}$

2 Functions

2.1 Function Basics

Let A and B be sets. A <u>function</u> (or <u>map</u>) f from A to B is a "rule" that assigns to each element in A a **unique** element in B.

We write such an f by $f : A \to B$ by $a \mapsto f(a)$ where f(a) is where a is sent to. We call A the <u>domain</u> of f and we call B the <u>codomain</u>.

The image of f is the set $\text{Im } f = \{b \in B | \text{ there exists an } a \in A \text{ such that } f(a) = b\}$. We could also write this as $\{f(a) | a \in A\}$ commonly denoted as f(A).

For example we could have $f : \mathbb{R} \to \mathbb{R}$ by $x \mapsto x^2$.

This function has domain \mathbb{R} , codomain \mathbb{R} and image $\mathbb{R}^{\geq 0} := \{x \in \mathbb{R} | x \geq 0\}.$

More formally, a function f from A to B is a relation on A and B such that for all $a \in A$ there is a unique $b \in B$ such that $(a, b) \in f$. However we essentially never use this level of formality and will stick with the first notation.

2.2 **Properties of functions**

Let $f : A \to B$ be a function.

We say that f is surjective or <u>onto</u> if Im f = f(a) = B.

Examples:

- $f : \mathbb{R} \to \mathbb{R}$ by $x \mapsto 2x$ is onto.
- $f:[0,1] \to \mathbb{R}$ by $x \mapsto x^2$ is not onto.
- $f: \mathbb{Z} \to \{0, 1\}$ by $n \mapsto \begin{cases} 0 & \text{if } n \text{ is even} \\ 1 & \text{if } n \text{is odd} \end{cases}$ is surjective.
- $f: \{2n | n \in \mathbb{Z}\} \to \mathbb{Z}$ by $2n \mapsto n$ is surjective.

We say that f is <u>injective</u> or <u>one-to-one</u> (or 1-1) if f(x) = f(y) implies x = y. Equivalently, for all $b \in \text{Im } f$, there is exactly one element $a \in A$ satisfying f(a) = b. Equivalently, for all $b \in B$, there is at most one element a such that f(a) = b. Equivalently, there exists a function $g : \text{Im } f \to A$ by $f(a) \mapsto a$. If this is the case we write f^{-1} for g and say $f^{-1} : \text{Im } f \to A$ by $f(a) \mapsto a$.

Examples:

- $f : \mathbb{R} \to \mathbb{R}$ by f(x) = 2x.
- If A ⊂ B, the inclusion map ι : A → B by a → a is injective.
 If A ⊊ B then this is not onto.

If a function is both a surjection and an injection we call it a bijection.

Example:

The identity map $1_A : A \to A$ by $a \mapsto a$ is a bijection. (We also write $id_A : A \to A$ for the identity map.)

2.3 Composition

Let $f : A \to B$ and $g : B \to C$ be functions.

Then we define $g \circ f : A \to C$ by $a \mapsto g(f(a))$. This is a function. Furthermore if $f : A \to B$ is a bijection then $f^{-1} : \operatorname{Im} f \to A$ by $f(a) \mapsto a$ is a function, and as f is onto, $\operatorname{Im} f = B$, so $f^{-1} : B \to A$ by $f(a) \mapsto a$. In particular, $f^{-1} \circ f = 1_A$ and $f \circ f^{-1} = 1_B$.

We also have that if $f: A \to B, g: B \to C, h: C \to D$ are maps, then $(h \circ g) \circ f = h \circ (g \circ f)$.