115 Week 3 Notes

Andrew Sack

October 20, 2020

1 Problem 7 from October 14 Homework

Prove or give a counterexample: Suppose that V is a vector space and $u, v, w \in V$. If u, v are linearly independent, v, w are linearly independent, and u, w are linearly independent, then u, v, w are linearly independent.

Counter-example:

$$u = \begin{pmatrix} 1\\0 \end{pmatrix}, v = \begin{pmatrix} 0\\1 \end{pmatrix}, w = \begin{pmatrix} 1\\1 \end{pmatrix}$$

2 Problem 4 from October 16 Homework

Show that if V is a vector space, $\vec{v} \in V$ and $a \in \mathbb{R}$ satisfy $a\vec{v} = 0$, then a = 0 or $\vec{v} = \vec{0}$.

Proof: If a = 0 then we are done. If $a \neq 0$, then we multiply on both sides $\frac{1}{a}$ to get $\frac{1}{a} \cdot a\vec{v} = \frac{1}{a}\vec{0}$ so $\vec{v} = \vec{0}$.

3 Problem 5 from October 19 Homework

Suppose that V is a vector space with dimension n. Show that $u_1, \ldots, u_n \in V$ are linearly independent if and only if $\text{span}\{u_1, \ldots, u_n\} = V$.

Suppose that $u_1, \ldots, u_n \in V$ are linearly independent and let $v \in V$. Recall from class that if you have n + 1 vectors in V with dim V = n, then they are linearly dependent.

Hence u_1, \ldots, u_n, v are linearly dependent so there exists $a_1, \ldots, a_n, b \in \mathbb{R}$ such that bv + bv = 0

 $\sum_{i=1}^{n} a_{i}u_{i} = \vec{0} \text{ and at least one of } a_{1}, ..., a_{n}, b \text{ is non-zero.}$ If b = 0, then $\sum_{i=1}^{n} a_{i}u_{i} = \vec{0}$ and as $u_{1}, ..., u_{n}$ are linearly independent, this implies that $a_{i} = 0$ for all i. Then $bv = \vec{0}$ and as $b \neq 0, v = \vec{0}$. $\vec{0} \in \text{span}\{u_{1}, ..., u_{n}\}$. Otherwise if $b \neq 0$, then $bv = -\sum_{i=0}^{n} a_{i}u_{i}$ and multiplying by $\frac{1}{b}$ on both sides we get v =

 $\sum_{i=0}^{n} \frac{-a_i}{b} u_i.$ Hence $v \in \operatorname{span}\{u_1, \dots, u_n\}.$

Now suppose that span $\{u_1, \ldots, u_n\} = V$ and suppose by way of contradiction that u_1, \ldots, u_n are linearly dependent.

Then by lemma 2, for some $i_1, ..., i_k$, span $\{u_{i_1}, ..., u_{i_k}\} = \text{span}\{u_1, ..., u_n\}$ and $u_{i_1}, ..., u_{i_k}$ are linearly independent with k < n.

But then $\{u_{i_1}, ..., u_{i_k}\}$ is a smaller set of linearly independent vectors that span V (that is to say, a basis), but dim V = n > k a contradiction.