Week 2 Worksheet for Math 61

- 1. Define the sequence a by $a_0 = 3$ and $a_n = 2 + a_{n-1}$.
 - (a) Write out 5 terms of a starting with a_0 .

(b) Calculate $\sum_{i=0}^{4} a_i$.

$$3+5+7+9+11=35$$

(c) Find a formula for a_i .

$$a_i = 3 + 2i$$

(d) Find a formula for $s_n = \sum_{i=0}^n a_i$ in terms of n.

$$s_n = \sum_{i=0}^n a_i$$

$$= \sum_{i=0}^n 3 + 2i$$

$$= \sum_{i=0}^n 3 + 2 \sum_{i=0}^n i$$

$$= 3(n+1) + 2(\frac{n(n+1)}{2})$$

$$= 3n + 3 + n^2 + n$$

$$= n^2 + 4n + 3$$

(e) Is a non-decreasing? Is a increasing?

(f) Is s non-decreasing? Is s increasing?

- 2. For the following relations R, determine if R is reflexive, symmetric, antisymmetric, transitive, a partial order, and/or an equivalence relation.
 - (a) $x, y \in \mathbb{R}, xRy \Leftrightarrow xy = 1.$
 - $2 \cdot 2 = 4 \neq 1$ so R is not reflexive.
 - If xy = 1 then yx = 1 so R is symmetric.
 - $2R\frac{1}{2}$ and $\frac{1}{2}R2$ but $2 \neq \frac{1}{2}$ so R is not antisymmetric.
 - $2R\frac{1}{2}$ and $\frac{1}{2}R2$ but $2 \cdot 2 \neq 1$ so R is not transitive.

- R is not reflexive so it is not a partial order.
- R is not reflexive so it is not an equivalence relation.
- (b) $x, y \in \{\text{Rock, Paper, Scissors}\}, xRy \Leftrightarrow x \text{ beats } y.$
 - Paper does not beat paper so R is not reflexive.
 - Paper beats Rock, but Rock does not beat paper so R is not symmetric.
 - As we never have the case that A beats B and also B beats A, R is antisymmetric.
 - ullet Paper beats Rock and Rock beats Scissors, but Paper does not beat Scissors, so R is not transitive.
 - R is not reflexive so it is not a partial order.
 - \bullet R is not reflexive so it is not an equivalence relation.
- (c) $x, y \in \{\text{Rock, Paper, Scissors}\}, xRy \Leftrightarrow x \text{ beats or ties } y.$
 - \bullet Everything ties itself so R is reflexive.
 - Paper beats Rock, but Rock does not beat paper so R is not symmetric.
 - We never have the case that A beats B and also B beats or ties A. Then aRb only if a ties b which only occurs if a = b. So R is antisymmetric.
 - Paper beats Rock and Rock beats Scissors, but Paper does not beat Scissors, so R is not transitive.
 - R is not transitive so it is not a partial order.
 - \bullet R is not symmetric so it is not an equivalence relation.
- (d) $x, y \in \mathbb{Z}, xRy \Leftrightarrow x y$ is even.
 - Recall that n is even if n = 2k for some integer k.
 - $x x = 0 = 2 \cdot 0$ which is even, so R is reflexive.
 - If x y = 2k then y x = -(x y) = 2(-k) so R is symmetric.
 - 2R0 and 0R2 but $0 \neq 2$ so R is not antisymmetric.
 - If x y = 2k and $y z = 2\ell$ then $(x z) = (x y) + (y z) = 2(k + \ell)$ so R is transitive.
 - As R is not antisymmetric R is not a partial order.
 - As R is reflexive, symmetric, and transitive, R is an equivalence relation.
- (e) $x, y \in \mathbb{Z}, xRy \Leftrightarrow x \mid y$. (Recall that $x \mid y$ iff $\exists z \in Z$ such that y = xz)
 - $x = x \ cdot1$ so x|x. Hence R is reflexive.
 - 2|4 but 4 / 2 so R is not symmetric.
 - $1 \mid -1$ and $-1 \mid 1$ but $1 \neq -1$ so R is not antisymmetric.
 - If x = yn and y = zm then x = z(nm) so R is transitive.
 - As R is not antisymmetric, R is not a partial order.
 - As R is not symmetric, R is not an equivalence relation.
- (f) $x, y \in \mathbb{Z}^+, xRy \Leftrightarrow x \mid y$. (Recall that $x \mid y$ iff $\exists z \in Z$ such that y = xz)

- $x = x \ cdot1$ so x|x. Hence R is reflexive.
- 2|4 but $4 \not / 2$ so R is not symmetric.
- If x = yn and y = xm then $x = x^2nm$. As x > 0 we have 1 = nm so $n = m = \pm 1$.

However as x and y are both greater than 0 we have n = m = 1 so x = y. Hence R is antisymmetric.

- If x = yn and y = zm then x = z(nm) so R is transitive.
- As R is reflexive, antisymmetric, and transitive, R is a partial order.
- \bullet As R is not symmetric, R is not an equivalence relation.
- 3. For each of the following relations. verify that it is an equivalence relation and give one member from each of its equivalence classes. (There many be infinitely many equivalence classes.)
 - (a) $x, y \in \mathbb{Z}, xRy \Leftrightarrow 3|x-y$. (Recall that 3|x-y means "3 divides x-y". That is, $\exists z \in \mathbb{Z}$ such that x-y=3z).
 - (b) $x, y \in \mathbb{Z}, xRy \Leftrightarrow x \mid y$. (Recall that $x \mid y$ iff $\exists z \in Z$ such that y = xz)
 - The proof that R is an equivalence relation is essentially the same as 2(d) so I will not repeat it.
 - $\{0,1,2\}$ is a set containing one element from each equivalence class. For any integer n, n dividing by 3 gives a remainder of 0,1, or 2 so any integer is equivalent to one of these under R. (If you want to see a proof of this fact about remainders, read "What is a Proof?" on my website.
 - (c) $x, y \in \mathbb{R}, xRy \Leftrightarrow \cos(x) = \cos(y)$.
 - cos(x) = cos(x) so R is reflexive.
 - If cos(x) = cos(y) then cos(y) = cos(x) so R is symmetric.
 - If cos(x) = cos(y) and cos(y) = cos(z) then cos(x) = cos(z) because = is transitive. Hence R is transitive.
 - $\cos(x)$ is injective when we restrict $x \in [0, \pi)$ and surjective onto [-1, 1], the range of $\cos(x)$ on all of \mathbb{R} .

Then exactly one member of each equivalence class is in $[0,\pi)$

- (d) $x, y \in \mathbb{R}, xRy \Leftrightarrow x y \in \mathbb{Z}.$
 - $x x = 0 \in \mathbb{Z}$ so R is reflexive.
 - If $x y \in \mathbb{Z}$ then $y x = -(x y) \in \mathbb{Z}$ so R is symmetric.
 - If $x y \in \mathbb{Z}$ and $y z \in \mathbb{Z}$ then $x z = (x y) + (y z) \in \mathbb{Z}$ because the sum of two integers is an integer.
 - Exactly one member of each equivalence class is in [0,1).
- (e) $(a,b),(x,y) \in \mathbb{R} \times (\mathbb{R} \setminus \{0\}),(a,b)R(x,y) \Leftrightarrow ay = bx.$
 - ab = ba so R is reflexive.
 - If ay = bx then xb = ya so R is symmetric.

- If (a,b)R(x,y) and (x,y)R(m,n) then ay = bx and xn = ym. Then x(b-n) = y(m-a)Hence ayxn = bxym so an(xy) = bm(xy) so an = bm so (a,b)R(m,n).
- $\{(\text{num}(q), \text{den}(q)) : q \in \mathbb{Q}\}$ for some choice of numerator and denominator of q has exactly one element from each equivalence class.
- 4. Describe the following sets geometrically (or draw a picture)
 - (a) $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$
 - One way to visualize this set is to tile 3-dimensional space with $1 \times 1 \times 1$ cubes and then look at only the corners of the cubes.
 - (b) $S^1 \times (0,1)$ where $S^1 = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}$ i.e. a circle.

You can visualize this as a collection of circles of radii in (0,1) not inclusive or you can view this as a cylinder with side length 1 and radius 1.

- (c) $([0,1] \times \{0\}) \cup (\{0\} \times [0,1]) \cup ([0,1] \times \{1\}) \cup (\{1\} \times [0,1])$
 - This is the border of a square.